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Abstract

We have developed a general purpose use and modular architec-
ture of an embodied conversational agent (ECA). Our agent is able
to communicate using verbal and nonverbal channels like gaze, fa-
cial expressions, and gestures. Our architecture follows the SAIBA
framework that sets 3-step process and communication protocols.
In our implementation of SAIBA architecture we focus on flexibil-
ity and we introduce different levels of the customization. In partic-
ular, our system is able to display the same communicative intention
with different embodiments, be a virtual agent or a robot. Moreover
our framework is independent of the animation player technology.
Agent animations can be displayed across different medias, such as
web browser, virtual or augmented reality. In this paper we present
our agent architecture and its main features.

CR Categories: H.5.2.f [Information Technology and Systems]:
Information Interfaces and Representation (HCI) — User Inter-
faces Graphical user interfaces; H.5.1.b [Information Technology
and Systems]: Information Interfaces and Representation (HCI) —
Multimedia Information Systems Artificial, augmented, and vir-
tual realities
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1 Introduction

The recent technological progress made the creation of virtual hu-
manoids possible. They can serve as interface to computer systems;
they can be self-representation of users; they can be controlled by a
human or be fully autonomous. In this paper we are interested in au-
tonomous virtual humanoids. When these agents are endowed with
expressive communicative capabilities, they are called Embodied
Conversational Agents (ECA). An ECA is a computer-generated
animated character that is able to carry on natural, human-like com-
munication with users. For this purpose agent systems have been
developed to simulate verbal and nonverbal communicative behav-
iors. ECAs can dialogue with users using synthesized speech, ges-
tures, gaze and facial expressions. These agents are powerful as
HCI metaphor [Reeves and Nass 1996]. Studies have shown that
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with appropriate behaviors they can enhance the experience users
have when interacting with a system; users enjoyed it more, feel
more engaged, learn more, etc. [Von der Pütten et al. 2010].

This paper presents the real-time architecture of our embodied con-
versational agent. It is an example of ECA system based on a com-
mon framework. Our agent architecture follows the design method-
ology proposed by Thorisson et al. [Thórisson et al. 2005] and it is
compatible with the SAIBA framework [Vilhjálmsson et al. 2007]
(see Section 2 for details). Our system can be used for different
embodiments (e.g. robots, virtual agents), different virtual presen-
tations (e.g. 2D Flash based or 3D Ogre based presentation) or dif-
ferent media of the same embodiment (virtual reality, augmented
reality, web-based application).
After presenting the main features of our agent platform, we fo-
cus on different possible realizations of the same behavior with our
SAIBA based system. We present a practical realization of SAIBA
hierarchical architecture. By separating the behavior planning pro-
cess from its realization our system is able to communicate the same
intention through different embodiments or different display me-
dia. For this purpose distinctive behavior planning strategies can be
easily defined to communicate the same intention. We can use the
same behavior planning module for different embodiments taking
into account technological constraints of robots or virtual embodi-
ments. Since the behavior planning module is capable of producing
distinctive behaviors, it can be also used to create agents with dif-
ferent behavioral tendencies such as “expansive” agent.
In our architecture modules communicate with each other using
symbolic description encoded in XML languages. These languages
are independent of the agent embodiment (e.g. virtual or robot) and
the agent player technology (e.g. web, 3D, 2D). Our architecture is
highly flexible: when applied to new agents, most of the platform
can be reused. For each agent only their behavioral specification
and player animation need to be customized. Throughout the paper
we will present implementation details to highlight the proprieties
of our agent architecture.

This paper is structured as follows. The next section is dedicated to
an overview of different existing architectures of embodied conver-
sational agents and to the presentation of leading standardization
initiatives. Then, in Section 3 our implementation of the SAIBA
architecture is provided whereas in Section 4 we present the agent
behavior specification. In Section 5 we explain how the system se-
lects the behavioral signals to communicate the agent’s intentions
while in Sections 6 and 7 we show how these behaviors can be re-
alized for different embodiments or displayed on different media.
Finally we conclude the paper in Section 8.

2 State of the art

Building an ECA system needs the involvement of many research
disciplines. Issues like speech recognition, motion capture, dialog
management, or animation rendering require different skills from
their designers. Soon, it became obvious that there was the need
to share expertise and to exchange components of an ECA system.
SAIBA [Vilhjálmsson et al. 2007] is an international research ini-
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Figure 1: SAIBA framework.
[Vilhjálmsson et al. 2007]

tiative whose main aim is to define a standard framework for the
generation of virtual agent behavior. It defines a number of levels of
abstraction, from the computation of the agent’s communicative in-
tention, to behavior planning and realization, as shown in Figure 1.
The Intent Planner module decides the agent’s current goals, emo-
tional state and beliefs, and encodes them into the Function Markup
Language (FML) [Heylen et al. 2008]. To convey the agent’s com-
municative intentions, the Behavior Planner module schedules a
number of communicative signals with the Behavior Markup Lan-
guage (BML). It specifies the verbal and nonverbal behaviors of
ECAs [Vilhjálmsson et al. 2007]. Finally the task of the third el-
ement of the SAIBA framework, Behavior Realizer, is to realize
the behaviors scheduled by the Behavior Planner. It receives input
in the BML format and it generates the animation. A feedback sys-
tem is needed in order to inform the modules of the SAIBA about
the current state of the generated animation. These information is
used, for example, by Intent Planner to re-plan the agent’s inten-
tions when an interruption occurs.

There exist several implementations of SAIBA standard. Smart-
Body [Thiébaux et al. 2008] is an example of the Behavior Real-
izer. It takes as input BML code (including speech timing data and
the world status updates); it composes multiple behaviors and gen-
erates the character animation synchronized with audio. For this
purpose it uses extended version of BML allowing one to define in-
terruptions and predefined animations. SmartBody is based on the
notion of animation controllers. The controllers are organized in
a hierarchical structure. Ordinary controllers manage the separate
channels e.g. pose or gaze. Then the meta-controllers manipulate
the behaviors of subordinate controllers allowing the synchroniza-
tion of the different modalities to generate consistent output from
the BML code.
SmartBody can be used with the Nonverbal Behavior Generator
[Lee and Marsella 2006] that corresponds to the Behavior Planner
in the SAIBA framework. It is a rule-based module that generates
BML annotations for nonverbal behaviors from the communicative
intent and speech text. SmartBody can be used with different char-
acters, skeletons and different rendering engines.
Heloir and Kipp [Heloir and Kipp 2009] extend the SAIBA archi-
tecture by a new intermediate layer called animation layer. Their
EMBR agent is a real-time system that offers a high degree of an-
imation control through the EMBRScript language. This language
permits control over skeletal animations, morph target animations,
shader effects (e.g. blushing) and other autonomous behaviors. Any
animation in EMBRScript is defined as a set of key poses. Each
key pose describes the state of the character at a specific point in
time. Thus the animation layer gives access to animation param-
eters related to the motion generation procedures. It also gives an
ECAs developer the possibility to control better the process of the
animation generation without constraining him to enter into the im-
plementation details.
Elckerlyc [van Welbergen et al. 2010] is a modular and extensible
Behavior Realizer following the SAIBA framework. It takes as in-
put a specification of verbal and nonverbal behaviors encoded with
extended BML and can eventually return feedback concerning the
execution of a particular behavior. Elckerlyc is able to re-schedule
behaviors that are already queued with behaviors coming from a

new BML block in real-time while maintaining the synchroniza-
tion of multimodal behaviors. It receives and processes a sequence
of BML blocks continuously allowing the agent to respond to the
unpredictability of the environment or of the conversational partner.
Elckerlyc is also able to combine different approaches to animation
generation to make agent motion more human-like. It uses both:
procedural animation and physical simulation to calculate temporal
and spatial information of motion. While physical simulation con-
troller provides physical realism of motion, procedural animation
allows for the precise realization of the specific gestures.
BMLRealizer [Árnason and Porsteinsson 2008] created in the CA-
DIA lab is another implementation of the Behavior Realizer layer
of the SAIBA framework. It is an open source animation toolkit
for visualizing virtual characters in 3D environment that is partially
based on the SmartBody framework. As input it also uses BML; the
output is generated with the use of the Panda3D rendering engine.
RealActor [Cerekovic et al. 2009] is another BML Realizer devel-
oped recently. It is able to generate the animation containing ver-
bal content that is complemented by rich set of nonverbal behav-
iors. It uses the algorithm based on neural networks to estimate
words duration. Consequently it can generate the correct lips move-
ment without explicit information about the phonemes (or visemes).
RealActor was integrated in various open-source 3D engines (e.g.
Ogre, HORDE3D).

Our architecture is SAIBA compliant. Compared to existing plat-
forms, our solution allows for creating cross-media and multi-
embodiment agents. On the one hand, we propose an innovative
finely grained hierarchical organization for SAIBA Behavior Real-
izer; on the other hand, we introduce different levels of customiza-
tion of our agent. Different instantiations of agent can share Behav-
ior Planning and Realization; only the animation computation and
rendering display may need to be tailored. That is, our system is
able to display the same communicative intention with different me-
dia (AR, VR, web), representations (2D, 3D) and/or embodiments
(robots, virtual and web Flash-based agents). To our knowledge it
is a first agent architecture that can be used with such a diversity of
different outputs technologies.

Figure 2: Our system architecture.

3 Implementation of SAIBA architecture

Following the SAIBA approach, all modules in our platform are
independent of the agent’s embodiment and the animation player
technology. Thus given an input FML message the correspond-
ing behavior animation is computed with the same agent platform
whatever the agent’s embodiment and the device on which it is dis-
played. In this paper we describe our implementation of the last two
modules of the SAIBA framework, the Behavior Planner and the
Behavior Realizer. Figure 2 shows the overall architecture of our
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system. The Behavior Planner (see Section 5 for details) receives as
input the communicative intentions the agent wants to transmit. For
each intention it chooses the appropriate behaviors to be displayed
according to the agent’s behavior specification (lexicon and reposi-
tories; see Section 4). Since the FML language [Heylen et al. 2008]
proposed in SAIBA is still being defined, to encode the agent inten-
tions we use the FML-APML language, a temporary solution, pro-
posed by Mancini and Pelachaud [Mancini and Pelachaud 2008b],
based on the APML language [Carolis et al. 2004].

The multimodal signals selected by the Behavior Planner are sent to
the Behavior Realizer in BML format. From the same BML input
the Behavior Realizer is able to generate the animation for differ-
ent embodiments (such as robots and virtual agents), for different
2D or 3D presentations and for the same embodiment displayed on
different media (virtual reality, augmented reality, web-based ap-
plication). For this purpose, similarly to the solution presented by
Heloir and Kipp [Heloir and Kipp 2009] we introduce more fine-
grained nonverbal behavior processing. In particular the Behavior
Realizer is divided into two sub-layers. The first one, Keyframe
Generator (KG), contains keyframe generation and scheduling; this
module is common for nearly all agent’s realizations. The second
layer, Animation Generator (AG), is responsible for the generation
of the animation from the keyframes. This layer is embodiment
dependent and each embodiment (e.g. robot, virtual agent) needs
specific implementation. We explain our algorithm in more details
in Section 6. Finally the behavior realization process is separated
from the visualization process. Specific players need to be devel-
oped allowing using the same Animation Generator (AG) layer with
different media such as virtual reality or web.

All the modules communicate using the message exchange systems
(either Psyclone1 or ActiveMQ2) and a set of whiteboards. The
following subsections present the two languages our system uses in
more details.

3.1 FML-APML language

The communicative intentions of the agent correspond to what the
agent aims to communicate to the user: e.g., its emotional states,
beliefs and goals. FML-APML [Mancini and Pelachaud 2008b]
is based on the Affective Presentation Markup Language (APML)
[Carolis et al. 2004], but has the features of the future FML [Heylen
et al. 2008]. It is an XML-based markup language for representing
the agent’s communicative intention and the text to be uttered by the
agent. FML-APML uses a similar syntax as BML one. It has a flat
structure and allows defining explicit duration for each communica-
tive intention. An example of FML-APML message is presented in
Figure 8.

3.2 BML language

BML language is not yet a standard in the sense of W3C or ISO,
however researchers agreed on a “common” BML syntax specifica-
tion to allow one to exchange BML messages and engines between
different systems, as described in [Vilhjálmsson et al. 2007]. The
BML language allows us to specify the nonverbal signals that can
be expressed through the agent communication modalities. Each
BML top-level tag corresponds to a behavior the agent is to pro-
duce on a given modality: head, torso, face, gaze, body, legs, ges-
ture, speech, lips. Each BML tag contains also temporal informa-
tion that corresponds to the timing of appearance and ending of the
signals. The BML language we have implemented in our agent con-
tains some extensions which allow us to define labels to use a larger

1http://www.mindmakers.org/projects/Psyclone
2http://activemq.apache.org/

set of signals which can be produced by the agent and to specify the
expressivity of each signal [Hartmann et al. 2002]. An example of
BML message is presented in Figure 9.

4 Agent behavior specification

In our system agent’s behavior can be personalized. Consequently,
the same architecture can be used to create agents characterized by
different styles of behavior or having different communicative ca-
pabilities. For such a purpose we specify an agent by a pair: a
lexicon of communicative behaviors and its repositories of nonver-
bal behaviors. We introduce these two concepts in the following
subsection.

4.1 Lexicon and repositories

A lexicon is made of pairs where one entry is a communicative in-
tention and the other one is the set of behaviors that conveys this
given intention or emotional state. Each one of these associations
represents an entry of the lexicon, called behavior set. The defini-
tion of a behavior set BS is a quadruple:

BS = (Name,Signals,Core,Rules);

where:

• Name is the identification of the corresponding communica-
tive intention.

• Signals is the set of nonverbal signals produced on single
modalities that can be used to convey the intention specified
by the parameter Name.

• Core specifies which signals are mandatory to communicate
the given intention;

• Rules is a set of rules that precise the relations between sig-
nals, e.g. the simultaneous presence of two (or more) signals.

We use an XML-based representation language [Mancini and
Pelachaud 2008b; Niewiadomski et al. 2009] to define the lexi-
con. It contains a tag behaviorset for each communicative inten-
tion the agent must be able to transmit. An example of behavior
set presented in Figure 3 corresponds to the communicate intention
“greeting”. Just one constraint is defined in the core: the agent must
show a greeting iconic gesture.

Figure 3: Example of a behavior set for a virtual agent lexicon.

All body and facial behaviors, which can be associated to a commu-
nicative intention in the lexicon, are defined in external repositories.
Each different virtual or physical agent in our system can be charac-
terized by its own repository that contains a description of specific
behaviors. For example, we can define an agent that shows asym-
metrical facial expressions or one that does not have gestures with
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inward wrist orientation. The latter is particularly important when
designing gestures for the robot because of its physical limits.

We propose a new XML notation to describe symbolically the
nonverbal behaviors in repositories. For instance, the symbolic
specification of gestures in our system is based on a prede-
fined finite set of key-positions in the movement space [Hart-
mann et al. 2002]. The arm position is always defined by
three tags < vertical location > that corresponds to axis Y,
< horizontal location > that correspond to axis X, and <
location distance > corresponding to axis Z. Following the ges-
tural space of McNeill [McNeill 1992] (see Figure 4), we have
5 horizontal values: XEP, XP, XC, XCC, XOppC, 7 vertical val-
ues: YUpperEP, YUpperP, YUpperC, YCC, YLowerC, YLowerP,
YLowerEP and 3 distance values: ZNear, ZMiddle, ZFar. By com-
bining these values, we have 105 possible hand positions. An ex-
ample of such description for greeting gesture is presented in Figure
6.

Figure 4: Symbolic gestural space.
[McNeill 1992]

4.2 Behavior distinctiveness

Through the lexicon and the repository we can specify distinctive
behavior for different agents. For example, within the SEMAINE3

project, to generate distinctive behaviors for each agent, we defined
a lexicon and a repository for each of them. They have been de-
termined partly through perceptive tests [Heylen 2007; Bevacqua
et al. 2007] and partly by analyzing videos of human interactions
from the SEMAINE database [McKeown et al. 2010].

4.3 Different embodiments

Different embodiments need different lexicons and repositories that
correspond to their communicative capabilities. In one of our ap-
plications we use the humanoid robot NAO [Gouaillier et al. 2009]
that has very different body capabilities with respect to a virtual
agent. For example, our virtual agent can control the thumb inde-
pendently from the other fingers of the hand while NAO cannot.
Hence quantity of hand configurations of the virtual agent is much
higher than NAO ones. Thus, a tailored lexicon and a tailored repos-
itory have to be defined for NAO to convey a given communicative
intention. To ensure that both the robot and the virtual agent convey
similar information, their lexicons have entries for the same list of
communicative intentions. These entries can be, however, instan-
tiated with different sets of nonverbal signals. The elaboration of
the robot lexicon encompasses the notion of “gesture family with

3www.semaine-project.eu

variants” proposed by Calbris [Calbris 1984]. Gestures from the
same family convey similar meanings but may differ in their shape.
For example, the robot NAO has no facial expressions and only two
hand configurations (i.e. open and close). To do a deictic gesture,
this robot must use an arm outstretched with (or without) turning
its head while the virtual agent can use its gaze or pointing index
finger and head gestures for the same intention.

Figure 5: Example of a behavior set for a robot lexicon.

Figures 3 and 5 show behavior sets of the same communicative in-
tention greeting for the virtual agent and the robot, respectively. To
greet somebody, the virtual agent can choose a combination of the
signals: smile, head nod and the iconic gesture greeting, whereas
the robot can raise its head and perform the similar iconic gesture.
For both embodiments the iconic gesture is mandatory.

Figure 6: Description of the iconic gesture greeting in the virtual
agent gestural repository.

Gestures description is specified in the agent and robot reposito-
ries. In our example, both the agent and the robot may perform the
iconic gesture greeting to greet somebody. However the description
of this gesture differs with the embodiments. Figures 6 and 7 show
the greeting gesture description in the agent and the robot gestural
repository, respectively. In this example, both of them raise and
wave their right hand. However, while the virtual agent can open
the right hand with stretched thumb, the robot has only one sim-
ple configuration of the opened hand. Moreover, the robot cannot
rotate its wrist. Consequently in Figure 7 there is no description
of wrist orientation. Additionally, the robot cannot realize an arm
movement in less than 1 second. For this reason the “stroke start”
phase starts later for a robot gesture than for a virtual agent one (see
Figures 6 and 7).

5 Behavior Planner

The Behavior Planner takes as input both the agent’s commu-
nicative intentions specified by the FML-APML language and the
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Figure 7: Description of the iconic gesture greeting in the robot
gestural repository.

agent’s characteristics described in Section 4 (see Figure 2). The
FML-APML message can be given as input to this module either
manually by the user or automatically by a dialog manager module.
An example of input written in FML-APML is provided in Figure
8. It specifies the agent intention to greet somebody while saying
“Hi there!”.

Figure 8: Example of FML-APML message received by the Behav-
ior Planner as input.

The main task of Behavior Planner module is to select automati-
cally, for each communicative intention, the adequate set of behav-
iors to display. The output of the Behavior Planner is described in
BML language. It contains the sequence of behaviors with their
timing information to be displayed by the agent. In the following
we present our Behavior Planner in more details.

First, the text to be said by the agent is sent to the TTS that computes
the corresponding list of phonemes and their duration. Based on
this temporal information the Behavior Planner computes all tim-
ing information of the communicative intentions (their beginning
and end). Then, the planning process applies the multimodal signal
selection algorithm proposed by Mancini and Pelachaud [Mancini
and Pelachaud 2008a]. Such an algorithm is parameterized by the
agent’s behavior specification (see Section 4).

Figure 9: BML generated by the Behavior Planner for a virtual
agent.

By only defining application-specific lexicon we can use the same
Behavior Planner to generate the behavioral signals for different

embodiments. Let us consider two examples of the lexicons and the
gestural repositories for a virtual agent (Figures 3 and 6) and NAO
robot (Figures 5 and 7). From the same FML-APML input shown
in Figure 8 our Behavior Planner module generates the BML shown
in Figure 9 for the virtual agent. Consequently our virtual agent will
greet its interlocutor with a smile and greeting gesture. While for
the robot NAO, with the same FML-APML message (see Figure
8) the Behavior Planner will generate the BML message shown in
Figure 10. Consequently, the robot will use only a gesture.

Figure 10: BML generated by the Behavior Planner for the robot.

6 Behavior Realizer

Once the Behavior Planner has chosen a set of signals, the descrip-
tion of these signals and their timing information is sent through
a whiteboard to the Behavior Realizer module as BML messages.
The main task of our Behavior Realizer is to generate animation
of the agent (virtual or physical) from the received BML. This pro-
cess is divided into two main stages: the first one, called Keyframes
Generator (KG) can be used commonly for different embodiments,
while the second one, Animation Generator (AG), is embodiment
specific. Figure 11 presents the structure of our Behavior Realizer.
In the following subsections we present these modules in details.

Figure 11: Two layers of Behavior Realizer.

6.1 Keyframes Generator

At this stage the behavior signals described in the BML message
are initialized. They may be facial expressions, eye, head and torso
movements, or hand gestures. All the signals that may occur in
BML messages have their symbolical descriptions in correspond-
ing repositories (see Section 4.1). The Keyframes Generator syn-
chronizes the behaviors across modalities with speech. In our sys-
tem, the synchronization between behavioral signals is realized by
adapting the timing of the behaviors to the speech timing. It means
that temporal information of nonverbal behaviors in BML tags are
relative to speech; they are specified through time markers.
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In the case of gestures, the temporal information of each behav-
ior refers to gesture phases as defined by Adam Kendon [Kendon
2004]. As shown in Figure 12, they are encoded by seven synch
points: start, ready, stroke-start, stroke, stroke-end, relax and end
[Vilhjálmsson et al. 2007]. They divide a behavior into several
phases of realization, in which the most meaningful part occurs be-
tween stroke-start and stroke-end (i.e. stroke phase). The prepara-
tion phase goes from start to ready. It serves to take the articulatory
joints (e.g. hand and wrist) to the position where the stroke oc-
curs. According to observations by McNeill [McNeill 1992], ges-
ture always coincides or lightly precedes speech. In our system syn-
chronization between gesture and speech is ensured by forcing the
starting time of the stroke phase to coincide with the stressed sylla-
bles. The system has to pre-estimate the time required for realizing
the preparation phase, tpre, in order to make sure that the stroke
happens on the stressed syllables. This pre-estimation is done by
calculating the distance between the current hand-arm position and
the next desired positions and by computing the time it takes to per-
form the trajectory (ttraj). In case the allocated time is not enough
to do the preparation phase (that is tpre < ttraj), the whole ges-
ture has to be cancelled, leaving free time to prepare for the next
gesture. We do similar computation for facial expressions. In this
case the dynamic pattern of a behavior is defined with four phases
attack, decay, sustain and release [Kalra and Magnenat-Thanmann
1994].

The result of the Keyframes Generator is a set of keyframes. Each
keyframe contains the symbolic description and timing of each fa-
cial phase (attack, decay, sustain, release), each viseme apex af-
ter co-articulation algorithm [Bevacqua and Pelachaud 2004] and
each gesture phase (start, stroke start, stroke end, end). In partic-
ular gestures are described using the XML notation introduced in
Section 4.1. The symbolic representation of keyframes allows us
to use the same synchronization algorithm for different realizations
of planned behaviors. It also assures correct synchronization of
gestures with speech independently of the agent embodiment or an-
imation parameters.

6.2 Animation Generator

To compute the animation given the set of keyframes we need to use
an Animation Generator specific to each embodiment. While all the
previous computations use the common agent framework, this stage
is embodiment dependent. Given an embodiment the adequate An-
imation Generator receives as input the keyframes and calculates
the values of the animation parameters. So far we have developed
two different Animation Generators. For the virtual agent we use
Interpolation Module (IM), while for the robot NAO we use Joint
Values Instantiation Module (JVIM).

6.2.1 Interpolation Module

For the virtual agent each keyframe is converted into MPEG-4 body
and facial animation parameters (BAP and FAP) [Doenges et al.
1997]. FAP corresponds to facial point displacement while BAP to
joint value. Each symbolic description of facial action and gesture
phases is translated into specific BAP/FAP values [Pasquariello and
Pelachaud 2001; Hartmann et al. 2002]. The animation between
keyframes is obtained by interpolating these values. For this pur-
pose we use TCB-Splines algorithm [Hartmann et al. 2002].

6.2.2 Joint Values Instantiation Module

The animation of the robot is driven by the same representation
language BML that is used for the virtual agent; but as explained in
Section 5, in the Behavior Planner, the BML tags are instantiated
using each embodiment’s own lexicon. Each keyframe contains the

temporal information and the description of the behaviors to be re-
alized. The Joint Values Instantiation Module (see Figure 2) trans-
lates these keyframes into joint values of the robot. The symbolic
notation of gestures (see Section 4.1) uses predefined finite set of
key-positions in the movement space. Each symbolic wrist posi-
tion corresponds to a set of fixed joint values of the robot. In our
example (see Figure 7) the position of the right hand (YUpperPe-
riphery, XPeriphery and ZNear) will be translated to concrete val-
ues of 6 NAO joints: RElbowRoll, RElbowYaw, RHand, RShoul-
derPitch, RShoulderRoll, RWristYaw. Due to physical limitations
of NAO robots some combinations of parameters described at sym-
bolic level cannot be realized. For example NAO is not able to place
its hand in front of its body. In such cases the mapping between
the symbolical description and NAO joints is realized by choosing
the most similar available movement. Finally, based on the abso-
lute time of the keyframes, the animation is obtained by interpolat-
ing between joint values with robot built-in proprietary procedures
[Gouaillier et al. 2009].

7 Cross media outputs

In our architecture the BML generated by the Behavior Planner (see
Section 5) may be realized in many different ways. In this section
we explain different realizations that have been built so far. First
of all different embodiments can be used, such as humanoid robot,
AIBO robot[Al Moubayed et al. 2009] or different virtual agents
(2D Flash based, 3D Ogre based). Our virtual agents may be visu-
alized in virtual as well as augmented reality. It is important to no-
tice that all these implementations use different instantiations of the
same Behavior Planner that is parameterized by the agent behavior
specification. In Figure 13 an example of interaction between two
different embodiments using two instantiations of the same Behav-
ior Planner is shown.

Figure 13: Virtual agent and NAO: two different agent embodi-
ments.

7.1 VR-Player

The animation generated by the Behavior Realizer is displayed in
a graphic window by a MPEG-4 compliant Player. The VR-Player
uses the per-vertex animation. Facial and body configurations are
described through respectively FAP and BAP frames. To create
facial animation the mesh deformations for each FAP were defined
for each character with 3D graphics software. Then the final anima-
tion is the generated with Ogre graphics engine that can use either
DirectX9 technology or OpenGL libraries.

Within the SEMAINE project four different virtual characters can
be displayed in the graphic window; the user can decide which of
them she wants to interact with. Characters are loaded dynamically,
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Figure 12: Standard synch points (from SAIBA website).

that allows the system to pass easily from one character to another
when needed. Since each mesh is quite complex, the four characters
are loaded in the memory when the system is launched. They can be
visible or not in the virtual world as needed. The VR-Player sends
directly the animation to the character that is actually displayed.

7.2 Web Player

Lately we implemented another version of the Player in order to
be displayed in a Web browser. The Web Player is embedded in
an Java applet. It is based on OGRE4J4, that allowed us to use the
Ogre libraries in the Java application. This solution has been chosen
mainly to ensure interoperability within different operating systems
and hardware including the next generation mobile devices. Rather
than creating a new player from the scratch the Web Player reuses
some parts of the original C++ code and libraries through Java Na-
tive Interface. Similarly to classic VR-Player, the Web Player re-
ceives from the Behavior Realizer a message in MPEG-4 format
through the message exchange system (see Section 3) and it dis-
plays it in Java Swing Window. Consequently any client machine
that runs a Java Virtual Machine can connect to the server that hosts
the applet, download it and run it to display the Player. Only the
Web Player has to be downloaded to the local machine while the
other modules are placed remotely on the server and exchange the
messages using the whiteboards. Server-side parallel processing for
many clients is not available yet.

The Web Player runs in the local machine using the resources and
the libraries stocked on the server. For security reasons the user’s
authorization is always needed to download these libraries and run
the Web Player.

7.3 Flash Behavior Realizer and Player

Within the national project MyPresentingAvatar another web based
application was created in collaboration with the companies Can-
toche5 and Lingway6. The aim of the project is to have the virtual
agent presenting documents, such as one’s CV or news. The project
uses our architecture to compute the behavior the agent should dis-
play and Cantoche LivingActor technology to visualize the anima-
tion. For this purpose, for each possible BML entry, a flash ani-
mation has been previously created and stored in a lexicon. So, in
this application, our Behavior Planner generates BML code which
is then displayed by a 2D character created in flash. Synchroniza-
tion between behaviors and speech is ensured by scaling each flash
animation to fit within their BML time specification.

7.4 AR-Player

We also incorporated our virtual agent into an Augmented Reality
(AR) environment to allow it to inhabit the real world with the user.

4http://ogre4j.sourceforge.net/
5http://www.cantoche.com
6http://www.lingway.com

Augmented Reality is a technology that allows virtual content to
be superimposed on the real world such that the virtual imagery
appears seamlessly blended into the real space of the user, creating
a strong sense of presence.

To incorporate the agent into an AR environment, we use the AR-
ToolKit[ARToolKit 2001] computer vision library. Using a web-
cam and printed markers, ARToolKit is able to compute the 3D
transformations between the camera and each marker by analyz-
ing the incoming video frames and referencing known marker sizes
and camera parameters. With correct calibration, millimeter accu-
racy is possible, and on a standard workstation computation can
easily keep pace with a typical camera capture rate of 30 frames
per second.

The existing Greta software uses the Ogre3D rendering engine.
Like most modern graphics libraries, Ogre uses a hierarchy of trans-
formations to move and position objects within a virtual world. This
is how the Greta character can be placed at certain locations within
the environment. We integrated ARToolKit with Ogre, and used
the real time tracking information to update the transformation that
determines Greta’s position and orientation. In addition, we added
the live video feed from the user’s webcam in the background be-
hind Greta, giving the overall impression that Greta is standing on
a marker within the user’s real surroundings. Once each transfor-
mation matrix between camera and marker is known, it can be ap-
plied within the rendering module to position our virtual character
so to appear collocated with the marker. Local transformations can
then be applied to move, rotate and scale the character relative to
the marker. If the marker is not detected, the character is hidden
from view until the marker is successfully tracked again. Behind
different visualization AR-Player-based virtual agent maintains all
communicative capabilities of the virtual agent as described in Sec-
tion 6.2. It can receive and realize any BML message containing
verbal and nonverbal behaviors. It is also able to generate some
autonomous behaviors to maintain the interaction with the user.

To create a more immersive AR experience, the webcam is often
attached to a head mounted display to simulate the wearer’s real
world view. The video image is captured, processed by the com-
puter, augmented with 3D objects, and then presented back to the
wearer’s eyes.

Figure 14 illustrates the process ARToolKit follows when incorpo-
rating our virtual agent into an AR:

• (a) Receive a video stream image from the camera.

• (b) The image is binarized and the square marker is detected.

• (c) The square marker is extracted and its position and orien-
tation are computed.

• (d) The pattern within the square marker is extracted.

• (e) The pattern within the marker is processed using template
matching and identified within the set of loaded patterns.
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Figure 14: The process of incorporating virtual agent in an AR interface. (a) Video capture, (b) tracking the marker, (c) compute position and
orientation of the marker, (d) identify the marker, (e) pattern matching, (f) texturing the video image, (g) rendering the 3D content, (c) the
final output image.

• (f) The input video image becomes the background for the
final output rendering.

• (g) The 3D content to be displayed is prepared.

• (h) The 3D content (g) is rendered over the video background
(f) to produce the final image of the 3D content incorporated
into the real scene. The final image is then displayed and
observed by the user.

Our AR-Player permits to use more than one character in the scene.
Each of them can become an independent agent with its own be-
havior specification, and its own instantiation of Behavior Planner.
These different agents can be associated with different markers in
the same scene.

7.5 Robot

The humanoid robot NAO developed by Aldebaran [Gouaillier et al.
2009] has 23 degrees of freedom that make it able to move expres-
sively. From results of the Joint Values Instantiation Module, the
animation is obtained by using the interpolation mechanism avail-
able in the NAO.

8 Conclusions

In this paper we presented a general purpose use and modular ar-
chitecture of an embodied conversational agent. Our architecture
follows the SAIBA framework that defines three of levels of ab-
straction, from the computation of the agent’s communicative in-
tention, to behavior planning and realization. Each module of the
architecture communicates with each other using XML languages.
We designed an architecture that allows fewer possible customiza-
tions when applied to different agent technologies and on a variety
of media. Customization can happen at different levels. By cre-
ating specific lexicons and repositories, the same architecture can
be used to drive the behaviors of various agent types. Behaviors
are described independently of the agent player technology. This
independency allows us to control the behavior of a virtual agent
and a humanoid robot using the same language, namely BML. By
changing the player technology, agent animations can be displayed
across different media, PC screen, web browser or even augmented
reality. Figure 15 summarizes the flexibility of our architecture for
customization process.

Figure 15: Different levels of customization of our agent.
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