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Context	
Physics-aware deep learning is an emerging research field aiming at investigating the potential of AI 
methods to advance scientific research for the modeling of complex natural phenomena. This research 
topic investigates how to leverage prior knowledge of first principles (physics) together with the ability of 
machine learning at extracting information from data. This is a fast-growing field with the potential to 
boost scientific progress and to change the way we develop research in a whole range of scientific 
domains. An area where this idea raises high hopes is the modeling of complex dynamics characterizing 
natural phenomena occurring in domains as diverse as climate science, earth science, biology, fluid 
dynamics, etc. This will be the focus of the PhD project. 

Research	Directions	
The direct application of state-of-the-art deep learning (DL) methods for modeling and solving physical 
dynamics occurring in nature is limited by the complexity of the underlying phenomena, the need for large 
amounts of data and their inability to learn physically consistent laws. This has motivated the recent 
exploration of physics-aware methods incorporating prior knowledge, by researchers from different 
communities (Willard et al. 2020, Thuerey et al. 2021). Although promising and rapidly developing, this 
research field faces several challenges. For this PhD project we will address two main challenges, namely 
the construction of hybrid models for integrating physics with DL and generalization issues which 
condition the usability of DL for physics. 

Integrating	DL	and	physics	for	spatio‐temporal	dynamics	forecasting	and	solving	
PDEs	
In physics and many related fields, partial differential equations (PDEs) are the main tool for modeling 
and characterizing the dynamics underlying complex phenomena. Combining PDE models with ML is 
then a natural idea when building physics-aware DL models and it is one of the key challenges in the field. 
For now, this has been explored for two main directions: (i) augmenting low resolution solvers with ML in 
order to reach the accuracy of high-fidelity models at a reduced computational cost (Belbute-Perez et al. 
2020, Kochkov et al. 2021, Um et al. 2020), and (ii) complementing incomplete physical models with ML 
by integrating observation data through machine learning (Yin et al. 2021a, Dona et al. 2022). The former 
topic is crucial for the entire field of numerical simulation while the latter allows for explorations beyond 
the current limits of numerical models. Simultaneously, the recent advances in neural operators (Li et al. 
2021, Lu et al. 2021, Li et al. 2022, Yin et al. 2023) offer new methods for learning and modeling dynamics 
at different resolutions in space and time, providing the possibility of combining and learning multiple 



spatio-temporal scales within a unified formalism, a challenge in ML. A first direction of the PhD will then 
be to investigate physics-aware ML models by exploring the potential developments of hybrid models 
together with neural operators. 

Domain	generalization	for	deep	learning	based	dynamical	models	
Explicit physical models come with guarantees and can be used in any context (also called domain or 
environment) where the model is valid. These models reflect explicit causality relations between the 
different variables involved in the model. This is not the case for DL: statistical models learn correlations 
from sample observations, their validity is usually limited to the context of the training domain, and we 
have no guarantee that they extrapolate to new physical environments. This is a critical issue for the 
adoption of ML for modeling the physical world. Models of real-world dynamics should account for a 
wide range of contexts resulting from different forces, different initial and boundary conditions or 
different prior parameters conditioning the phenomenon. Ensuring generalization to these different 
contexts and environments is critical for real world applications. Surprisingly, only a few works have 
explored this challenging direction. In relation with the construction of hybrid models as described above, 
one will investigate this issue along two main directions. The first one exploits ideas from learning from 
multiple environments through task decomposition as in (Yin et al. 2021b, Kirchmeyer et al. 2022). This is 
a purely data-based approach. The second one, takes a dual perspective, relying on prior physical 
knowledge of the system equations and directly targets the problem of solving parametric PDEs (Huang 
2022), exploiting ideas from meta-learning (Finn 2016). 

Position	and	Working	Environment	
The PhD studentship is a three years position starting in October/November 2023. It does not include 
teaching obligation, but it is possible to engage if desired. The PhD candidate will work at Sorbonne 
Université (S.U.), Pierre et Marie Campus in the center of Paris. He/She will integrate the MLIA team 
(Machine Learning and Deep Learning for Information Access) at ISIR (Institut des Systèmes Intelligents 
et de Robotique). On this topic, MLIA team is collaborating with fellow scientists from other disciplines 
such as climate or fluid mechanics. The PhD candidate will be encouraged to get involved in such 
collaborations. 
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