

Autonomous exploration through curiosity and social guidance Manuel Lopes, Pierre-Yves Oudeyer INRIA, Bordeaux, France flowers.inria.fr/mlopes

# Goals of the talk

- 1. An overview of active learning and intrinsic motivation on robots
- 2. Empirical measures of progress-> Generalization of Rmax with empirical measures
- 3. Unified view of several active approaches-> strategic student problem

# How efficient can learn be?

Requirements

- Good features
   Machine learnin
- Good generalization capabilities
- Find & Coll Active Learning
- High-dime Intrinsic motivation ment, non-
- Too many things to le Development

### **Active Learning**

- The learner selects what to observe next/what to query next
- Advantages:
  - Only informative points are queried
  - Less data/time (for some cases exponential gains can be obtained)
- Disadvantages:
  - Computational cost of making the queries
  - Queries might not be relevant for the task
  - Theoretical analysis is recent

#### Active Learning for Robots in Real Life

- Find resources (e.g. oil, minerium, ...)
   Each hole costs ~1million\$
- Space Exploration
- Environmental Monitoring



Figure 1. Top: Active sampling using the NIMS sensor (Harmon et al., 2006) deployed at Merced River, CA. The sensor can perform horizontal and vertical traversal. Bottom: Samples of pH acquired along horizontal transect.

#### **Active Learning**

- Learn with reduced time/data
- Fixed tasks
- Learnable everywhere
- Everything can be learned in the limit
- Reduce uncertainty

#### **Intrinsic Motivation**

- Learn with reduced time/data
- Tasks change and are selected by the agent
- Parts might not be learnable
- Not everything can be learned during a lifetime
- Improve progress

### Gaussian Processes (GP)

• What is the most informative point?



It is the one with *less samples in the neighborhood*.

And this is even **ignoring ALL THE OBSERVATIONS!!!** 

# Difficulties

- Non-stationary noise
- Unknown kernels
- The same amount of data would be requested everywhere



Solution:

-> don't assume progress, measure it!!!



**Progress measure = average reduction of the derivative of learning** 

Can we always choose the region with more progress? No

a) Measure of progress is noisy b) Progress might not be monotonous

### Why Empirical Measures of Success?

"Classical Active Learning"

Given sufficient data:

- Model accurate in whole space
- Time and Space Stationary (recent developments on space)
- ② Easier theoretical study
- ☺ In the limit guarantees
- ⊗ Model might be too complex

### R-max

- solves the exploration/exploitation dilemma in modelbased RL
- polynomial time approximation of the policy

Algorithm **Rmax** :

- 1. Divides states in known and unknown
- 2. Unknown states are optimistically initialized to Rmax
- 3. At each time step plans in this surrogate model

#### video

#### R-max



#### expected value



#### accumulated visits



#### known states



### **R-max Limitations**

- All unknown states are assumed to provide the same progress
- All states assumed to be similar easy to relax but then we need to know exactly how different they are
- Cannot deal with any time of time changes

-> empirical measures of progress

# $\zeta$ -R-max (zeta-R-max)

# Generalization of Rmax with empirical measure of progress

$$\mathcal{R}^{\zeta\text{-R-MAX}}(s,a) = \begin{cases} \mathcal{R}(s,a) & \zeta(s,a) < m \\ R_{max} & \text{else} \end{cases}$$

where 
$$\zeta$$
 is:  
 $\zeta(s,a) := \hat{\zeta}(s,a) + \alpha \sqrt{\nu(s,a)}$ 

#### with

$$\hat{\zeta}(s,a) := CV(D_{s,a}^{-k}, s, a) - CV(D_{s,a}, s, a) \approx \mathcal{L}(\hat{\mathcal{T}}^{-k}; D_{s,a}) - \mathcal{L}(\hat{\mathcal{T}}; D_{s,a})$$

(Lopes et al, NIPS'12)

### R-max vs $\zeta$ -R-max

• Goal:

Learn the dynamical model of a typical maze



Grey: Obstacles; Green: stochastic transitions
 I: Initial State; G: Goal State

## $\zeta$ -R-max with correct assumptions

i.e. The noise levels of white and green states is known





# $\zeta\text{-R-max}$ with violated assumptions



# $\zeta\text{-R-max}$ in time variant domains

A state is the path of the optimal policy changes at step 900.

Ι



## Active Learning in Robots

- Explore / Exploit (Rmax, e-greedy, UCB,...)
- Sample informative data RIAC,
- Select particular points actGP, actNN,...

- Pure Learning RIAC, actGP, actNN,...
- Plan actions to acquire informative data (Rmax, SAGG-RIAC ...)
- Select regions/strategies/options (IMRL,SAGG-RIAC,SSB,...)

- Goal: Map and locate resources in an environment
- Robots
  - Satellite
    - RGB Camera
    - InfraRed Camera
  - Mobile Robot
    - Camera
    - ChemCam
    - Arm + ChemCam
- Choices:
  - Which Robot to use?
  - Where to sense?
  - Which sensor to use?
- Optimize:
  - Error in localizing resources
  - Quality of map
  - Energy
     (sensor use + motion)
  - Time



#### **Choosing points**



#### Choosing regions/options



#### **Choosing trajectories**



#### or methods



#### **Strategic Student Problem**



#### Strategic Student Problem (SSP) Examples

#### Choices

• Region to probe

#### Tasks

• Learn each region

#### Choices

 Learning method / sensor / action to use

#### Task

• Learn region

![](_page_22_Figure_9.jpeg)

![](_page_22_Picture_10.jpeg)

![](_page_23_Figure_0.jpeg)

## Strategic Student Problem

At each day study the topic

• randomly

not bad but we might to be able to do better

• with worst expected result

might get stuck on very difficult topics

• with best expected result

improves the best mark but not the average mark

giving maximum progress on the average mark
 seems a good strategy <sup>(2)</sup>

![](_page_25_Figure_0.jpeg)

Easier topic are chosen first. This strategy is optimal

#### Strategic Student Problem

Consider a function h that gives the 'score' on each topic. G(D) is then the overall score.

$$G(D) = \int_x h(x; D) dx$$

Our learning task is to probe the system for N examples  $D_{1:N}$  in order to maximize G.

Problem 1: The Strategic Student Problem (SSP)

$$\max_{D} G(D)$$
  
s.t.#D = N

### Strategic Bandit

Algorithm 2 Strategic Bandit (SB) **Require:** Initialize  $D \leftarrow \emptyset$ **Require:** Set of topics C and choices a1: Initialize  $w_a = 1$   $w_u = 1$ 2: Initialize experts: uniform  $\xi_u = \frac{\gamma}{m}$  and greedy:  $\xi_g = 0$ 3: while learning do 4:  $p = w_a \xi_a + w_u \xi_u$ 5: Select choice a proportional to pDraw sample  $x_a$  using choice a 6: Observe output  $y_a \sim (C_a, x_a)$  using a and  $x_a$ 7: 8:  $D = D \cup \{x_a, y_a\}$ 9:  $r = \hat{G}(D) - \hat{G}(D \setminus \{x_a, y_a\})$ 10:  $w_i \leftarrow w_i exp\left(\gamma \xi_i(a) \frac{r}{p(a)m}\right)$ Update greedy expert: 11: 12:  $q_a \leftarrow q_a + \eta \left(r - q_a\right)$ 13:  $\xi_g(a) = \frac{e^{\beta(q_a - \min(q))}}{\sum_j e^{\beta(q_j - \min(q))}}$ 14: end while

Combination of the ideas of RIAC [Baranes & Oudeyer] algorithm with EXP4 [Auer].

### Examples

- Four actions available (N, S, E, W)
- Explore the environment to learn the model of the transitions

![](_page_28_Figure_3.jpeg)

### Examples

- Learn the model of three environments/options
- At each episode choose which one to explore

![](_page_29_Figure_3.jpeg)

### Examples

- Learn the model of an environment using different exploration methods: e-greedy, rmax, random.
- At each episode choose which method to use.

![](_page_30_Figure_3.jpeg)

# Conclusions

- Active learning can reduce the learning time in many situations
- For robotics active learning can be applied in different problems
- Empirical progress is more robust than simple measures based on uncertainty
- Stochastic approaches are required due to noise and not so well behaved learning functions
- Uncertainty based queries/demos reduce the length of the training sessions and provide measures of quality