

Journée GT8 - 2011

La modélisation du mouvement humain et assistance à la personne.

P. Fraisse, IDH/DEMAR

Modélisation de la coordination posturale

Contrainte sur l'équilibre dynamique

Modèle biomécanique

Contraintes : {

$$X_{Head}(0) - X_{Head}(T/2) = A_{Head}$$
$$X_a \le X_{CoP}(t) \le X_b$$

$$K_p J(\theta)^+ (X_d - X) + K_d (J(\theta)^+ (\dot{X}_d - \dot{X}) + \dot{J}(\theta)^+ (X_d - X)) = M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + G(\theta) + K(\theta - \theta_0)$$

V. Bonnet, S. Ramdani, P. Fraisse, N. Ramdani, J. Lagarde, B. G. Bardy, A structurally optimal control model for predicting and analyzing human postural coordination, Journal of Biomechanics, 2011, in press.

Modélisation de la coordination posturale

Modèle biomécanique

Contraintes : {

$$X_{Head}(0) - X_{Head}(T/2) = A_{Head}$$
$$X_a \le X_{CoP}(t) \le X_b$$

$$K_p J(\theta)^+ (X_d - X) + K_d (J(\theta)^+ (\dot{X}_d - \dot{X}) + \dot{J}(\theta)^+ (X_d - X)) = M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + G(\theta) + K(\theta - \theta_0)$$

V. Bonnet, S. Ramdani, P. Fraisse, N. Ramdani, J. Lagarde, B. G. Bardy, A structurally optimal control model for predicting and analyzing human postural coordination, Journal of Biomechanics, 2011, in press.

Modélisation de la coordination posturale

Reproduction qualitative des modes de coordinations posturale Mode en anti-phase lorsque la contrainte de l'équilibre est activée

Le modèle

Le modèle

 $K_{p}J(\theta)^{+}(X_{d}-X) + K_{d}(J(\theta)^{+}(\dot{X}_{d}-\dot{X}) + \dot{J}(\theta)^{+}(X_{d}-X)) = M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) + K(\theta-\theta_{0})$

L'application à l'analyse du mouvement chez le patient hémiplégique

- L'hémiplégie est un défaut de commande centrale complète ou partielle affectant une moitié du corps.
- Lésion des centres moteurs dont la cause est le plus souvent un accident vasculaire cérébral.

Les expérimentations

6

Journée GT8 - 2011 - Jeudi 23 Juin 2011

vendredi 8 juillet 2011

Les expérimentations

Les expérimentations

Les résultats expérimentaux

Journée GT8 - 2011 - Jeudi 23 Juin 2011

vendredi 8 juillet 2011

Asymétrie de la répartition des forces de réactions verticales

Journée GT8 - 2011 - Jeudi 23 Juin 2011

Déport du CoP résultant sous l'appui sain

Journée GT8 - 2011 - Jeudi 23 Juin 2011

Variation du CoP résultant en ML chez les patients hémiplégiques

Journée GT8 - 2011 - Jeudi 23 Juin 2011

Analyse des résultats

Le mode en anti-phase est lié à la contrainte d'équilibre

- Saturation du CoP sain
- Perte sensorielle du CoP lésé
- Asymétrie du couple de la cheville
 - Déport du CoP résultant
 - Asymétrie des forces de réactions verticales

Estimation du CoM

Modélisation du centre de masse pour des mesures de précisions

S. Cotton, A. Murray, P. Fraisse, Estimation of the Center of Mass: From Humanoid Robots to Human Beings, IEEE/ASME Transactions on Mechatronics, Volume 14, Issue 6, Dec. 2009, pages : 707 - 712.

S. Cotton, M. Vanoncini, P. Fraisse, N. Ramdani, E. Demircan, A. P. Murray, T. Keller, Estimation of the centre of mass from motion capture and force plate recordings: a study on the elderly. Journal of Applied Bionics and Biomechanics 8 (2011) 67–84

La modélisation du mouvement

Reconstruction des mouvements et des couples articulaires pour une tâche de squat à partir d'informations provenant d'une centrale inertielle :

|ournée GT8 - 2011 - Jeudi 23 Juin 2011

L'assistance à la personne

Towards a Cooperative Framework for Interactive Manipulation Involving a Human and a Humanoid

Bruno Vilhena Adorno Antônio Padilha Lanari Bó Philippe Fraisse Philippe Poignet

B. V. Adorno, P. Fraisse, S. Druon, Dual position control strategies using the cooperative dual task-space framework, IEEE IROS 2010, October 18-22, Tapei, Taiwan.

B. V. Adorno, A.P. L. Bo, P. Fraisse, P. Poignet, Towards a Cooperative Framework for Interactive Manipulation Involving a Human and a Humanoid, ICRA'2011, Shanghai, May 9-13, 2011.

Interactive Manipulation Between a Human and a Humanoid

Bruno Vilhena Adorno Antônio Padilha Lanari Bó Philippe Fraisse