An overview of ℓ_1-regularization for value function approximation

Journée GDR Robotique

Matthieu Geist
(Supélec, IMS-MaLIS Research Group)
matthieu.geist@supelec.fr

September the 6th, 2012
1 Introduction
 - MDP
 - Setting

2 Background
 - LSTD
 - ℓ_1-regularization

3 Algorithms
 - Lasso-TD
 - ℓ_1-PBR
 - ℓ_1-LSTD
 - Dantzig LSTD

4 Summary
(Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998)

- **Controller**: \(a_t = \pi(s_t) \)
- **Reward**: \(r_t = r(s_t, a_t) \)
- **System dynamics**: \(s_{t+1} \sim P(\cdot|s_t, a_t) \)

Goal: Given a policy \(\pi : S \to A \) compute its value

\[
v^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t)) \right| s_0 = s, \pi \] (0 < \gamma < 1)
The value function v satisfies the Bellman equation

$$v = r + \gamma P v \iff v = \mathcal{T} v$$

We look for $\hat{v}(s) = \sum_{j=1}^{p} \theta_j \phi_j(s)$ or $\hat{v} = \Phi \theta$, where

$$\Phi = \begin{pmatrix}
\phi(s_1)^T \\
\vdots \\
\phi(s_n)^T
\end{pmatrix} = (\phi_1 \ldots \phi_p) \quad \text{and} \quad \theta = \begin{pmatrix}
\theta_1 \\
\vdots \\
\theta_p
\end{pmatrix}$$

\mathcal{T} is only known through samples $(s_i, r_i, s_i')_{i=1}^{n}$ where $s_i \sim \mu$:

$$\tilde{\Phi} = \begin{pmatrix}
\phi(s_1)^T \\
\vdots \\
\phi(s_n)^T
\end{pmatrix}, \quad \tilde{\Phi}' = \begin{pmatrix}
\phi(s_1')^T \\
\vdots \\
\phi(s_n')^T
\end{pmatrix}, \quad \tilde{r} = \begin{pmatrix}
r_1 \\
\vdots \\
r_n
\end{pmatrix}$$

We consider the situation where $n \ll p$
1. Introduction
 - MDP
 - Setting

2. Background
 - LSTD
 - ℓ_1-regularization

3. Algorithms
 - Lasso-TD
 - ℓ_1-PBR
 - ℓ_1-LSTD
 - Dantzig LSTD

4. Summary
One looks for \hat{v} in the feature space satisfying $\hat{v} = \Pi_\mu T \hat{v}$.

The solution $\hat{v} = \Phi \theta_0$ can be characterized as

$$\begin{cases}
\omega_\theta = \arg \min_{\omega} \| r + \gamma P \Phi \theta - \Phi \omega \|_{\mu,2}^2 \\
\theta_0 = \arg \min_{\theta} \| \Phi \theta - \Phi \omega_\theta \|_{\mu,2}^2
\end{cases}$$

and approximated by its empirical counterpart:

$$\begin{cases}
\omega_\theta = \arg \min_{\omega} \| \tilde{r} + \gamma \tilde{\Phi}' \theta - \tilde{\Phi} \omega \|_2^2 \\
\theta_0 = \arg \min_{\theta} \| \tilde{\Phi} \theta - \tilde{\Phi} \omega_\theta \|_2^2
\end{cases}$$
LSTD (alternate writing)

We look for \(\hat{v} = \Phi \theta_0 \) that solves \(\hat{v} = \Pi_\mu \mathcal{I} \hat{v} \). It is known that \(\Pi_\mu = \Phi (\Phi^\top D_\mu \Phi)^{-1} \Phi^\top D_\mu \), and (after algebra) one can show that

\[
\theta_0 = A^{-1} b \quad \text{(Linear system of size } p) \quad \Leftrightarrow \quad \theta_0 = \arg \min_{\theta} \| A\theta - b \|_2^2
\]

where

\[
A = \Phi^\top D_\mu (I - \gamma P) \Phi \\
b = \Phi^\top D_\mu r
\]

can be approximated through their empirical counterpart:

\[
\tilde{A} = \frac{1}{n} \tilde{\Phi}^\top (\tilde{\Phi} - \gamma \tilde{\Phi}') \\
\tilde{b} = \frac{1}{n} \tilde{\Phi}^\top \tilde{r}
\]
Recall the first writing:

\[
\begin{align*}
\omega_\theta &= \arg\min_{\omega} \| \tilde{r} + \gamma \tilde{\Phi}' \theta - \tilde{\Phi} \omega \|_2^2 \\
\theta_0 &= \arg\min_{\theta} \| \tilde{\Phi} \theta - \tilde{\Phi} \omega_\theta \|_2^2
\end{align*}
\]

The second equation is minimized to zero for \(\theta = \omega_\theta \) (the fixed point of \(\Pi_\mu T \) exists).

Therefore, the second equation rewrites

\[
\theta_0 = \arg\min_{\omega} \| \tilde{r} + \gamma \tilde{\Phi}' \theta_0 - \tilde{\Phi} \omega \|_2^2
\]

(fixed-point equation, \(\theta_0 \) in both sides).
Least-squares regression and ℓ_2-penalization

- Regression ($\gamma = 0$), find θ such that $\tilde{r} \approx \tilde{\Phi} \theta$;
- Natural (LS) objective function:
 \[
 \theta_0 = \arg\min_{\theta} \| \tilde{r} - \tilde{\Phi} \theta \|_2^2
 \]
 analytical solution: $\theta_0 = (\tilde{\Phi}^\top \tilde{\Phi})^{-1} \tilde{\Phi} \tilde{r}$
 this is an empirical projection: $\tilde{\Phi} \theta_0 = \tilde{\Pi}_\mu \tilde{r}$, (so $\tilde{\Pi}_\mu = \tilde{\Phi} (\tilde{\Phi}^\top \tilde{\Phi})^{-1} \tilde{\Phi}^\top$)

- ℓ_2-penalized LS:
 \[
 \theta_\lambda = \arg\min_{\theta} \| \tilde{r} - \tilde{\Phi} \theta \|_2^2 + \lambda \| \theta \|_2^2
 \]
 analytical solution: $\theta_\lambda = (\tilde{\Phi}^\top \tilde{\Phi} + \lambda \mathbb{I})^{-1} \tilde{\Phi} \tilde{r}$
 this is a penalized empirical projection: $\tilde{\Phi} \theta_\lambda = \tilde{\Pi}_\mu^{(\lambda; 2)} \tilde{r}$
ℓ_1-penalization

- **Lasso (Tibshirani, 1996) (ℓ_1-penalized LS):**
 \[
 \theta_\lambda = \arg \min_\theta \| \tilde{r} - \tilde{\Phi} \theta \|_2^2 + \lambda \| \theta \|_1
 \]
- promotes sparsity
- no analytical solution, but efficient computation through the regularization path (θ_λ piecewise linear) (Efron *et al.*, 2004)
- this is a penalized empirical projection: $\tilde{\Phi}_\lambda = \tilde{\Pi}_{\lambda, 1} \tilde{r}$
- **Dantzig Selector (Candes & Tao, 2007):**
 \[
 \theta_\lambda = \arg \min_\theta \| \theta \|_1 \text{ subject to } \| \tilde{\Phi}^\top (\tilde{r} - \tilde{\Phi} \theta) \|_\infty \leq \lambda
 \]
- promotes sparsity
- this is actually a linear program
- many (Lasso) extensions, but lets keep things simple...
1 Introduction
 - MDP
 - Setting

2 Background
 - LSTD
 - ℓ_1-regularization

3 Algorithms
 - Lasso-TD
 - ℓ_1-PBR
 - ℓ_1-LSTD
 - Dantzig LSTD

4 Summary
Algorithm

- **LSTD (3rd writing):**
 \[
 \theta_0 = \arg \min_\omega \| \tilde{r} + \gamma \tilde{\Phi}' \theta_0 - \tilde{\Phi} \omega \|_2^2
 \]

- **Lasso-TD (Kolter & Ng, 2009):**
 \[
 \theta_\lambda = \arg \min_\omega \| \tilde{r} + \gamma \tilde{\Phi}' \theta_\lambda - \tilde{\Phi} \omega \|_2^2 + \lambda \| \omega \|_1
 \]
 (not a standard lasso problem)

- **alternative writing:**
 \[
 \begin{cases}
 \omega_\theta = \arg \min_\omega \| \tilde{r} + \gamma \tilde{\Phi}' \theta - \tilde{\Phi} \omega \|_2^2 + \lambda \| \omega \|_1 \\
 \theta_\lambda = \arg \min_\theta \| \tilde{\Phi} \theta - \tilde{\Phi} \omega_\theta \|_2^2
 \end{cases}
 \]

- **another alternative writing:** \(\tilde{\nu}_\lambda = \tilde{\Pi}_\mu^{\lambda,1} \hat{T} \tilde{\nu}_\lambda \) (with \(\tilde{\nu}_\lambda = \tilde{\Phi} \theta_\lambda \))
Properties

- not a standard lasso \Rightarrow originally requires an adhoc solver
- can be framed as an LCP (Linear Complementary Problem) (Johns et al., 2010) : more generic solvers
- requires \tilde{A} to be a P-matrix (not necessarily true in the off policy case : $\tilde{\Pi}^\lambda \mu \hat{\lambda}$ may have zero or multiple fixed points)
- sparsity oracle inequality (Ghavamzadeh et al., 2011) :

$$\inf_{\lambda} \| v - \tilde{v}_{\lambda} \|_n \leq \frac{1}{1 - \gamma} \inf_{\theta} \left\{ \| v - \hat{v}_{\theta} \|_n + O \left(\sqrt{\| \theta \|_0 \ln p} \right) \right\}$$

- remark : how to choose λ? (no cross-validation !)
Algorithm (Geist & Scherrer, 2011; Hoffman et al., 2011)

- **lasso-td**:
 \[
 \begin{align*}
 \omega_\theta &= \arg\min_\omega \| \tilde{r} + \gamma \Phi' \theta - \tilde{\Phi} \omega \|_2^2 + \lambda \| \omega \|_1 \\
 \theta_\lambda &= \arg\min_\theta \| \tilde{\Phi} \theta - \tilde{\Phi} \omega_\theta \|_2^2
 \end{align*}
 \]

- **why not**:
 \[
 \begin{align*}
 \omega_\theta &= \arg\min_\omega \| \tilde{r} + \gamma \Phi' \theta - \tilde{\Phi} \omega \|_2^2 \\
 \theta_\lambda &= \arg\min_\theta \| \tilde{\Phi} \theta - \tilde{\Phi} \omega_\theta \|_2^2 + \lambda \| \theta \|_1
 \end{align*}
 \]
 (this is ℓ_1-PBR)

- **alternative writing**:
 \[
 \theta_\lambda = \arg\min_\theta \| \tilde{\Pi}_\mu (\tilde{\nu}_\theta - \hat{T} \tilde{\nu}_\theta) \|_2^2 + \lambda \| \theta \|_1 \quad \text{(recall $\tilde{\nu}_\theta = \tilde{\Phi} \theta$)}
 \]
 (ℓ_1-penalized Projected Bellman Residual)
Properties

- ℓ_1-PBR is a standard Lasso problem:
 \[
 \theta_\lambda = \arg\min_\theta \|\tilde{y} - \tilde{\Psi}\theta\|_2^2 + \lambda\|\theta\|_1, \quad \tilde{y} = \tilde{\Pi}_\mu \tilde{r}, \quad \tilde{\Psi} = \tilde{\Phi} - \gamma \tilde{\Pi}_\mu \tilde{\Phi}'
 \]

 (easy extension to other penalization)

- weaker conditions than Lasso-TD (off-policy is fine)

- but huge computational cost if $p \gg n$ (projection in $O(p^3)$)

- no finite sample analysis
2nd formulation of LSTD:

$$\hat{A}\theta_0 = \hat{b}, \quad \hat{A} = \frac{1}{n}\tilde{\Phi}^\top(\tilde{\Phi} - \gamma\tilde{\Phi}'), \quad \hat{b} = \frac{1}{n}\tilde{\Phi}^\top\tilde{r}$$

equivalently:

$$\theta_0 = \arg\min_\theta \|\hat{A}\theta - \hat{b}\|_2^2$$

ℓ_1-LSTD (Pires, 2011; Pires & Szepesvári, 2012):

$$\theta_\lambda = \arg\min_\theta \|\hat{A}\theta - \hat{b}\|_2^2 + \lambda\|\theta\|_1$$
Properties

- “standard” Lasso problem (use any solver)
- no problem in the off-policy case
- built-in (theoretical) λ-selection scheme
- finite sample analysis:

$$\inf_{\lambda} \| A\theta_\lambda - b \|_2 \leq O \left(\| \theta^* \|_1 \sqrt{\frac{p^2}{n} \ln \frac{1}{\delta}} \right) \text{ w.p. } 1 - \delta;$$

(recall $A = \lim_{n \to \infty} \tilde{A}$ and $b = \lim_{n \to \infty} \tilde{b}$, $A\theta^* = b$)
Algorithm

- 2nd formulation of LSTD :
 \[\theta_0 = \arg \min_{\theta} \| \tilde{A} \theta - \tilde{b} \|_2^2 \]

- Dantzig-LSTD (Geist \textit{et al.}, 2012) :
 \[\theta_\lambda = \arg \min_{\theta} \| \theta \|_1 \text{ subject to } \| \tilde{A} \theta - \tilde{b} \|_\infty \leq \lambda. \]

- this is a linear program :
 \[
 \min_{u, \theta \in \mathbb{R}^p} 1^\top u \quad \text{subject to } \begin{cases}
 -u \leq \theta \leq u \\
 -\lambda 1 \leq \tilde{A} \theta - \tilde{b} \leq \lambda 1
 \end{cases}
 \]
Properties

- standard Linear Program
- no problem in the off-policy case
- connexion to Lasso-TD:
 \[\| \tilde{A}_\theta \|_{\ell_1} \leq \lambda. \]

- heuristic model selection scheme
- finite sample analysis:
 \[\inf_{\lambda} \| A_{\theta_\lambda} - b \|_{\infty} \leq O \left(\| \theta^* \|_1 \sqrt{\frac{1}{n} \ln \frac{p}{\delta}} \right) \w.p. 1 - \delta; \]

(recall \(A = \lim_{n \to \infty} \tilde{A} \) and \(b = \lim_{n \to \infty} \tilde{b}, A\theta^* = b \))

- empirically: Lasso-TD, D-LSTD \(\geq \ell_1\)-LSTD, \(\ell_1\)-PBR
1 Introduction
 - MDP
 - Setting

2 Background
 - LSTD
 - ℓ_1-regularization

3 Algorithms
 - Lasso-TD
 - ℓ_1-PBR
 - ℓ_1-LSTD
 - Dantzig LSTD

4 Summary
\[TV = R + \gamma PV \]

\[\mathcal{H} = \{ \Phi \theta : \theta \in \mathbb{R}^p \} \]

\[\omega_{\theta} = \arg \min_{\omega} \| \tilde{R} + \gamma \tilde{\Phi}' \theta - \tilde{\Phi} \omega \|^2_2 \]

\[\theta_0 = \arg \min_{\theta} \| \tilde{\Phi} \theta - \tilde{\Phi} \omega_{\theta} \|_2 \]

LSTD:

\[\hat{v}_0 = \tilde{\Pi}_\mu \hat{T} \hat{v}_0 \]
\[TV = R + \gamma PV \]

\[\mathcal{H} = \{ \Phi \theta : \theta \in \mathbb{R}^p \} \]

\[\omega = \arg\min_{\omega} \| \tilde{R} + \gamma \tilde{\Phi}' \theta - \tilde{\Phi} \omega \|_2 + \lambda_1 \| \omega \|_2 \]

\[\theta_{\lambda_1, \lambda_2} = \arg\min_{\theta} \| \tilde{\Phi} \theta - \tilde{\Phi} \omega \theta \|_2 + \lambda_2 \| \theta \|_2 \]

\[\ell_{2,2}-\text{LSTD} \ (\text{Farahmand et al., 2008}) : \]

\[\theta_{\lambda_1, \lambda_2} = \arg\min \| \hat{\nu}_{\lambda_1, \lambda_2} - \hat{\Pi}_{\mu}^{\lambda_1, 2} \hat{T} \hat{\nu}_{\theta \lambda_1, \lambda_2} \|_2 + \lambda_2 \| \theta \|_2 \]
\[\begin{align*}
\omega_\theta &= \arg\min_\omega \| \hat{R} + \gamma \hat{\Phi}' \theta - \hat{\Phi} \omega \|_2^2 + \lambda_1 \| \omega \|_1 \\
\theta_{\lambda_1, \lambda_2} &= \arg\min_\theta \| \hat{\Phi} \theta - \hat{\Phi} \omega_\theta \|_2 \\
\text{Lasso-TD :} & \quad v_{\theta_{\lambda_1}} = \tilde{\Pi}_{\mu, 1}^{\lambda_1} \hat{T} v_{\theta_{\lambda_1}}
\end{align*} \]
\[T V = R + \gamma PV \]

\[\forall \theta \in \mathbb{R}^p \]

\[\omega_\theta = \arg \min_\omega \| \tilde{R} + \gamma \tilde{\Phi} \theta - \tilde{\Phi} \omega \|_2^2 + \lambda_1 \| \omega \|_2^2 \]

\[\theta_{\lambda_1, \lambda_2} = \arg \min_\theta \| \tilde{\Phi} \theta - \tilde{\Phi} \omega_\theta \|_2 + \lambda_2 \| \theta \|_1 \]

\[\ell_1\text{-PBR} : \]

\[\theta_{\lambda_1, \lambda_2} = \arg \min_\theta \| \hat{\nu}_{\theta_{\lambda_1, \lambda_2}} - \tilde{\Pi}_{\lambda_1, \lambda_2} \hat{\nu}_{\theta_{\lambda_1, \lambda_2}} \|_2 + \lambda_2 \| \theta \|_1 \]
based on the residual $\tilde{A}\theta - \tilde{b}$

- ℓ_1-LSTD:
 \[
 \theta_\lambda = \arg\min_{\theta} ||\theta||_1 \text{ subject to } ||\tilde{A}\theta - \tilde{b}||_2^2 \leq \lambda
 \]

- Dantzig-LSTD:
 \[
 \theta_\lambda = \arg\min_{\theta} ||\theta||_1 \text{ subject to } ||\tilde{A}\theta - \tilde{b}||_\infty \leq \lambda
 \]
Final Remark. This talk focused on projected-fixed-point-based regularization, but it is also possible to consider residual approaches, with a potential bias problem. The first (as far as I know) algorithm to use ℓ_1-penalization for value function estimation is actually a (biased) residual approach (Loth et al., 2007).
Neuro-Dynamic Programming.
Athena Scientific.

Linear Least-Squares algorithms for temporal difference learning.
Machine Learning, 22, 33–57.

The Dantzig selector : statistical estimation when p is much larger than n.

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. 2004.
Least Angle Regression.

Regularized Policy Iteration.

Geist, M., & Scherrer, B. 2011.
ℓ_1-penalized projected Bellman residual.
In : Proc. of EWRL 9.

Geist, Matthieu, Scherrer, Bruno, Lazaric, Alessandro, & Ghavamzadeh, Mohammad. 2012.
A Dantzig Selector Approach to Temporal Difference Learning.
In : International Conference on Machine Learning (ICML).
Finite-Sample Analysis of Lasso-TD.
In: Proc. of ICML.

Regularized Least Squares Temporal Difference learning with nested ℓ_2 and ℓ_1 penalization.
In: Proc. of EWRL 9.

Linear Complementarity for Regularized Policy Evaluation and Improvement.
In: Proc. of NIPS 23.

Regularization and Feature Selection in Least-Squares Temporal Difference Learning.
In: Proc. of ICML.

Sparse Temporal Difference Learning using LASSO.
In: IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.

Pires, B. A. 2011.
Statistical analysis of ℓ_1-penalized linear estimation with applications.
M.Phil. thesis, University of Alberta.

Statistical linear estimation with penalized estimators : an application to reinforcement learning.
In: Proceedings of the 29th International Conference on Machine Learning (ICML 2012).
Reinforcement Learning: an Introduction.
The MIT Press.

Tibshirani, R. 1996.
Regression Shrinkage and Selection via the Lasso.