
Introduction to Machine Learning &
Deep Learning - part 1
Sorbonne Université – Master DAC- Master M2A. Patrick Gallinari

patrick.gallinari@sorbonne-universite.fr,

https://pages.isir.upmc.fr/gallinari

2024-2025

Course Outline and Organization

Machine Learning & Deep Learning - P. Gallinari2

 Introductory ML course with a focus on Neural Networks and Deep Learning
 Organization

 Courses 14 x 2 h – P. Gallinari
 Practice and exercises 14 x 2 h

 Outline
 Introduction

 Basic Concepts of Machine Learning
 Neural Networks and Deep Learning

 Introductory Concepts - Perceptron-Adaline
 Linear Regression and Logistic Regression - Optimization Basics
 Multilayer Perceptrons – Generalization Properties
 Convolutional Neural Networks –Vision applications
 Recurrent Neural Networks – Language applications
 Transformers and attention models – Language applications

 Kernel machines
 Gaussian processes

 Meta-learning
 Neural processes

Ressources

Machine Learning & Deep Learning - P. Gallinari3

 Books
 The following two books cover the course (more or less)

 Understanding Deep Learning by S. J.D. Prince 2023 is a recent book covering many topics from the course?
 Does not delve into the details but provides a good overview of the domain bases
 Available at http://udlbook.com

 Deep Learning, Foundations and concepts, by C. Bishop
 https://www.bishopbook.com/

 Pattern recognition and Machine Learning, C. Bishop, Springer, 2006
 Chapters3, 4, 5, 6, 7, 9,

 Many other books can be profitable, e.g.
 Deep Learning, An MIT Press book, I. Goodfellow, Y. Bengio and A. Courville, 2017

 http://www.deeplearningbook.org/
 The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, T. Hastie, R. Tibshirani, J.

Friedman, Springer, 2009
 Version pdf accessible : http://statweb.stanford.edu/~tibs/ElemStatLearn/

 Bayesian Reasoning and Machine Learning, D. Barber, Cambridge University Press, 2012
 Version pdf accessible : http://www.cs.ucl.ac.uk/staff/d.barber/brml/

 Courses
 Several on line ressources, covering this topic and others

 Course slides and material: Machine Learning, Deep Learning for Vision, Natural Language Processing, …

Machine Learning General
Framework

• 4 learning problems

• Risk, Empirical Risk

Machine Learning & Deep Learning - P. Gallinari4

4 learning problems

Machine Learning & Deep Learning - P. Gallinari5

 ML develops generic methods for solving different types of
problems

 Typical classification of ML problems:
 Supervised
 Unsupervised
 Semi-supervised
 Reinforcement

4 learning problems
Supervised learning

Machine Learning & Deep Learning - P. Gallinari6

 Training set: couples (inputs, target) 𝒙ଵ,𝒚ଵ , … , 𝒙ே,𝒚ே

 Objective : learn to associate inputs to outputs
 With good generalization properties

 Classical problems: classification, regression, ranking

 Most applications today fall under the supervised learning paradigm

seven

4 learning problems
Unsupervised learning

Machine Learning & Deep Learning - P. Gallinari7

 Training set
 Only input data 𝒙ଵ, … ,𝒙ே, no target

 Objective
 Extract some regularities from data

 Similarities, relations between items, latent factors explaining data generation

 Use
 Density estimation, clustering, latent factors identification, generative models

4 learning problems
Semi-supervised learning

Machine Learning & Deep Learning - P. Gallinari8

 Task
 Similar to supervised learning

 Training set
 Small number of labeled data 𝒙ଵ,𝒚ଵ , … , 𝒙ே,𝒚ே

 Large number of unlabeled data 𝒙𝑵ାଵ, … ,𝒙ேାெ

 Objective
 Extract information from unlabeled data useful for labeling examples

 e.g. structure
 Joint learning from the two datasets

 Use
 When large amounts of data are available and labeling is costly

4 learning problems
Reinforcement learning

Machine Learning & Deep Learning - P. Gallinari9

 Training set
 Couples (input, qualitative target)
 𝒙𝑖𝑠 may be sequences (temporal credit assignment), 𝑦𝑖 are qualitative targets (e.g. 0,1), deterministic or

stochastic

 Paradigm
 Learning by exploring the environment, using reinforcement signals (reward)
 Exploration/ exploitation paradigm

 Use
 command, sequential decision, robotis, two players game, dynamic programming, …
 RL for games

 Backgammon (TD Gammon Thesauro 1992)
 Trained on 1.5 M plays
 Plays against itself

 Deep RL
 AlphaGo (2015), AlphaGo Zero (2017)
 Alphazero (2017)

Risk – Empirical Risk
Probabilistic formalism

Machine Learning & Deep Learning - P. Gallinari10

 Data
 Random vectors 𝒛 generated from distribution 𝑝 𝒛

 Learning model
 𝑭 ൌ 𝐹ఏ ఏ with 𝜃 the model parameters, usually real parameters

 Loss
 𝑐ఏሺ𝒛ሻ for model 𝐹ఏ and example 𝒛

 Risk

 𝑅ఏ ൌ 𝐸𝒛 𝑐ఏ 𝒛 ൌ ׬ 𝑐ఏ 𝒛 𝑝ሺ𝒛ሻ𝑑𝒛௭

 Optimal solution
 𝐹ఏ∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ఏ𝑅ఏ

Risk – Empirical Risk
Learning from examples

Machine Learning & Deep Learning - P. Gallinari11

 Data
 𝐷 ൌ 𝒛௜ ௜ୀଵ..ே

 Empirical risk
 𝐶 ൌ ଵ

ே
∑ 𝑐ఏሺ𝒛௜ሻே
௜ୀଵ

 Empirical risk minimization principle
 𝐹ఏ∗ minimizing the theoretical risk is approximated by 𝐹ఏ෡ mimizing the empirical risk

 Is that sufficient ? Answer is No

 Inductive framework
 We will consider the following ML framework

 The model learns on an available training set

 Once trained parameters are fixed and the model can be used for inference and/or
evaluated on a test set

Example of generic ML problems

Machine Learning & Deep Learning - P. Gallinari12

 Classification
 𝒛 ൌ 𝒙,𝑦 ,𝑦 ∈ ሼ0,1ሽ
 𝐹ఏ threshold functions
 R : probability of incorrect classification
 𝐶 : error frequency

 Regression
 𝒛 ൌ 𝒙,𝑦 , 𝑦 ∈ R
 𝐹ఏ real functions (e.g. linear NNs)
 𝑅 : expectation of quadratic error
 𝐶 : sum of quadratic errors

 Density estimation
 𝒛 ൌ 𝒙
 𝐹ఏ real functions
 𝑅 : likelihood (expectation)
 𝐶 : empirical estimator of likelihood (sum)

𝑐ఏ 𝒛 ൌ ቊ 0 if 𝑦 ൌ 𝐹ఏሺ𝒙ሻ
1 otherwise

𝑐ఏ 𝒛 ൌ 𝑦 െ 𝐹ఏ 𝒙 ଶ

𝑐ఏ 𝒛 ൌ െ𝑙𝑛𝑝ఏሺ𝒙ሻ

Neural Networks and Deep Learning

Context

Machine Learning & Deep Learning - P. Gallinari14

Context
Deep Learning today

Machine Learning & Deep Learning - P. Gallinari15

 Deep Learning is today the most popular paradigm in data science
 Popularized since 2006, first by some academic actors and then by

big players (GAFAs, BATs, etc)
 It has initiated a « paradigm shift » in the field of data science / AI

and definitely changed the way one will exploit data
 e.g. key players have made available development platforms (initiated e.g. with

TensorFlow, PyTorch, Jax, …)
 Allowing the development in a « short time » of complex processing chains

 Making complex DL methods available for a large community

 Today DL is developing at a much larger scale, including
 Software development platforms and environments
 Services in multiple domains: biotech, health, weather forecast, finance, etc

Machine Learning successes

2023-06-09Physics-Aware Deep Learning - P. Gallinari16

 Initially concerns the numerical world and GAFAs/BATs applications
 Semantic data analysis: vision, speech, language, traces;
 Virtual worlds, e.g. games

Generative models - (Karras et al.
2019) – Style GAN - NVIDIA

Alphastar, Vinyals et al.
2019 (Starcraft) -
Deepmind

Generative models 2022 Stable-diffusion
https://stablediffusionweb.com/

ChatGPT 2022 OpenAI-Codex 2021
natural language to code

DALL.E - 2021 https://openai.com/blog/dall-e/
Text: an armchair in the shape of an avocado. . . .

Machine learning successes

Machine Learning & Deep Learning - P. Gallinari17

 Progressively targets other domains
 Examples AI4Science

Foundation models
Spatio-temporal
dynamics –
Hao et al. (ICML 2024)
http://arxiv.org/abs/2403.03542

Weather forecast
GraphCast – Google
& DeepMind 2022
ECMWF website

Google DeepMind - Alphafold 3
3D protein structure prediction

Introductory NN concepts

Intuitive introduction via 2 simple –historical- models
Perceptrons and Adalines

Neural Networks inspired Machine Learning
Brain metaphor

Machine Learning & Deep Learning - P. Gallinari19

 Artificial Network Networks are an important paradigm in Statistical Machine
learning and Artificial Intelligence

 Human brain is used as a source of inspiration and as a metaphor for
developing Artificial NN
 Human brain is a dense network 10ଵଵ of simple computing units, the neurons. Each neuron is

connected – in mean- to 10ସ neurons.
 Brain as a computation model

 Distributed computations by simple processing units
 Information and control are distributed
 Learning is performed by observing/ analyzing huge quantities of data and also by trials and errors

Formal Model of the Neuron
McCulloch – Pitts 1943

Machine Learning & Deep Learning - P. Gallinari20

A synchronous assembly of neurons is capable of universal
computations (aka equivalent to a Turing machine)

𝑓ሺ𝑥ሻ ൌ 1 𝑖𝑓෍ሺ𝑤௜𝑥௜ ൅ 𝑤଴ሻ
௜

൐ 0

െ1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
െ𝑤଴

x2

x1

xn
wn

w2
w1

w0
1

෍𝑤௜𝑥௜ ൅ 𝑤଴
௜

𝑓 ෍𝑤௜𝑥௜ ൅ 𝑤଴
௜

𝑓

For McCulloch – Pitts
neuron, 𝑓is a threshold (sign)
function

Perceptron (1958 Rosenblatt)

Machine Learning & Deep Learning - P. Gallinari21





 The decision cell is a threshold function (McCulloch – Pitts neuron)

 𝐹 𝒙 ൌ 𝑠𝑔𝑛ሺ∑ 𝑤௜𝑥௜ ൅ w଴ሻ ௡
௜ୀଵ

 This simple perceptron can perform 2 classes classification

Association cells Decision cell (Figure from Perceptrons, Minsky and Papert 1969)

Perceptron Algorithm (2 classes)

Machine Learning & Deep Learning - P. Gallinari22

 The learning rule is a stochastic gradient algorithm for minimizing the
number of wrongly predicted labels

 Multiple (𝑝) classes: 𝑝 perceptrons in parallel, 1 class versus all others!

Data
Labeled Dataset ሺ𝒙௜ ,𝑦௜ሻ, 𝑖 ൌ 1. .𝑁,𝒙 ∈ 𝑅௡ ,𝑦 ∈ െ1,1

Output
classifier 𝒘 ∈ 𝑅௡ , decision 𝐹 𝒙 ൌ 𝑠𝑔𝑛ሺ∑ 𝑤௜𝑥௜ሻ ௡

௜ୀ଴

Initialize w (0)
Repeat (t)

Choose an example ሺ𝒙 𝑡 ,𝑦ሺ𝑡ሻሻ
if 𝑦 𝑡 𝒘 𝑡 .𝒙 𝑡 ൑ 0 then 𝒘 𝑡 ൅ 1 ൌ 𝒘 𝑡 ൅ 𝜖𝑦ሺ𝑡ሻ𝒙 𝑡

Until convergence

Stochastic
Algorithm

Training set
Classifier specification

Linear discriminant function

Machine Learning & Deep Learning - P. Gallinari23

 Decision surface : hyperplane 𝐹 𝒙 ൌ 0
 Properties

 𝒘 is a normal vector to the hyperplane, it defines its orientation
 distance from 𝑥 to 𝐻 : 𝑟 ൌ 𝐹ሺ𝒙ሻ/ 𝒘
 if 𝑤଴ ൌ 0 𝐻 goes through the origin

𝐹 𝒙 ൌ 𝒘.𝒙 ൅ 𝑤଴ ൌ ∑ 𝑤௜𝑥௜௡
௜ୀ଴ with 𝑥଴ ൌ 1

Perceptron algorithm performs a stochastic gradient descent

Machine Learning & Deep Learning - P. Gallinari24

 Loss function
 𝐶 ൌ െ∑ 𝒘.𝒙𝑦𝒙,௬ ୫୧ୱୱୡ୪ୟୱୱ୧୤୧ୣୢ ൌ െ∑ cሺ𝒙, yሻ𝒙,௬ ୫୧ୱୱିୡ୪ୟୱୱ୧୤୧ୣୢ

 Objective : minimize 𝐶

 gradient

 𝑔𝑟𝑎𝑑𝒘𝐶 ൌ
డ஼
డ௪భ

, … , డ஼
డ௪೙

்
with డ஼

డ௪೔
ൌ െ∑ 𝒙𝑦𝒙,ௗ ୫୧ୱୱୡ୪ୟୱୱ୧୤୧ୣୢ

 Learning rule
 Stochastic gradient descent for minimizing loss 𝐶
 Repeat (t)

 Choose an example (𝒙(𝑡), 𝑦(𝑡))
 𝒘ሺtሻ ൌ 𝒘ሺt െ 1ሻ െ 𝜖 𝑔𝑟𝑎𝑑𝒘cሺ𝒙, yሻ

Multi-class generalization

Machine Learning & Deep Learning - P. Gallinari25

 Usual approach: one vs all
 𝑝 classes = 𝑝 " 2 class problems " : class Ci against the others

 Learn 𝑝 discriminant functions 𝐹𝑖ሺ𝒙ሻ, 𝑖 ൌ 1 … 𝑝
 Decision rule: 𝒙 ∈ 𝐶𝑖 if 𝐹𝑖ሺ𝒙ሻ ൐ 𝐹𝑗ሺ𝒙ሻ for 𝑗 ് 𝑖
 This creates a partition of the input space

 Each class is a polygon with at most 𝑝 െ 1 faces.

 Convex regions: limits the expressive power of linear classifiers

Perceptron properties (1958 Rosenblatt)

Machine Learning & Deep Learning - P. Gallinari26

 Convergence theorem (Novikof, 1962)
 Let D ൌ 𝒙ଵ,𝑦ଵ , … , 𝒙ே,𝑦ே a data sample. If

 𝑅 ൌ max
ଵஸ௜ஸே

𝒙୧

 sup
𝒘

min
௜
𝑦௜ 𝒘.𝒙௜ ൐ 𝜌 (𝜌 is called a margin)

 The training sequence is presented a sufficient number of time

 The algorithm will converge after at most ோమ

ఘమ
corrections

 Generalization bound (Aizerman, 1964)
 If in addition we provide the following stopping rule:

 Perceptron stops if after correction number 𝑘, the next 𝑚௞ ൌ
ଵାଶ ୪୬ ௞ି୪୬ ఎ
ି ୪୬ ଵିఢ

data are correctly
recognized

 Then

 the perceptron will converge in at most l ൑ ଵାସ ୪୬ ோ/ఘି୪୬ ఎ
ି ୪୬ ଵିఢ

𝑅ଶ/𝜌ଶ steps

 with probability 1 െ 𝜂, test error is less than 𝜖
Link between training and generalization performance

Convergence proof (Novikof)

Machine Learning & Deep Learning - P. Gallinari27

 Hyp: lets take 𝑤∗ / 𝑤∗ ൌ 1
 𝑤଴ ൌ 0,𝑤௧ିଵis the weight vector before the 𝑡௧௛ correction
 𝑤௧ ൌ 𝑤௧ିଵ ൅ 𝜖𝑦 𝑡 𝑥ሺ𝑡ሻ
 𝑤௧.𝑤∗ ൌ 𝑤௧ିଵ.𝑤∗ ൅ 𝜖𝑦 𝑡 𝑥ሺ𝑡ሻ.𝑤∗ ൒ 𝑤௧ିଵ.𝑤∗ ൅ 𝜖𝜌
 By induction 𝑤௧.𝑤∗ ൒ 𝑡𝜖𝜌

 𝑤௧ ଶ ൌ 𝑤௧ିଵ ଶ ൅ 2𝜖𝑦ሺ𝑡ሻ𝑤௧ିଵ. 𝑥ሺ𝑡ሻ ൅ 𝜖ଶ 𝑥ሺ𝑡ሻ ଶ

 𝑤௧ ଶ ൑ 𝑤௧ିଵ ଶ ൅ 𝜖ଶ 𝑥ሺ𝑡ሻ ଶ since 𝑦ሺ𝑡ሻ𝑤௧ିଵ. 𝑥ሺ𝑡ሻ ൏ 0 (remember that 𝑥ሺ𝑡ሻ
is incorrectly classified)

 𝑤௧ ଶ ൑ 𝑤௧ିଵ ଶ ൅ 𝜖ଶRଶ

 By induction 𝑤௧ ଶ ൑ 𝑡𝜖ଶ𝑅ଶ

 𝑡𝜖𝜌 ൑ 𝑤௧.𝑤∗ ൑ 𝑤௧ 𝑤∗ ൑ 𝑡𝜖𝑅 𝑤∗

 𝑡 ൑ ோమ

ఘమ
𝑤∗ ଶ ൌ ோమ

ఘమ

Adaline – Adaptive Linear Element
(Widrow - Hoff 1959)

Machine Learning & Deep Learning - P. Gallinari28

 « Least Mean Square » LMS algorithm
 Loss: 𝑐 𝒙,𝒚 ൌ 𝒚 െ 𝐹 𝒙 ଶ

 Algorithm: Stochastic Gradient Descent (Robbins – Monro (1951))
 Initialize 𝑤ሺ0ሻ
 Iterate

 Choose an example ሺ𝒙 𝑡 ,𝑦ሺ𝑡ሻሻ
 𝑤 𝑡 ൅ 1 ൌ 𝑤 𝑡 െ 𝜖𝛻௪ 𝑐 𝒙,𝒚

 Workhorse algorithm of adaptive signal processing: filtering, equalization, etc.

Linear unit: 𝐹 𝑥 ൌ ∑ 𝑤௜𝑥௜ ൅ 𝑤଴௜

0

110
50

100
150
200

0 3 6 9 121518

𝐶ሺ𝒘ሻ

𝑤ଵ
𝑤ଶ

Adaline example motivating the need for adaptivity from an
engineering perspective

Machine Learning & Deep Learning - P. Gallinari29

 Adaptive noise cancelling

Fig. from Adaptive Signal
Processing, Widrow, Stearn Heartbeat cancelling

Objective: get 𝑧 as close as possible to the
baby signal 𝑠

Adaline – heartbeat cancelling detailed

Machine Learning & Deep Learning - P. Gallinari30

 With the notations of the Figure
 Hyp.:

 𝑠,𝑛଴,𝑛ଵ,𝑦 are stationary with zero means
 𝑠 is uncorrelated with 𝑛଴,𝑛ଵ and then 𝑦

 Filtering scheme
 output 𝑧 ൌ 𝑠 ൅ 𝑛଴ െ 𝑦
 Loss function to be minimized 𝐸ሾ𝑧ଶሿ

 Then
 𝑧ଶ ൌ 𝑠ଶ ൅ 𝑛଴ െ 𝑦 ଶ ൅ 2𝑠 𝑛଴ െ 𝑦
 𝐸ሾ𝑧ଶሿ ൌ 𝐸ሾ𝑠ଶሿ ൅ 𝐸ሾ 𝑛଴ െ 𝑦 ଶሿ ൅ 2𝐸ሾ𝑠 𝑛଴ െ 𝑦 ሿ
 𝐸ሾ𝑧ଶሿ ൌ 𝐸ሾ𝑠ଶሿ ൅ 𝐸ሾ 𝑛଴ െ 𝑦 ଶሿ since 𝑠 and 𝑛଴ െ 𝑦 are not correlated

 So that
 𝑀𝑖𝑛 𝐸ሾ𝑧ଶሿ ൌ 𝐸ሾ𝑠ଶሿ ൅ 𝑀𝑖𝑛 𝐸ሾ 𝑛଴ െ 𝑦 ଶሿ

 When the filter is trained to minimize 𝐸ሾ𝑧ଶሿ, it also minimizes 𝐸ሾ 𝑛଴ െ 𝑦 ଶሿ
 Then 𝑦 is the best LMS estimate of 𝑛଴, and 𝑧 is the best LMS estimate of signal 𝑠

(since 𝑧 െ 𝑠 ൌ 𝑛଴ െ 𝑦ሻ

Introductory concepts
Summary of key ideas

Machine Learning & Deep Learning - P. Gallinari31

 Learning from examples
 Perceptron and Adaline are supervised learning algorithm
 Training and test set concepts

 Parameters are learned from a training set, performance is evaluated on a test set

 Supervised means each example is a couple ሺ𝒙,𝒚ሻ

 Stochastic optimization algorithms
 Training requires exploring the parameter space of the model (the weights)
 For NNs, most optimization methods are based on stochastic gradient descent

 Generalization properties
 Learning ് Optimization
 One wants to learn functions that generalize well

Optimisation : gradient methods –
introduction

Optimization
Batch gradient algorithms

Machine Learning & Deep Learning - P. Gallinari33

 Batch gradient general scheme
 Training Data Set

 𝐷 ൌ ሼ 𝒙ଵ,𝒚ଵ , … , 𝒙ே,𝒚ே ሽ
 Objective

 Optimize a loss function 𝐶ሺ𝒘ሻ ൌ ∑ 𝑐୵ሺ𝒙௜ ,𝒚௜ሻே
௜ୀଵ

 Sum of invidual losses 𝑐୵ሺ. , . ሻ on each example ሺ𝒙௜ ,𝒚௜ሻ
 Principle

 Initialize 𝒘 ൌ 𝒘ሺ0ሻ
 Iterate until convergence

 𝒘ሺ𝑡 ൅ 1ሻ ൌ 𝒘ሺ𝑡ሻ ൅ 𝜖 𝑡 𝚫𝐰ሺ𝑡ሻ

 𝚫𝐰ሺ𝑡ሻ is the descent direction, 𝜖ሺ𝑡ሻ is the gradient step

 Both are determined via local information computed from 𝑪ሺ𝒘ሻ, using
approximations of the 1st or 2nd order of 𝑪ሺ𝒘ሻ
 e.g. steepest descent, is a 1௦௧ order gradient with : 𝚫𝐰 𝑡 ൌ െ𝛻𝒘𝐶ሺt), 𝜖 𝑡 ൌ 𝜖

0

7
14

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20

𝐶ሺ𝒘ሻ

𝑤ଵ

𝑤ଶ

Optimization
Batch second order gradients

Machine Learning & Deep Learning - P. Gallinari34

 Consider a quadratic approximation of the loss function
 𝐶 is approximated via a parabola

 𝐶 𝑤 ൌ C w t ൅ w െ w t ୘𝛻𝐶 𝑤 𝑡 ൅ ଵ
ଶ

w െ w t ்𝐻 w െ w t
 where w t is the parameter vector at time 𝑡

 𝐻 is the Hessian of 𝐶ሺ. ሻ : 𝐻௜௝ ൌ
డమ஼

డ௪೔డ௪ೕ

 Differentiating w.r.t. 𝑤
 𝛻𝐶 𝑤 ൌ 𝛻𝐶 𝑤 𝑡 ൅ 𝐻ሺ𝑤 െ 𝑤 𝑡 ሻ

 The minimum of 𝐶 is obtained for
 𝛻𝐶 𝑤 ൌ 0

 Several iterative methods could be used
 E.g. Newton

 𝑤ሺ𝑡 ൅ 1ሻ ൌ 𝑤 t െ Hିଵ𝛻𝐶 𝑤ሺ𝑡ሻ
 Complexity 𝑂ሺ𝑛ଷሻ for the inverse + partial derivatives
 In practice on makes use of quasi-Newton methods : 𝐻ିଵ is approximated

iteratively

Optimization
Stochastic Gradient algorithms

Machine Learning & Deep Learning - P. Gallinari35

 Objectives
 Training NNs involves finding the parameters 𝒘 by optimizing a loss

 Difficulties
 Deep NN have a large number of parameters and meta-parameters, the loss is most often a non

linear function of these parameters: the optimization problem is non convex
 Optimization for Deep NN is often difficult:

 Multiple local minima with high loss, …. might not be a problem in high dimensional spaces
 Flat regions: plateaus -> 0 gradients, saddle points -> pb for 2nd order methods
 Sharp regions: gradients may explode
 Deep architectures: large number of gradient multiplications may often cause gradient vanishing or

gradient exploding

 Solutions
 There is no unique answer to all these challenges
 The most common family of optimization methods for Deep NN is based on stochastic

gradient algorithms
 Exploit the redundency in the data, at the cost of high variance in gradient estimates

 Deep Learning has developed several heuristic training methods
 They are provided in the different toolboxes (Pytorch etc)
 Some examples follow

Optimization
Stochastic gradient algorithms (From Ruder 2016)

Machine Learning & Deep Learning - P. Gallinari36

 Data + Loss
 Training Data Set

 𝐷 ൌ ሼ 𝒙ଵ,𝒚ଵ , … , 𝒙ே,𝒚ே ሽ
 Loss function

 𝐶ሺ𝒘ሻ ൌ ∑ 𝑐୵ሺ𝒙௜ ,𝒚௜ሻே
௜ୀଵ

 All the algorithms are given in vector form

 Basic Stochastic Gradient Descent
 Initialise 𝒘ሺ0ሻ
 Iterate until stop criterion
 sample un exemple ሺ𝒙 𝑡 ,yሺ𝑡ሻሻ
 𝒘 𝑡 ൅ 1 ൌ 𝒘 𝑡 െ 𝜖𝛻𝒘𝑐ሺ𝒙 𝑡 ,𝒚 𝑡 ሻ
 Rq: might produce a lot of oscillations

 Momentum
 Dampens oscillations

 𝒎 𝒕 ൌ 𝜸𝒎 𝒕 െ 𝟏 ൅ 𝜖𝛻𝒘𝑐 𝒙 𝑡 , 𝐲ሺ𝑡ሻ
 𝒘 𝑡 ൅ 1 ൌ 𝒘 𝑡 െ𝒎 𝒕

Figures from (Ruder 2016)

Optimization
SGD algorithms with Adaptive learning rate

Machine Learning & Deep Learning - P. Gallinari37

 Adagrad
 One learning rate for each parameter 𝑤௜ at each time step 𝑡
 Iteration 𝑡

 Compute gradient 𝒈 𝑡 ൌ 𝛻𝒘𝑐ሺ𝒙 𝑡 ,𝒚ሺ𝑡ሻሻ Vector
 Accumulate squared gradients for each component 𝑟௜ሺ𝑡ሻ ൌ 𝑟௜ሺ𝑡 െ 1ሻ ൅ ሺ𝑔௜ 𝑡 ሻଶ Scalar

 kind of gradient variance
 Sum of the squared gradients up to step 𝑡

 Componentwise:
 𝑤௜ 𝑡 ൅ 1 ൌ 𝑤௜ 𝑡 െ ఢ

𝒓𝒊 ௧ ାఢᇲ
𝛻௪𝒊𝑐ሺ𝒙 𝑡 ,𝒚ሺ𝑡ሻሻ Scalar

 In vector form
 𝒘 𝑡 ൅ 1 ൌ 𝒘 𝑡 െ ఢ

𝒓 ௧ ାఢᇲ
⊙ 𝛻𝒘𝑐ሺ𝒙 𝑡 ,𝒚ሺ𝑡ሻሻ Vector

 ⊙ elementwise multiplication, 𝜖ᇱ ሺൎ 10ି଼ሻ avoids dividing by 0, ఢ
𝒓 ௧ ାఢᇲ

is a vector with components ఢ
𝒓𝒊 ௧ ାఢᇲ

 Default : learning rate shrinks too fast

 RMS prop
 Replace 𝑟 𝑡 in Adagrad by an exponentially decaying average of past gradients

 𝒓ሺ𝑡ሻ ൌ 𝛾𝑟ሺ𝑡 െ 1ሻ ൅ ሺ1 െ 𝛾ሻ𝒈ሺ𝑡ሻ ⊙ 𝒈ሺ𝑡ሻ, 0 ൏ 𝛾 ൏ 1
 𝒘 𝑡 ൅ 1 ൌ 𝒘 𝑡 െ ఢ

𝒓 ௧ ାఢᇲ
⊙ 𝛻𝒘 𝑐ሺ𝒙 𝑡 ,𝒚ሺ𝑡ሻሻ Vector

Optimization
SGD algorithm with momentum and Adaptive learning rate

Machine Learning & Deep Learning - P. Gallinari38

 Adam (adaptive moment estimation)
 Computes

 Adaptive learning rates for each parameter
 An exponentially decaying avarage of past gradients (momentum)
 An exponentially decaying average of past squared gradients (like RMSprop)

 Iteration t
 Momentum term : 𝒎 𝒕 ൌ 𝛾ଵ𝒎 𝑡 െ 1 ൅ 𝜖 1 െ 𝛾ଵ 𝒈ሺ𝑡ሻ
 Gradient variance term: r 𝑡 ൌ 𝛾ଶ𝒓 𝑡 െ 1 ൅ 𝜖 1 െ 𝛾ଶ 𝒈ሺ𝑡ሻ ⊙ 𝒈ሺ𝑡ሻ
 𝒘 𝑡 ൅ 1 ൌ 𝒘 𝑡 െ ఢ

𝒓 ௧ ାఢᇱ
⊙𝒎ሺ𝑡ሻ

 Bias correction
 The 2 moments are initialized at 0, they tend to be biased towards 0, the following

correction terms reduce this effect

 Correct bias of 𝒎: 𝒎 𝒕 =𝒎 𝒕
ଵିఊభ೟

 Correct bias of 𝒓: 𝐫 𝑡 = 𝒓 𝒕
ଵିఊమ೟

Batch vs stochastic gradient

Machine Learning & Deep Learning - P. Gallinari39



𝑥

𝑐௞𝐶

𝑥

StochasticBatch

𝐶 ൌ
1
𝑁෍𝑐௞

௞

𝐶: global loss
𝑐௞: individual (pattern 𝑘) loss

Gradient methods as numerical integration of ordinary
differential equations (ODE)

Machine Learning & Deep Learning - P. Gallinari40

 Let 𝑙:𝑅ௗ → 𝑅 a function we seek to minimize
 We make the assumption that 𝑙 is « well behaved »

 Consider the following gradient flow equation



ௗ௪ ௧
ௗ௧

ൌ െ∇𝑙ሺ𝑤 𝑡 ሻ
𝑤 0 ൌ 𝑤଴

 Taylor expansion around 𝑤 𝑡 is:

 𝑤 𝑡 ൅ ℎ ൌ 𝑤 𝑡 ൅ ℎ ୢ୵ ୲
ୢ୲

൅ 𝑂ሺℎଶሻ

 Lets take t ൌ 𝑘ℎ, by neglegting the second order terms, we get the explicit
Euler method for integrating ODEs
 𝑤௞ାଵ ൌ 𝑤௞ െ ℎ∇𝑙ሺ𝑤 𝑡 ሻ
 Which is the steepest descent algorithm

 Message
 This interpretation of Gradient Descent as a numerical integration method for the

gradient flow equation allows us to use the results from numerical analysis to
characterize useful properties e. g. stability / consistence of the method

 This is used for analyzing more sophisticated GD algorithms

Optimization
Summary

Machine Learning & Deep Learning - P. Gallinari41

 Which method to use?
 No « one solution for all problems »
 For large scale applications, Adam is often used today as a default choice

together with minibatches
 But… simple SGD with heuristic learning rate decay can sometimes be

competitive …

 Batch, mini batch, pure SGD
 Stochastic methods exploit data redundancy
 Mini batch well suited for GPU


Regression and Logistic
Regression

Machine Learning & Deep Learning - P. Gallinari42

Regression

Machine Learning & Deep Learning - P. Gallinari43

 Linear regression
 Objective : predict real values
 Training set

 𝒙ଵ,𝑦ଵ , … , 𝒙ே,𝑦ே

 𝒙 ∈ 𝑅௡,𝑦 ∈ 𝑅 : single output regression
 Linear model

 𝐹 𝑥 ൌ 𝒘.𝒙 ൌ ∑ 𝑤௜𝑥௜௡
௜ୀ଴ with 𝑥଴ ൌ 1

 Loss function
 Mean square error

 𝐶 ൌ ଵ
ଶ
∑ 𝑦௜ െ 𝒘.𝒙௜ ଶே
௜ୀଵ

 Steepest descent gradient (batch)

 𝒘 ൌ 𝒘 𝑡 െ 𝜖𝛻௪𝐶 , 𝛻௪𝐶 ൌ ሺ డ஼
డ௪భ

, … , డ஼
డ௪೙

ሻ்


డ஼
డ௪ೖ

ൌ ଵ
ଶ
∑ డ

డ௪ೖ
𝑦௜ െ 𝒘.𝒙௜ ଶ ൌ െ∑ 𝑦௜ െ 𝒘.𝒙௜ 𝑥𝒌௜ே

௜ୀଵ
ே
௜ୀଵ for component 𝑤௞

 𝒘 ൌ 𝒘 𝑡 ൅ 𝜖 ∑ 𝑦௜ െ 𝒘.𝒙௜ 𝒙௜ே
௜ୀଵ in vector form

Regression

Machine Learning & Deep Learning - P. Gallinari44

 Geometry of mean squares

 Regression with multiple outputs 𝐲 ∈ 𝑅௣
 Simple extension: 𝑝 independent linear regressions

0

6

12

18

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20

Probabilistic Interpretation

Machine Learning & Deep Learning - P. Gallinari45

 Statistical model of linear regression
 𝑦 ൌ 𝒘.𝒙 ൅ 𝜖, where 𝜖 is a random variable (error term)

 Hypothesis 𝜖 is i.i.d. Gaussian
 𝜖~𝑁 0,𝜎ଶ , 𝑝 𝜖 ൌ ଵ

ଶగఙ
exp ሺെ ఢమ

ଶఙమ
ሻ

 The posterior distribution of y is then

 𝑝 𝑦 |𝒙;𝒘 ൌ ଵ
ଶగఙ

exp ሺെ ௬ି𝒘.𝒙 మ

ଶఙమ
ሻ

 Likelihood
 𝐿 𝑤 ൌ ∏ 𝑝 𝑦௜ |𝒙௜;𝒘ே

௜ୀଵ
 Likelihood is a function of 𝒘, it is computed on the training set

 Maximum likelihood principle
 Choose the parameters 𝒘 maximizing 𝐿 𝒘 or any incresing function of 𝐿 𝒘

 In practice, one optimizes the log likelihood 𝑙 𝒘 ൌ 𝑙𝑜𝑔𝐿ሺ𝒘ሻ
 𝑙 𝒘 ൌ 𝑁𝑙𝑜𝑔 ଵ

ଶగఙ
െ ଵ

ଶఙమ
∑ 𝑦௜ െ 𝒘.𝒙௜ ଶ ே
௜ୀଵ

 This is the MSE criterion

 This provides a probabilistic interpretation of regression
 Under a gaussian hypothesis max likelihood is equivalent to MSE minimization

Logistic regression – 2 classes

Machine Learning & Deep Learning - P. Gallinari46

 Linear regression can be used (in practice) for regression or
classification

 For classification a proper model is logistic regression
 𝐹௪ 𝒙 ൌ 𝜎 𝒘.𝒙 ൌ ଵ

ଵାୣ୶୮ ି𝒘.𝒙

 Logistic (or sigmoid) function

 𝜎 𝑧 ൌ ଵ
ଵାୣ୶୮ ሺି௭ሻ

 hint
 𝜎ᇱ 𝑧 ൌ 𝜎ሺ𝑧ሻሺ1 െ 𝜎ሺ𝑧ሻሻ

 Hyp: 𝑦 ∈ ሼ0,1ሽ
0

0,2

0,4

0,6

0,8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

sigmoid

Logistic regression – 2 classes
Probabilistic interpretation

Machine Learning & Deep Learning - P. Gallinari47

 Since y ∈ ሼ0,1ሽ, we make a Bernoulli hypothesis for the posterior
distribution

 𝑝 𝑦 ൌ 1 𝒙;𝒘 ൌ 𝐹௪ሺ𝒙ሻ et 𝑝 𝑦 ൌ 0 𝒙;𝒘 ൌ 1 െ 𝐹௪ሺ𝒙ሻ
 In compact format

 𝑝 𝑦 𝒙;𝒘 ൌ 𝐹௪ 𝒙 ௬ 1 െ 𝐹௪ 𝒙 ଵି௬
with y ∈ ሼ0,1ሽ

 Likelihood

 𝐿 𝒘 ൌ ∏ 𝐹௪ 𝒙௜
௬೔

1 െ 𝐹௪ 𝒙௜
ଵି௬೔ே

௜ୀଵ

 Log-likelihood
 𝑙 𝒘 ൌ ∑ 𝑦௜𝑙𝑜𝑔𝐹௪ 𝒙௜ ൅ ሺ1 െ 𝑦௜ሻሺlog ሺ1 െ 𝐹௪ 𝒙௜ ሻே

௜ୀଵ
 This is minus the cross-entropy between the target and the estimated posterior

distribution
 Steepest descent algorithm (batch) for minimizing cross entropy

 Componentwise: డ௟ 𝒘
డ௪ೖ

ൌ ∑ 𝑦௜ െ 𝐹௪ 𝒙௜ 𝒙௞௜ே
௜ୀଵ

 Vector form: 𝛻௪𝑙 ൌ ∑ 𝑦௜ െ 𝐹௪ 𝒙௜ 𝒙௜ே
௜ୀଵ

 Algorithm

 𝒘 ൌ 𝒘െ 𝜖𝛻௪𝐶 ൌ 𝒘 ൅ 𝜖 ∑ 𝑦௜ െ 𝐹௪ 𝒙௜ 𝒙௜ே
௜ୀଵ

Multivariate logistic regression

Machine Learning & Deep Learning - P. Gallinari48

 Consider a 𝑝 class classification problem
 Classes are encoded by “one hot” indicator vectors. Each vector is

of dimension 𝑝
 Class 1: 𝐲 ൌ 1,0, … , 0 ்

 Class 2 : 𝐲 ൌ 0,1, … , 0 ்

 …
 Class 𝑝: 𝐲 ൌ 0,0, … , 1 ்

 𝐹𝑾ሺ𝑥ሻ is a vector valued function with values in 𝑅௣
 Its component 𝑖 is a softmax function (generalizes the sigmoid)

 𝒚ෝ௜ ൌ 𝐹𝑾 𝒙 ௜ ൌ
ୣ୶୮ 𝒘೔.𝒙

∑ ୣ୶୮ ሺ𝒘ೕ.𝒙ሻ೛
ೕసభ

 Note : here 𝒘௝ ∈ 𝑅௡ is a vector, 𝒚ෝ௜ ∈ 𝑅 is the 𝑖௧௛ component of 𝒚ෝ

 The probabilistic model for the posterior is a multinomial
distribution

 𝑝 𝐶𝑙𝑎𝑠𝑠 ൌ 𝑖 𝒙;𝒘 = ୣ୶୮ 𝒘೔.𝒙
∑ ୣ୶୮ ሺ𝒘ೕ.𝒙ሻ೛
ೕసభ

ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝒘௜ .𝒙ሻ

Multivariate logistic regression

Machine Learning & Deep Learning - P. Gallinari49

 Notations
 𝒔𝒊 ൌ 𝑊𝒙௜ is the logit for input 𝒙௜

 𝑊 ൌ 𝒘ଵ, … ,𝒘௣
்

is a 𝑝x𝑛 matrix of weights

 𝒔𝒊 ൌ 𝑠ଵ௜ , … , 𝑠௣௜
்
∈ 𝑅௣

 𝒚ෝ௜ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝒔𝒊) is the output for input 𝒙௜ (here 𝜎 applies component-wise, i.e. 𝒚ෝ௝௜ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑠௝௜ሻ)
 𝒚ෝ௜ ൌ ሺ𝑦ොଵ௜ , … ,𝑦ො௣௜ ሻ் ∈ 𝑅௣

 Let 𝑦ො be a computed output for input 𝑥 (we drop the index 𝑖 for simplicity), then


డ௬ොೕ
డ௦೔

ൌ 𝑦ො௝ሺ𝐼௝௜ െ 𝑦ො௜ሻ with 𝐼௝௜elements of the identity matrix ሺ1ሻ

 Likelihood

 𝐿 𝑊 ൌ 𝑝 𝑌 𝑋;𝑊 ൌ ∏ ∏ ሺ𝑦ො௝௜ሻ
௬ೕ
೔
 ௣

௝ୀଵ
ே
௜ୀଵ , 𝑋 and 𝑌 are the column wise matrices of input and output vector

 Log likelihood
 𝑙 𝑊 ൌ ∑ ∑ 𝑦௝௜ ln𝑦ො௝௜

௣
௝ୀଵ

ே
௜ୀଵ again this is minus the cross entropy for the multiclass classification problem

 Gradient of the log likelihood
 ∇௪ೖ𝑙 𝑊 ൌ െ∑ ሺே

௜ୀଵ 𝑦ො௞௜ െ 𝑦௞௜ ሻ𝒙୧ by using identity ሺ1ሻ
 Training algorithm

 As before, one may use a gradient method for maximizing the log likelihood.
 When the number of classes is large, computing the soft max is prohibitive, alternatives are required

Probabilistic interpretation for non linear models

Machine Learning & Deep Learning - P. Gallinari50

 These results extend to non linear models, e.g. when 𝐹௪ሺ𝑥ሻ is a NN
 Non linear regression

 Max likelihood is equivalent to MSE loss optimization under the Gaussian
hypothesis
 For multivariate (𝑦 ∈ 𝑅, 𝑥 ∈ 𝑅௡ሻ non linear regression we have
 𝑦 ൌ 𝐹௪ሺ𝒙ሻ ൅ 𝜖, 𝜖~𝑁 0,𝜎ଶ

 𝑝 𝑦 |𝒙;𝒘 ൌ ଵ
ଶగఙ

exp ሺെ ௬ି𝑭ሺ𝒙ሻ మ

ଶఙమ
ሻ

 log െ likelihood 𝑙 𝑤
 𝑙 𝒘 ൌ 𝑁𝑙𝑜𝑔 ଵ

ଶగఙ
െ ଵ

ଶఙమ
∑ 𝑦௜ െ 𝑭ሺ𝒙௜ሻ ଶ ே
௜ୀଵ

 Classification
 Max likelihood is equivalent to cross entropy maximization under Bernoulli/

multinomial distribution
 2 classes: if 𝑦 is binary and we make the hypothesis that it is conditionnally Bernoulli

with probability 𝐹 𝑥 ൌ 𝑝ሺ𝑦 ൌ 1|𝒙ሻ we get the cross entropy loss
 More than 2 classes: same as logistic regression with multiple outputs

Logistic regression – Computational graph -SGD

Machine Learning & Deep Learning - P. Gallinari51

 Forward pass

𝑦

𝒘

𝒄ሺ𝑦ො,𝑦ሻ

𝑦ො

𝒔

𝒙

Forward propagation:
𝑠 ൌ 𝒘.𝒙
𝑦ො ൌ 𝜎ሺ𝑠ሻ

𝒄 𝑦ො,𝑦 : loss

𝑦: target

Notations
𝒙,𝒘 ∈ 𝑅௡
𝑠, 𝑦ො ∈ 𝑅
𝑦 ∈ ሼ0,1ሽ

Logistic regression – Computational graph - SGD

Machine Learning & Deep Learning - P. Gallinari52

 Forward pass

𝑦

𝒘

𝒄ሺ𝑦ො,𝑦ሻ

𝑦ො

𝒔

𝒙

Forward propagation:
𝑠 ൌ 𝒘.𝒙
𝑦ො ൌ 𝜎ሺ𝑠ሻ

𝒄 𝑦ො,𝑦 : loss

𝑦: target

డ௦
డ௪೔

=𝑥௜

Logistic regression – Computational graph - SGD

Machine Learning & Deep Learning - P. Gallinari53

 Backward pass

𝑦

𝒘

𝒄ሺ𝑦ො,𝑦ሻ

𝑦ො

𝒔

𝒙

Backward propagation:
𝜕𝑐
𝜕𝑠 ൌ

𝜕𝑐
𝜕𝑦ො

𝜕𝑦ො
𝜕𝑠

𝜕𝑐
𝜕𝑤௜

ൌ
𝜕𝑐
𝜕𝑠

𝜕𝑠
𝜕𝑤௜

𝒄 𝑦ො,𝑦 : loss

𝑦: target
𝜕𝑐
𝜕𝑦ො

𝜕𝑦ො
𝜕𝑠 ൌ 𝜎′ሺ𝑠ሻ

𝜕𝑐
𝜕𝑤௜

ൌ
𝜕𝑐
𝜕𝑦ො

𝜕𝑦ො
𝜕𝑠

𝜕𝑠
𝜕𝑤௜

Chain Rule

డ௦
డ௪೔

=𝑥௜

Logistic regression – Computational graph - SGD

Machine Learning & Deep Learning - P. Gallinari54

 Backward pass

𝑦

𝒘

𝒄ሺ𝑦ො,𝑦ሻ

𝑦ො

𝒔

𝒙

Backward propagation:
𝜕𝑐
𝜕𝑠 ൌ

𝜕𝑐
𝜕𝑦ො 𝜎′ሺ𝑠ሻ

𝜕𝑐
𝜕𝑤௜

ൌ
𝜕𝑐
𝜕𝑠 𝑥௜

𝒄 𝑦ො,𝑦 : loss

𝑦: target
𝜕𝑐
𝜕𝑦ො ൌ

y
𝑦ො െ

1 െ y
1 െ 𝑦ො

𝜕𝑦ො
𝜕𝑠 ൌ 𝜎′ሺ𝑠ሻ

𝜕𝑐
𝜕𝑤௜

ൌ
y
𝑦ො െ

1 െ y
1 െ 𝑦ො 𝜎′ሺ𝑠ሻ𝑥௜

For the cross entropy loss
𝑙 𝒘 ൌ ∑ 𝑦௜𝑙𝑜𝑔𝑦ො௜ ൅ ሺ1 െ 𝑦௜ሻlog ሺ1 െ 𝑦ො௜ሻே

௜ୀଵ ൌ ∑ 𝒄 𝑦ො𝒊, 𝑦𝒊ே
௜ୀଵ

Probabilistic interpretation of NN outputs
Mean Square loss

Machine Learning & Deep Learning - P. Gallinari55

 Derived here for multivariate regression (1 output), trivial extension to multiple outputs
 Holds for any continuous functional (regression, logistic regression, NNs, etc)

 Risk 𝑅 ൌ 𝐸௫,௬ 𝑦 െ ℎ 𝒙 ଶ

 The minimum of 𝑅, Min௛𝑅, is obtained for ℎ∗ 𝒙 ൌ 𝐸௬ሾ𝑦|𝒙ሿ
 The risk 𝑅 pour the family of functions 𝐹௪ 𝒙 decomposes as follows:

 𝑅 ൌ 𝐸௫,௬ሾ 𝑦 െ 𝐹௪ 𝒙 ଶሿ

 𝑅 ൌ 𝐸௫,௬ 𝑦 െ 𝐸௬ 𝑦 𝒙
ଶ ൅ 𝐸௫,௬ ሺ𝐸௬ 𝑦 𝒙 െ 𝐹௪ 𝒙

ଶ
ሿ

 Let us consider 𝐸௬ 𝑦 െ 𝐸௬ 𝑦 𝒙
ଶ

 This term is independent of the model 𝐹௪ . and only depends on the problem characteristics (the
data distribution).

 It represents the min error that could be obtained for this data distribution
 ℎ∗ 𝑥 ൌ 𝐸௬ሾ𝑦|𝒙ሿ is the optimal solution to Min௛𝑅

 Minimizing 𝐸௫,௬ሾ 𝑦 െ 𝐹௪ 𝒙 ଶሿ is equivalent to minimizing 𝐸௫,௬ ሺ𝐸௬ 𝑦 𝒙 െ 𝐹௪ 𝒙
ଶ
ሿ

 The optimal solution 𝐹௪∗ 𝒙 ൌ argmin୵𝐸௫,௬ ሺ𝐸௬ 𝑦 𝒙 െ 𝐹௪ 𝒙
ଶ
ሿ is the best mean square

approximation of 𝐸ሾ𝑦|𝒙ሿ

Probabilistic interpretation of NN outputs

Machine Learning & Deep Learning - P. Gallinari56

 Classification
 Let us consider multi-class classification with one hot encoding of the target

outputs
 i.e. 𝒚 ൌ 0, … , 0, 1, 0, … , 0 ் with a 1 at position 𝑖 if the target is class 𝑖 and zero

everywhere else

 ℎ௜∗ ൌ 𝐸௬ 𝑦 𝑥 ൌ 1 ∗ 𝑃 𝐶௜ 𝑥 ൅ 0 ∗ 1 െ 𝑃 𝐶௜ 𝑥 ൌ 𝑃ሺ𝐶௜|𝑥ሻ
 i.e. 𝐹௪∗ሺሻ is the best LMS approximation of the Bayes discriminant function (which is

the optimal solution for classification with 0/1 loss)
 More generally with binary targets

 ℎ௜∗ ൌ 𝑃 𝑦௜ ൌ 1 𝑥

 Note
 Similar results hold for the cross entropy criterion
 Precision on the computed outputs depends on the task

 Classification: precision might not be so important (max decision rule, one wants the
correct class to be ranked above all others)

 Posterior probability estimation: precision is important

Multi-layer Perceptron

Machine Learning & Deep Learning - P. Gallinari57

Multi-layer Perceptron (Hinton – Sejnowski – Williams 1986)

 Neurons arranged into layers
 Each neuron is a non linear unit, e.g.

Machine Learning & Deep Learning - P. Gallinari58

𝒚ෝ ൌ 𝐹௪ 𝒙 ൌ 𝑓⨀ሺ𝑊ሺ2ሻ𝑓⨀ 𝑊ሺ1ሻ𝒙 ሻ

𝑓 𝒘.𝒙
𝒘: 𝐜𝐞𝐥𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐯𝐞𝐜𝐭𝐨𝐫

-1

-0,5

0

0,5

1

𝒙

𝑊ሺ1ሻ 𝑊ሺ2ሻ

Note: ⨀ 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, if 𝒙 ൌ 𝑥ଵ, 𝑥ଶ , 𝑓⨀ ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ𝑓 𝑥ଵ , 𝑓 𝑥ଶ ሻ

𝑓 𝑥 ൌ 𝑡ℎሺ𝑥ሻ

0

0,2

0,4

0,6

0,8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

𝑓 𝑥 ൌ 𝜎ሺ𝑥ሻ

http://playground.tensorflow.org/

Multi-layer Perceptron - Training

 Stochastic Gradient Descent - The algorithm is called Back-
Propagation
 Pick one example ሺ𝒙,𝒚ሻ or a Mini Batch ሼ 𝒙𝒊,𝒚𝒊 ሽ sampled from the training

set
 Here the algorithm is described for 1 example and for the sigmoid ሺ𝑓 ൌ 𝜎 ሻ

non linearity

 Forward pass
 𝒚ෝ ൌ 𝐹௪ 𝒙 ൌ 𝑓⨀ሺ𝑊ሺ2ሻ𝑓⨀ 𝑊ሺ1ሻ𝒙 ሻ

 Compute error
 𝑐 𝒚,𝒚ෝ , e.g. mean square error or cross entropy

 Backward pass
 efficient implementation of chain rule

 𝑤௜௝ ൌ 𝑤௜௝ െ 𝜖 డ௖ 𝒚,𝒚ෝ
డ௪೔ೕ

Machine Learning & Deep Learning - P. Gallinari59

Note: ⨀ 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, if 𝒙 ൌ 𝑥ଵ, 𝑥ଶ , 𝑓⨀ ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ𝑓 𝑥ଵ , 𝑓 𝑥ଶ ሻ

Algorithmic differentiation

 Back-Propagation is an instance of automatic differentiation /
algorithmic differentiation - AD
 A mathematical expression can be written as a computation graph

 i.e. graph decomposition of the expression into elementary computations

 AD allows to compute efficiently the derivatives of every element in the graph
w.r.t. any other element.

 AD transforms a programs computing a numerical funtion into the program for
computing the derivatives

 All modern DL framework implement AD

Machine Learning & Deep Learning - P. Gallinari60

Notations – matrix derivatives

Machine Learning & Deep Learning - P. Gallinari61

𝑥 ൌ
𝑥ଵ
⋮
𝑥௡

, y ൌ
𝑦ଵ
⋮
𝑦௠

, 𝛼 ∈ 𝑅, 𝑊: 𝑝 ൈ 𝑞

Vector by scalar

డ௫
డఈ
ൌ

డ௫భ
డఈ
⋮

డ௫೙
డఈ

Scalar by vector
డఈ
డ௫
ൌ డఈ

డ௫భ
,⋯ , డఈ

డ௫೙

Vector by vector

డ௬
డ௫
ൌ

డ௬భ
డ௫భ

⋯ డ௬భ
డ௫೙

⋮ ⋱ ⋮
డ௬೘
డ௫భ

⋯ డ௬೘
డ௫೙

Matrix by scalar

𝜕𝑊
𝜕𝛼 ൌ

𝜕𝑤ଵଵ
𝜕𝛼 ⋯

𝜕𝑤ଵ௤
𝜕𝛼

⋮ ⋱ ⋮
𝜕𝑤௣ଵ
𝜕𝛼 ⋯

𝜕𝑤௣௤
𝜕𝛼

Scalar by matrix

𝜕𝛼
𝜕𝑊 ൌ

𝜕𝛼
𝜕𝑤ଵଵ

⋯
𝜕𝛼
𝜕𝑤௣ଵ

⋮ ⋱ ⋮
𝜕𝛼
𝜕𝑤ଵ௤

⋯
𝜕𝛼
𝜕𝑤௣௤

Matrix cookbooks
http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf –
http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/ imm3274.pdf

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari62

 Computational graph

Forward propagation:
𝒔ሺ𝑛ሻ ൌ 𝑊 𝑛 𝒛ሺ𝑛 െ 1ሻ
𝒛 𝑛 ൌ 𝜎ሺ𝒔ሺ𝑛ሻሻ

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target

𝒚ෝ𝒙

𝑊ሺ1ሻ 𝑊ሺ2ሻ

Here, 𝒛ሺ2ሻ ൌ 𝒚ෝ

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari63

 Forward pass

𝒚: target

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target

Forward propagation:
𝒔ሺ𝑛ሻ ൌ 𝑊 𝑛 𝒛ሺ𝑛 െ 1ሻ
𝒛 𝑛 ൌ 𝜎ሺ𝒔ሺ𝑛ሻሻ

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari64

 Forward pass

𝒚: target

Forward propagation:
𝒔ሺ𝑛ሻ ൌ 𝑊 𝑛 𝒛ሺ𝑛 െ 1ሻ
𝒛 𝑛 ൌ 𝜎ሺ𝒔ሺ𝑛ሻሻ

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari65

 Forward pass

𝒚: target

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target

Forward propagation:
𝒔ሺ𝑛ሻ ൌ 𝑊 𝑛 𝒛ሺ𝑛 െ 1ሻ
𝒛 𝑛 ൌ 𝜎ሺ𝒔ሺ𝑛ሻሻ

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari66

 Forward pass

𝒚: target

Note: 𝒙, 𝒔ሺ𝑛ሻ, 𝒙ሺ𝑛ሻ are vectors

Forward propagation:
𝒔ሺ𝑛ሻ ൌ 𝑊 𝑛 𝒛ሺ𝑛 െ 1ሻ
𝒛 𝑛 ൌ 𝜎ሺ𝒔ሺ𝑛ሻሻ

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari67

 Forward pass

𝒚: target

Note: 𝒙, 𝒔ሺ𝑛ሻ, 𝒙ሺ𝑛ሻ are vectors

Forward propagation:
𝒔ሺ𝑛ሻ ൌ 𝑊 𝑛 𝒛ሺ𝑛 െ 1ሻ
𝒛 𝑛 ൌ 𝜎ሺ𝒔ሺ𝑛ሻሻ

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari68

 Back Propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊ሺ1ሻ

𝜕𝑐
𝜕𝑊ሺ2ሻ

𝑊 ൌ 𝑊 െ 𝜖
𝜕𝑐
𝜕𝑊

Note: notations are in vector form, డ௖
డௐ

is a matrix, డ௖
డ𝒛

 and డ௖
డ𝒔

are row vectors
of the appropriate size

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ𝟏ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari69

 Back propagation: Reverse Mode Differentiation

Backward propagation:
𝜕𝑐

𝜕𝒔ሺ𝑛ሻ ൌ
𝜕𝑐

𝜕𝒛ሺ𝑛ሻ ⊙ 𝜎ᇱ 𝒔ሺ𝑛ሻ ்

𝜕𝑐
𝜕𝑊ሺ𝑛ሻ ൌ 𝒛ሺ𝑛 െ 1ሻ

𝜕𝑐
𝜕𝒔ሺ𝑛ሻ

𝜕𝑐
𝜕𝒛ሺ𝑛 െ 1ሻ ൌ

𝜕𝑐
𝜕𝒔 𝑛 𝑊ሺ𝑛ሻ

𝒚: target

𝜕𝑐
𝜕𝑊ሺ1ሻ

𝜕𝑐
𝜕𝑊ሺ2ሻ

Note: notations are in vector form, డ௖
డௐ

is a matrix, డ௖
డ𝒛

 and డ௖
డ𝒔

are row vectors
of the appropriate size

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target 𝜕𝑐
𝜕𝑧ሺ2ሻ

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari70

 Back propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊ሺ1ሻ

𝜕𝑐
𝜕𝑊ሺ2ሻ

Note: notations are in vector form, డ௖
డௐ

is a matrix, డ௖
డ𝒛

 and డ௖
డ𝒔

are row vectors
of the appropriate size

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target 𝜕𝑐
𝜕𝑧ሺ2ሻ 𝜕𝑧ሺ2ሻ

𝜕𝑠ሺ2ሻ ൌ 𝜎ᇱ ሺ𝑠ሺ2ሻሻ

Backward propagation:
𝜕𝑐

𝜕𝒔ሺ𝑛ሻ ൌ
𝜕𝑐

𝜕𝒛ሺ𝑛ሻ ⊙ 𝜎ᇱ 𝒔ሺ𝑛ሻ ்

𝜕𝑐
𝜕𝑊ሺ𝑛ሻ ൌ 𝒛ሺ𝑛 െ 1ሻ

𝜕𝑐
𝜕𝒔ሺ𝑛ሻ

𝜕𝑐
𝜕𝒛ሺ𝑛 െ 1ሻ ൌ

𝜕𝑐
𝜕𝒔 𝑛 𝑊ሺ𝑛ሻ

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari71

 Back propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊ሺ1ሻ

𝜕𝑐
𝜕𝑊ሺ2ሻ ൌ 𝒛ሺ1ሻ

𝜕𝑐
𝜕𝒔ሺ2ሻ

Note: notations are in vector form, డ௖
డௐ

is a matrix, డ௖
డ𝒛

 and డ௖
డ𝒔

are row vectors
of the appropriate size

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target 𝜕𝑐
𝜕𝑧ሺ2ሻ

𝜕𝑐
𝜕𝑠ሺ2ሻ

𝜕𝑧ሺ2ሻ
𝜕𝑠ሺ2ሻ ൌ 𝜎ᇱ ሺ𝑠ሺ2ሻሻ

Backward propagation:
𝜕𝑐

𝜕𝒔ሺ𝑛ሻ ൌ
𝜕𝑐

𝜕𝒛ሺ𝑛ሻ ⊙ 𝜎ᇱ 𝒔ሺ𝑛ሻ ்

𝜕𝑐
𝜕𝑊ሺ𝑛ሻ ൌ 𝒛ሺ𝑛 െ 1ሻ

𝜕𝑐
𝜕𝒔ሺ𝑛ሻ

𝜕𝑐
𝜕𝒛ሺ𝑛 െ 1ሻ ൌ

𝜕𝑐
𝜕𝒔 𝑛 𝑊ሺ𝑛ሻ

Multi-layer Perceptron - Training

Machine Learning & Deep Learning - P. Gallinari72

 Back propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊ሺ1ሻ ൌ 𝒙

𝜕𝑐
𝜕𝒔ሺ1ሻ

𝜕𝑐
𝜕𝑊ሺ2ሻ ൌ 𝒛ሺ1ሻ

𝜕𝑐
𝜕𝒔ሺ2ሻ

𝜕𝑐
𝜕𝑧ሺ2ሻ

𝜕𝑐
𝜕𝑠ሺ2ሻ

𝜕𝑐
𝜕𝑧ሺ1ሻ

𝜕𝑐
𝜕𝑠ሺ1ሻ

𝜕𝑧ሺ2ሻ
𝜕𝑠ሺ2ሻ ൌ 𝜎ᇱ ሺ𝑠ሺ2ሻሻ

𝜕𝑧 1
𝜕𝑠 1 ൌ 𝜎ᇱ ሺ𝑠ሺ2ሻሻ

𝜕𝑠ଶ
𝜕𝑧ሺ1ሻ

Note: notations are in vector form, డ௖
డௐ

is a matrix, డ௖
డ𝒛

 and డ௖
డ𝒔

are row vectors
of the appropriate size

𝒙

𝒚

𝑊ሺ2ሻ

𝑊ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ

𝒛ሺ2ሻ

𝒔ሺ2ሻ

𝒛ሺ1ሻ

𝒔ሺ1ሻ

𝒄ሺ𝒛ሺ2ሻ,𝒚ሻ: loss

𝒚: target Backward propagation:
𝜕𝑐

𝜕𝒔ሺ𝑛ሻ ൌ
𝜕𝑐

𝜕𝒛ሺ𝑛ሻ ⊙ 𝜎ᇱ 𝒔ሺ𝑛ሻ ்

𝜕𝑐
𝜕𝑊ሺ𝑛ሻ ൌ 𝒛ሺ𝑛 െ 1ሻ

𝜕𝑐
𝜕𝒔ሺ𝑛ሻ

𝜕𝑐
𝜕𝒛ሺ𝑛 െ 1ሻ ൌ

𝜕𝑐
𝜕𝒔 𝑛 𝑊ሺ𝑛ሻ

Multi-layer Perceptron – SGD Training – example - notations

Machine Learning & Deep Learning - P. Gallinari73

 Notations
 𝒛ሺ𝑖ሻ activation vector for layer 𝑖
 𝑧௝ሺ𝑖ሻ activation of neuron 𝑗 in layer 𝑖
 𝑊ሺ𝑖 ൅ 1ሻweight matrix from layer 𝑖 to layer 𝑖 ൅ 1, including bias weights
𝑤௝௞ሺ𝑖ሻweight from cell 𝑘 on layer 𝑖 to cell 𝑗 on layer 𝑖 ൅ 1

 𝒚ෝ computed output

 𝑦ොଵ ൌ 𝑧ଵሺ2ሻ ൌ 𝑔ሺ𝑤ଵ଴ሺ2ሻ ൅ 𝑤ଵଵሺ2ሻ𝑧ଵ
ଵ ൅ 𝑤ଵଶሺ2ሻ𝑧ଶ ሺ1ሻሻ

 𝑧ଵሺ1ሻ ൌ 𝑔ሺ𝑤ଵ଴ሺ1ሻ ൅ 𝑤ଵଵሺ1ሻ𝑥ଵ ൅ 𝑤ଵଶሺ1ሻ𝑥ଶ ൅ 𝑤ଵଷሺ1ሻ𝑥ଷሻ

 𝑊ሺ1ሻ ൌ
𝑤ଵ଴ሺ1ሻ 𝑤ଵଵሺ1ሻ 𝑤ଵଶሺ1ሻ 𝑤ଵଷሺ1ሻ
𝑤ଶ଴ሺ1ሻ 𝑤ଶଵሺ1ሻ 𝑤ଶଶሺ1ሻ 𝑤ଶଷሺ1ሻ

𝑥ଵ

𝑥ଷ

𝑥ଶ 𝒚ෝ ൌ 𝐹𝒘ሺ𝒙ሻ

1 1

𝑧ଵሺ1ሻ

𝑊ሺ1ሻ 𝑊ሺ2ሻ
𝑧ଶሺ1ሻ

𝑧ଵሺ2ሻ

𝑧ଶሺ2ሻ

Multi-layer Perceptron – SGD Training –
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units) - forward pass

Machine Learning & Deep Learning - P. Gallinari74

 For example 𝑥
 The activations of all the neurons from layer 1 are computed in parallel

 𝒔ሺ1ሻ ൌ 𝑊ሺ1ሻ𝒙 then 𝒛ሺ1ሻ ൌ 𝑔ሺ𝒔ሺ1ሻ)
 with 𝑔 𝒔ሺ1ሻ ൌ ሺ𝑔 𝒔ଵ ሺ1ሻ ,𝑔 𝒔ଶ ሺ1ሻ ሻ୘

 The activations of cells on layer 1 are then used as inputs for layer 2. The activations of
cells in layer 2 are computed in parallel.

 𝒔ሺ2ሻ ൌ 𝑊 2 𝒛ሺ1ሻ then 𝒚ෝ ൌ 𝒛 2 ൌ 𝑔ሺ𝒔ሺ2ሻ)


𝑥ଵ

𝑥ଷ

𝑥ଶ 𝒚ෝ ൌ 𝐹𝒘ሺ𝒙ሻ

1 1

𝑧ଵሺ1ሻ

𝑊ሺ1ሻ 𝑊ሺ2ሻ
𝑧ଶሺ1ሻ

𝑧ଵሺ2ሻ

𝑧ଶሺ2ሻ

Multi-layer Perceptron – SGD derivation
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units)

Machine Learning & Deep Learning - P. Gallinari75

 Forward pass
 Indices used below for this detailed derivation: 𝑖 output cell layer, 𝑗 hidden cell

layer, 𝑘 input cell layer

 𝑠௝ ሺ1ሻ ൌ ∑ 𝑤௝௞ 1 𝑥௞ , ௞ 𝑧௝ሺ1ሻ ൌ 𝑔ሺ𝑠ሺ1ሻሻ

 𝑠௜ሺ2ሻ ൌ ∑ 𝑤௜௝ 2 𝑧௝ 1௝ , 𝑧௜ሺ2ሻ ൌ 𝑔ሺ𝑠௜ሺ2ሻሻ
 𝑠௜ሺ2ሻ ൌ ∑ 𝑤௜௝ 2 𝑔ሺ∑ 𝑤௝௞ 1 𝑥௞ሻ ௞௝ , 𝑧௜ሺ2ሻ ൌ 𝑔ሺ∑ 𝑤௜௝ 2 𝑔ሺ∑ 𝑤௝௞ 1 𝑥௞ሻ ௞௝ ሻ

 Loss

 𝑐 ൌ ଵ
ଶ
∑ 𝑦௜ െ 𝑦ො௜ ଶ ൌ௜

ଵ
ଶ
∑ 𝑦௜ െ 𝑔ሺ∑ 𝑤௜௝ 2 𝑧௝ 1௝ ሻ

ଶ
௜

𝑖 output cell layer

𝑗 hidden cell layer

𝑘 input cell layer 𝑥ଵ

𝑥ଷ

𝑥ଶ 𝒚ෝ ൌ 𝐹𝒘ሺ𝒙ሻ

1 1

𝑧ଵሺ1ሻ

𝑊ሺ1ሻ 𝑊ሺ2ሻ
𝑧ଶሺ1ሻ

𝑧ଵሺ2ሻ

𝑧ଶሺ2ሻ

Multi-layer Perceptron – SGD derivation
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units)

Machine Learning & Deep Learning - P. Gallinari76

 Backward (derivative) pass
 Upgrade rule for weight 𝑤௜௝, layer 𝑚: 𝑤௜௝ 𝑚 ൌ 𝑤௜௝ 𝑚 ൅ Δ𝑤௜௝ሺ𝑚ሻ
 2nd weight layer

 Δ𝑤௜௝ሺ2ሻ ൌ െ𝜖 డ஼
డ௪೔ೕሺଶሻ

ൌ െ𝜖 డ஼
డ௬ො ೔

డ௬ො ೔
௪೔ೕሺଶሻ

 Δ𝑤௜௝ሺ2ሻ ൌ 𝜖ሺ𝑦௜ െ 𝑦ො௜ሻ
డ௬ො೔

డ௦೔ሺଶሻ
డ௦೔ሺଶሻ
డ௪೔ೕሺଶሻ

 Δ𝑤௜௝ሺ2ሻ ൌ 𝜖 𝑦௜ െ 𝑦ො௜ 𝑔ᇱ 𝑠௜ሺ2ሻ 𝑧௝ሺ1ሻ
 Δ𝑤௜௝ሺ2ሻ ൌ 𝜖𝑒௜ 2 𝑧௝ሺ1ሻ, with 𝑒௜ 2 ൌ 𝑦௜ െ 𝑦ො௜ 𝑔ᇱ 𝑠௜ሺ2ሻ

 1st weight layer

 Δ𝑤௜௝ሺ1ሻ ൌ െ𝜖 డ஼
డ௪೔ೕ ଵ

ൌ െ𝜖 డ஼
డ௭ೕ ଵ

డ௭ೕ ଵ
డ௪೔ೕ ଵ


డ஼

డ௭ೕሺଵሻ
ൌ ∑ డ஼

డ௬ො೔

డ௬ො೔
డ௭ೕሺଵሻ௜ ௣௔௥௘௡௧௦ ௢௙ ௝ ൌ െ∑ 𝑦௜ െ 𝑦ො௜௜

డ௬ො೔
డ௦೔ሺଶሻ

డ௦೔ሺଶሻ
డ௭ೕሺଵሻ


డ஼

డ௭ೕሺଵሻ
ൌ െ∑ 𝑦௜ െ 𝑦ො௜ 𝑔ᇱ 𝑠௜ 2 𝑤௜௝ሺ2ሻ௜

Multi-layer Perceptron – SGD derivation
Detailed derivation (MSE loss + sigmoid units)

Machine Learning & Deep Learning - P. Gallinari77


డ௭ೕሺଵሻ
డ௪ೕೖሺଵሻ

ൌ డ௭ೕሺଵሻ
డ௦ೕሺଵሻ

డ௦ೕሺଵሻ
డ௪ೕೖሺଵሻ

ൌ 𝑔ᇱ 𝑠௝ሺ1ሻ 𝑧௞

 Δ𝑤௝௞ሺ1ሻ ൌ 𝜖 ∑ 𝑦௜ െ 𝑦ො௜ 𝑔ᇱ 𝑠௜ሺ2ሻ 𝑤௜௝ሺ2ሻ௜ ௣௔௥௘௡௧௦ ௢௙ ௝ 𝑔ᇱ 𝑠௝ሺ1ሻ 𝑥௞
 Δ𝑤௝௞ሺ1ሻ ൌ 𝜖𝑒௝ 1 𝑥௞ with 𝑒௝ ൌ 𝑔ᇱ 𝑠௝ሺ1ሻ ∑ 𝑒௜𝑤௜௝ሺ2ሻ௜ ௣௔௥௘௡௧௦ ௢௙ ௝

Back Propagation and Adjoint

 BP is an instance of a more general technique: the Adjoint method
 Adjoint method

 has been designed for computing efficiently the sensitivity of a loss to the
parameters of a function (e.g. weights, inputs or any cell value in a NN).

 Can be used to solve different constrained optimization problems (including BP)
 Is used in many fields like control, geosciences
 Interesting to consider the link with the adjoint formulation since this opens the

way to generalization of the BP technique to more general problems
 e.g. continuous NNs (Neural ODE)

Machine Learning & Deep Learning - P. Gallinari78

Back Propagation and Adjoint

 Learning problem
 𝑀𝑖𝑛ௐ𝑐 ൌ

ଵ
ே
∑ 𝑐ሺ𝐹 𝑥௞ , 𝑦௞ሻே
௞ୀଵ

 With 𝐹 𝑥 ൌ 𝐹௟ ∘ ⋯∘ 𝐹ଵሺ𝑥ሻ
 Rewritten as a constrained optimisation problem

 𝑀𝑖𝑛ௐ𝑐 ൌ
ଵ
ே
∑ 𝑐ሺ𝑧௞ሺ𝑙ሻ, 𝑦௞ሻே
௞ୀଵ

 Subject to ∀𝑘 ൌ 1 …𝑁

𝑧௞ 𝑙 ൌ 𝐹௟ሺ𝑧௞ 𝑙 െ 1 ,𝑤 𝑙 ሻ
𝑧௞ 𝑙 െ 1 ൌ 𝐹௟ିଵሺ𝑧௞ 𝑙 െ 2 ,𝑤 𝑙 െ 1 ሻ

…
𝑧௞ 1 ൌ 𝐹ଵ 𝑥௞ ,𝑤 1

 Note
 𝑧 and 𝑊 are vectors of the appropriate size
 e.g. 𝑧 𝑖 is 𝑛௭ሺ𝑖ሻ ൈ 1 and 𝑤ሺ𝑖ሻ is 𝑛ௐሺ𝑖ሻ ൈ 1

Machine Learning & Deep Learning - P. Gallinari79

Back Propagation and Adjoint

 For simplifying, one considers pure SGD, i.e. 𝑁 ൌ 1
 So that we drop the index 𝑘

 The Lagrangian associated to the optimization problem is
 ℒ 𝑥,𝑤 ൌ 𝑐 𝑧 𝑙 ,𝑦 െ ∑ 𝜆௜்ሺ𝑧 𝑖 െ 𝐹௜ 𝑧 𝑖 െ 1 ,𝑤 𝑖 ሻ௟

௜ୀଵ
 𝜆௜ is a vector with the same size as 𝑧ሺ𝑖ሻ

 Unknowns to be estimated:
 𝑧 𝑖 ,𝑤 𝑖 , 𝜆௜ , 𝑖 ൌ 1 … 𝑙,

Machine Learning & Deep Learning - P. Gallinari80

Back Propagation and Adjoint

 We want to solve for the Lagrangian
 ℒ 𝑥,𝑊 ൌ 𝑐 𝑧 𝑙 , 𝑦 െ ∑ 𝜆௜்ሺ𝑧 𝑖 െ 𝐹௜ሺ𝑧 𝑖 െ 1 ,𝑤 𝑖 ሻ௟

௜ୀଵ

 with unknowns: 𝑧 𝑖 ,𝑤 𝑖 , 𝜆௜ , 𝑖 ൌ 1, … , 𝑙

 The partial derivatives of the Lagrangian are


డℒ
డ௭ሺ௟ሻ

ൌ െ𝜆௟் ൅
డ௖ ௭ ௟ ,௬
డ௭ ௟

 for the last layer 𝑙


డℒ
డ௭ሺ௜ሻ

ൌ െ𝜆௜் ൅ 𝜆௜ାଵ் డி೔శభ ௭ ௜ ,௪ ௜ାଵ
డ௭ ௜

, 𝑖 ൌ 1, … , 𝑙 െ 1 for intermediate layer 𝑖


డℒ

డௐሺ௜ሻ
ൌ 𝜆௜்

డி೔ ௭ ௜ିଵ ,௪ሺ௜ሻ
డ௪ ௜

, i ൌ 1 … l


డℒ
డఒ೔

ൌ 𝑧 𝑖 െ 𝐹௜ 𝑧 𝑖 െ 1 , ሺ𝑖ሻ , i ൌ 1 … l

 Note


డℒ
డ௭ሺ௜ሻ

is 1 ൈ 𝑛௭ሺ𝑖ሻ,
డℒ

డ௪ ௜
is 1 ൈ 𝑛௪ሺ𝑖ሻ,

డℒ
డఒ೔

is 1 ൈ 𝑛ఒሺ𝑖ሻ, 𝜆௜ is 𝑛௭ሺ𝑖ሻ ൈ 1, డி೔శభ ௭ ௜ ,௪ሺ௜ାଵሻ
డ௭ ௜

is

𝑛௭ሺ𝑖 ൅ 1ሻ ൈ 𝑛௭ሺ𝑖ሻ , డ௖ሺ௭ ௟ ,௬ሻ
డ௭ሺ௟ሻ

is 1 ൈ 𝑛௭ሺ𝑙ሻ,
డி೔ ௭ ௜ିଵ ,௪ሺ௜ሻ

డௐ ௜
is 𝑛௭ሺ𝑖ሻ ൈ 𝑛௪ሺ𝑖ሻ

Machine Learning & Deep Learning - P. Gallinari81

Back Propagation and Adjoint
 Forward equation


డℒ
డఒ೔

ൌ 𝑧 𝑖 െ 𝐹௜ 𝑧 𝑖 െ 1 ,𝑤ሺ𝑖ሻ , 𝑖 ൌ 1 … 𝑙, represent the constraints

 One wants డℒ
డఒ೔

ൌ 0, 𝑖 ൌ 1 … 𝑙

 Starting from 𝑖 ൌ 1 up to 𝑖 ൌ 𝑙, this is exactly the forward pass of BP

 Backward equation
 Remember the Lagrangian

 ℒ 𝑥,𝑊 ൌ 𝑐 𝑧 𝑙 ,𝑦 െ ∑ 𝜆௜்ሺ𝑧 𝑖 െ 𝐹௜ሺ𝑧 𝑖 െ 1 ,𝑤 𝑖 ሻ௟
௜ୀଵ

 Since one imposes ሺ𝑧 𝑖 െ 𝐹௜ 𝑧 𝑖 െ 1 ,𝑤 𝑖 ൌ 0 (forward pass), one can choose
𝜆௜் as we want

 Let us choose the 𝜆𝑠 such that డℒ
డ௭ሺ௜ሻ

ൌ 0,∀ 𝑖

 The 𝜆𝑠 can be computed backward Starting at 𝑖 ൌ 𝑙 down to to 𝑖 ൌ 1
 𝜆௟் ൌ

డ௖ሺ௭ ௟ ,௬ሻ
డ௭ሺ௟ሻ

 …

 𝜆௜் ൌ 𝜆௜ାଵ் డி೔శభሺ௭ ௜ ,௪ ௜ାଵ ሻ
డ௭ሺ௜ሻ

ൌ 𝜆௜ାଵ் డ௭ሺ௜ାଵሻ
డ௭ሺ௜ሻ

Machine Learning & Deep Learning - P. Gallinari82

Back Propagation and Adjoint

 Derivatives
 All that remains is to compute the derivatives of ℒ wrt the 𝑊௜


డℒ

డ௪ሺ௜ሻ
ൌ 𝜆௜ାଵ் డி೔ ௭ ௜ିଵ ,௪ሺ௜ሻ

డ௪ ௜
, ∀ 𝑖


డி೔ ௭ ௜ିଵ ,௪ሺ௜ሻ

డ௪ ௜
ൌ డ௭ሺ௜ሻ

డ௪ ௜
easy to compute

Machine Learning & Deep Learning - P. Gallinari83

Back Propagation and Adjoint – Algorithm Recap
 Recap, BP algorithm with Adjoint
 Forward

 Solve forwardడℒ
డఒ೔

ൌ 0

 𝑧 1 ൌ 𝐹ଵ 𝑧 0 ,𝑤ሺ1ሻ
 …

 𝑧 𝑖 ൌ 𝐹௜ 𝑧 𝑖 െ 1 ,𝑤ሺ𝑖ሻ

 Backward
 Solve backward డℒ

డ௭ሺ௜ሻ
ൌ 0

 𝜆௟் ൌ
డ௖ሺ௭ ௟ ,௬ሻ
డ௭ሺ௟ሻ

 …

 𝜆௜் ൌ 𝜆௜ାଵ் డி೔శభሺ௭ ௜ ,௪ ௜ାଵ ሻ
డ௭ሺ௜ሻ

ൌ 𝜆௜ାଵ் డ௭ሺ௜ାଵሻ
డ௭ሺ௜ሻ

 Derivatives


డℒ
డ௪ሺ௜ሻ

ൌ 𝜆௜ାଵ் డி೔ ௭ ௜ିଵ ,௪ሺ௜ሻ
డ௪ ௜

, ∀ 𝑖

Machine Learning & Deep Learning - P. Gallinari84

Adjoint method – Adjoint equation
 Let us consider the Lagrangian written in a simplified form

 ℒ 𝑥,𝑤 ൌ 𝑐 𝑧 𝑙 , 𝑦 െ 𝜆்𝑔ሺ𝑧,𝑤ሻ
 𝑧,𝑤 represent respectively all the variables of the NN and all the weights
 𝑧 is a 1 ൈ 𝑛௭ vector, and 𝑤 is a 1 ൈ 𝑛ௐ vector
 𝑔 𝑧,𝑤 ൌ 0 represents the constraints written in an implicit form

 here the system 𝑧 𝑖 െ 𝐹௟ିଵ 𝑧 𝑖 െ 1 ,𝑤 𝑖 ൌ 0, 𝑖 ൌ 1 … 𝑙

The derivative of ℒ 𝑥,𝑤 wrt 𝑤 is


ௗℒ ௫,௪
ௗ௪

ൌ డ௖
డ௭

డ௭
డ௪

െ 𝜆்(డ௚
డ௭

డ௭
డௐ

൅ డ௚
డ௪
ሻ

 ൌ ሺడ௖
డ௭
െ 𝜆் డ௚

డ௭
) డ௭
డ௪

൅𝜆் డ௚
డ௪

 In order to avoid computing డ௭
డ௪

, choose 𝜆 such that


డ௖
డ௭
െ 𝜆் డ௚

డ௭
ൌ 0, rewriten as:

 𝝏𝒈
𝝏𝒛

𝑻
𝝀 ൌ െ𝝏𝒄

𝝏𝒛
<<<<<<<<< Adjoint Equation

Machine Learning & Deep Learning - P. Gallinari85

Adjoint method

 𝜆 is determined from the Adjoint equation
 Different options for solving 𝜆, depending on the problem
 For MLPs, the hierarchical structure leads to the backward scheme

Machine Learning & Deep Learning - P. Gallinari86

Multi-layer Perceptron – stochastic gradient

Machine Learning & Deep Learning - P. Gallinari87

 Note
 The algorithm has been detailed for « pure » SGD, i.e. one datum at a time
 In practical applications, one uses mini-batch implementations
 This accelerates GPU implementations
 The algorithm holds for any differentiable loss/ model
 Deep Learning on large architectures makes use of SGD variants, e.g. Adam

Loss functions
 Depending on the problem, and

on model, different loss functions
may be used

 Mean Square Error
 For regression

 Classification, Hinge, logistic, cross
entropy losses
 Classification loss

 Number of classification errors
 Exemples

 𝒚ෝ ∈ 𝑅௣,𝒚 ∈ െ1,1 ௣

 Hinge, logistic losses are used as
proxies for the classification loss

Machine Learning & Deep Learning - P. Gallinari88

Figure from
Bishop 2006

z coordinate: 𝑧 ൌ 𝒚ෝ.𝒚 (margin)

𝐶ெௌாሺ𝒚ෝ,𝒚ሻ ൌ | 𝒚ෝ െ 𝒚 |ଶ
𝐶௛௜௡௚௘ሺ𝒚ෝ,𝒚ሻ ൌ 1 െ 𝒚ෝ.𝒚 ା ൌ max ሺ0,1 െ 𝒚ෝ.𝒚ሻ
𝐶௟௢௚௜௦௧௜௖ 𝒚ෝ,𝒚 ൌ ln ሺ1 ൅ exp െ𝒚ෝ.𝒚 ሻ

Approximation properties of MLPs

Machine Learning & Deep Learning - P. Gallinari89

 Results based on functional analysis
 (Cybenko 1989)

 Theorem 1 (regression): Let 𝑓 be a continuous saturating function, then the space of
functions 𝑔 𝑥 ൌ ∑ 𝜈௝𝑓ሺ𝐰௝ .௡

௝ୀଵ . 𝐱ሻ is dense in the space of continuous functions on the unit
cube 𝐶ሺ𝐼ሻ. i.e. ∀ℎ ∈ 𝐶 𝐼 𝑒𝑡 ∀𝜖 ൐ 0,∃ 𝑔 ∶ 𝑔 𝑥 െ ℎ 𝑥 ൏ 𝜖 on 𝐼

 Theorem 2 (classification): Let 𝑓 be a continuous saturating function. Let 𝐹 be a decision
function defining a partition on I. Then ∀𝜖 ൐ 0, there exists a function 𝑔 𝑥 ൌ
∑ 𝜈௝𝑓ሺ𝐰௝ .௡
௝ୀଵ . 𝐱ሻ and a set 𝐷 ⊂ 𝐼 such that 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐷 ൌ 1 െ 𝜖ሺ𝐷ሻ and 𝑔 𝑥 െ 𝐹 𝑥 ൏ 𝜖

on 𝐷
 .

 (Hornik et al., 1989)
 Theorem 3 : For any increasing saturating function 𝑓, and any probability measure 𝑚 on 𝑅௡ ,

the space of functions 𝑔 𝑥 ൌ ∑ 𝜈௝𝑓ሺ𝐰௝ .௡
௝ୀଵ . 𝐱ሻ is uniformely dense on the compact sets

𝐶 𝑅௡ - the space of continuous functions on 𝑅௡

 Notes:
 None of these result is constructive
 Recent review of approximation properties of NN: Guhring et al., 2020, Expressivity of deep

neural networks, arXiv:2007.04759

Complexity control

Bias –Variance

Overtraining and regularization

Machine Learning & Deep Learning - P. Gallinari90

Generalization and Model Selection

 Complex models sometimes perform worse than simple linear
models
 Overfitting/ generalization problem

 Empirical Risk Minimization is not sufficient
 The model complexity should be adjusted both to the task and to the

information brought by the examples
 Both the model parameters and the model capacity should be learned
 Lots of practical method and of theory has been devoted to this problem

Machine Learning & Deep Learning - P. Gallinari91

Complexity control
Overtraining / generalization for regression

Machine Learning & Deep Learning - P. Gallinari92

 Example (Bishop 06) fit of a sinusoid with polynomials of varying degrees

 Model complexity shall be controlled (learned) during training
 How?

Complexity control

Machine Learning & Deep Learning - P. Gallinari93

 One shall optimize the risk while controling the complexity
 Several methods

 Régularisation (Hadamard …Tikhonov)
 Theory of ill posed problems

 Minimization of the structural risk (Vapnik)
 Algebraic estimators of generalization error (AIC, BIC, LOO, etc)
 Bayesian learning

 Provides a statistical explanation of regularization

 Regularization terms appear as priors on the parameter distribution

 Ensemble methods
 Boosting, bagging, etc

 Many others especially in the Deep NN literature (seen later)

Regularisation

Machine Learning & Deep Learning - P. Gallinari94

 Hadamard
 A problem is well posed if

 A solution exists
 It is unique and stable

 Example of ill posed problem (Goutte 1997)

 Tikhonov
 Proposes methods pour transforming a ill posed problem into a “well” posed

one

Bias-variance decomposition

Machine Learning & Deep Learning - P. Gallinari95

 Illustrates the problem of model selection, puts in evidence the
influence of the complexity of the model
 Remember: MSE risk decomposition

 𝐸௫,௬ 𝑦 െ 𝐹௪ 𝒙 ଶ ൌ 𝐸௫,௬ 𝑦 െ 𝐸௬ 𝑦 𝒙
ଶ ൅ 𝐸௫,௬ ሺ𝐸௬ 𝑦 𝒙 െ 𝐹௪ 𝒙

ଶ
ሿ

 Let ℎ∗ 𝑥 ൌ 𝐸௬ሾ𝑦|𝒙ሿ be the optimal solution for the minimization of this risk

 In practice, the number of training data for estimating 𝐸௬ 𝑦 𝒙 is limited
 The estimation will depend on the training set 𝐷
 Uncertainty due to the training set choice for this estimator can be measured as

follows:
 Sample a series of training sets, all of size 𝑁:𝐷ଵ,𝐷ଶ, …
 Learn 𝐹௪ 𝒙,𝐷 for each of these datasets
 Compute the mean of the empirical errors obtained on these different datasets

Bias-variance decomposition

Machine Learning & Deep Learning - P. Gallinari96

 Let us consider the quadratic error 𝐹 𝑥;𝐷 െ ℎ∗ 𝑥 ଶ
for a datum 𝑥 and for the

solution 𝐹௪ 𝑥;𝐷 obtained with the training set 𝐷 (in order to simplify, we consider a
1 dimensional real output, extension to multidimensional outputs is trivial)
 Let 𝐸஽~௣ሺ஽ሻሾ𝐹௪ 𝑥;𝐷 ሿ denote the expectation w.r.t. the distribution of 𝐷,𝑝ሺ𝐷ሻ

 𝐹௪ 𝑥;𝐷 െ ℎ∗ 𝑥 ଶ
decomposes as:

 𝐹௪ 𝑥;𝐷 െ ℎ∗ 𝑥 ଶ ൌ 𝐹௪ 𝑥;𝐷 െ 𝐸஽ሾ𝐹௪ 𝑥;𝐷 ሿ ൅ 𝐸஽ሾ𝐹௪ 𝑥;𝐷 ሿ െ ℎ∗ 𝑥 ଶ

 𝐹௪ 𝑥;𝐷 െ ℎ∗ 𝑥 ଶ ൌ 𝐹௪ 𝑥;𝐷 െ 𝐸஽ 𝐹௪ 𝑥;𝐷 ଶ ൅ 𝐸஽ 𝐹௪ 𝑥;𝐷 െ ℎ∗ 𝑥 ଶ

൅ 2 𝐹௪ 𝑥;𝐷 െ 𝐸஽ 𝐹௪ 𝑥;𝐷 𝐸஽ 𝐹௪ 𝑥;𝐷 െ ℎ∗ 𝑥

 Expectation w.r.t. 𝐷 distribution decomposes as:

 𝐸஽ሾ 𝐹௪ 𝑥;𝐷 െ ℎ∗ 𝑥 ଶሿ ൌ ሺ𝐸஽ 𝐹௪ 𝑥;𝐷 െ ℎ∗ሺ𝑥ሻሻଶ ൅ 𝐸஽ሾሺ𝐹௪ 𝑥;𝐷 െ 𝐸஽ 𝐹௪ 𝑥;𝐷 ሿ ଶሿ
 ൌ 𝑏𝑖𝑎𝑠ଶ ൅ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 Intuition
 Choosing the right model requires a compromise between flexibility and simplicity

 Flexible model : low bias – strong variance
 Simple model : strong bias – low variance

The Bias-Variance Decomposition (Bishop PRML 2006)

Machine Learning & Deep Learning - P. Gallinari97

 Example: 100 data sets from the sinusoidal, varying the degree of regularization
 Model: gaussian basis function, Learning set size = 25, 𝜆 is the regularization parameter

 High values of 𝜆 correspond to simple models, low values to more complex models

 Left 20 of the 100 models shown

 Right : average of the 100 models (red), true sinusoid (green)

 Figure illustrates high bias and low variance (𝜆 ൌ 13ሻ

The Bias-Variance Decomposition (Bishop PRML 2006)

Machine Learning & Deep Learning - P. Gallinari98

 Example: 100 data sets from the sinusoidal, varying the degree of regularization
 Same setting as before

 Figure illustrates low bias and high variance (𝜆 ൌ 0.09ሻ

 Remark
 The mean of several complex models behaves well here (reduced variance)

  leads to ensemble methods

The Bias-Variance Decomposition (Bishop PRML 2006)

Machine Learning & Deep Learning - P. Gallinari99

 From these plots, we note that an over-regularized model (large 𝜆)
will have a high bias, while an under-regularized model (small 𝜆) will
have a high variance.

Regularisation

Machine Learning & Deep Learning - P. Gallinari100

 Principle: control the solution variance by constraining function 𝐹
 Optimise 𝐶 ൌ 𝐶1 ൅ 𝜆 𝐶2
 𝐶 is a compromise between

 𝐶1 : reflects the objective e.g. MSE, Entropie, ...
 𝐶2 : constraints on the solution (e.g. weight distribution)

 𝜆 : constraint weight
 Regularized mean squares

 For the linear multivariate regression

 𝐶 ൌ ଵ
ே
∑ 𝑦௜ െ 𝒘. 𝑥௜ ଶே
௜ୀଵ ൅ ఒ

ଶ
∑ 𝑤௝

௤௡
௝ୀଵ

 𝑞 ൌ 2 regularization 𝐿ଶ, 𝑞 ൌ 1 regularization 𝐿ଵ also known as « Lasso »

Fig. from Bishop 2006

Régularisation

Machine Learning & Deep Learning - P. Gallinari101

 Solve

 𝑀𝑖𝑛𝒘 𝐶 ൌ ଵ
ே
∑ 𝑦௜ െ 𝒘. 𝑥௜ ଶே
௜ୀଵ ൅ ఒ

ଶ
∑ 𝑤௝

௤௡
௝ୀଵ , 𝜆 ൐ 0

 Amounts at solving the following constrained optimization problem
 𝑀𝑖𝑛𝒘 𝐶 ൌ ଵ

ே
∑ 𝑦௜ െ 𝒘. 𝑥௜ ଶே
௜ୀଵ

 Under constraint ∑ 𝑤௝
௤௡

௝ୀଵ ൑ s for a given value of s

 Effect of this constraint



Fig. from Bishop 2006

Regularization

Machine Learning & Deep Learning - P. Gallinari102

 Penalization 𝐿ଶ
 Loss

 𝐶 ൌ 𝐶ଵ ൅ 𝜆∑ 𝑤௝
ଶ௡

௝ୀଵ

 Gradiant
 𝛻𝒘𝐶 ൌ 𝜆𝒘 ൅ 𝛻𝒘𝐶ଵ

 Update
 𝒘 ൌ 𝒘െ 𝜖𝛻𝒘𝐶 ൌ 1 െ 𝜖𝜆 𝒘 െ 𝜖𝛻𝒘𝐶ଵ
 Penalization is proportional to 𝒘

 Penalization 𝐿ଵ
 Loss

 𝐶 ൌ 𝐶ଵ ൅ 𝜆∑ 𝑤௝
ଵ௡

௝ୀଵ

 Gradiant
 𝛻𝒘𝐶 ൌ 𝜆𝑠𝑖𝑔𝑛ሺ𝒘ሻ ൅ 𝛻𝒘𝐶ଵ
 𝑠𝑖𝑔𝑛ሺ𝒘ሻ is the sign of 𝒘 applied to each component of 𝒘

 Update
 𝒘 ൌ 𝒘െ 𝜖𝛻𝒘𝐶 ൌ 𝒘െ 𝜖𝜆𝑠𝑖𝑔𝑛ሺ𝒘ሻ െ 𝜖𝛻𝒘𝐶ଵ
 Penalization is constant with sign 𝑠𝑖𝑔𝑛ሺ𝒘ሻ

Other ideas for improving generalization in NNs

Machine Learning & Deep Learning - P. Gallinari103

 Several heuristics have been developed in order to force inductive biases
for NNs – some
 Gradient descent and stochastic gradient descent perform implicit regularization
 Weights initialization
 Early stopping
 Data augmentation

 By adding noise
 with early work from Matsuoka 1992 ; Grandvallet and Canu 1994 ; Bishop 1994
 and many new developments for Deep learning models

 By generating new examples (synthetic, or any other way)
 Note: Bayesian learning and regularization

 Regularization parameters correspond to priors on these model variables
 Ensembling

 Model averaging
 Average models outputs: reduces the variance

 Functional ensembling (recently developed)
 Average the network weights on the training trajectory

 As for 2022: SOTA in classification (e.g. vision tasks)

Generalization in modern Deep Learning

Machine Learning & Deep Learning - P. Gallinari104

 Deep Learning models often do not follow the common complexity
/ performance wisdom
 Extremely large models / with no complexity control (like e.g. regularization or

early stopping), may reach good performance, better than models trained with
the usual complexity control ingredients

 Observed in modern deep learning
 High complexity models with zero train error may not overfit and lead to accurate

predictions on unseen data
 This observation questions the usual claim and the theoretical beliefs such as Bias –

Variance dilemma

 Example
 Double descent phenomenon

 Based on (Belkin 2019) and (Nakkiran 2020)

Generalization in modern Deep Learning - Double Descent

Machine Learning & Deep Learning - P. Gallinari105

 Observed by different authors but formalized as a general concept
in (Belkin 2019)

 General message
 Learning curves as a function of model capacity (complexity) exhibit a two

regimes phenomenon coined as « double descent »
 Classical regime corresponds to under-parameterized models and exhibits the

classical U shaped curve corresponding to the bias-variance intuition
 Models do not achieve perfect interpolation

 The test risk first decreases and then increases when the model starts interpolating

 Modern interpolation regime corresponds to over-parameterized models
 Models may achieve near zero train error, i.e. near perfect interpolation

 Test risk value may decrease below the level of the best classical regime risk value

Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)

Machine Learning & Deep Learning - P. Gallinari106



 All the models to the right of the interpolation threshold have a zero
training error

 Tentative explanation
 The notion of « capacity of the function class » does not fit the inductive bias

appropriate for the problem and cannot explain the observed behavior
 The inductive bias seems to be the smoothness of a function as measured by a

certain function space norm

Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)

Machine Learning & Deep Learning - P. Gallinari107

 Caracterization on classification problems
 Model: Random Fourier Features
 Equivalent to 1 hidden layer NN with fixed weights in the first layer

 i.e. only the last weight layers are learned, i.e. convex problem
 Because of the linearity of the trainable component, the complexity can be measured by the

number of basis functions (nb of hidden cells)
 Or at least this provides a proxy for the complexity

 Random Fourier Features
 Consider a class of function denoted ℋே ∶ ℎ 𝑥 :𝑅ௗ → 𝑅

 With ℎ 𝑥 ൌ ∑ 𝑎௞𝜙ሺ𝑥; 𝑣௞ሻே
௞ୀଵ with 𝜙 𝑥; 𝑣 ൌ exp ሺ𝑖 ൏ 𝑣, 𝑥 ൐ሻ - (the complex exponential)

 Where the 𝑣ଵ, … , 𝑣ே are sampled independently from the standard normal distribution in 𝑅ௗ
 The 𝜙 𝑥; 𝑣 are 𝑁 complex basis functions
 This may be implemented as a NN with 2𝑁 basis functions corresponding to the real and

imaginary parts of 𝜙
 Learning procedure

 Given a training set 𝑥ଵ, 𝑦ଵ … 𝑥௡,𝑦௡ , train via ERM, i.e. minimize ଵ
௡
∑ ሺℎ 𝑥௜ሻ െ 𝑦௜ ଶ௡
௜ୀଵ

 When the minimizer is not unique (always the case when 𝑁 ൐ 𝑛) choose the one with
coefficients ሺ𝑎ଵ, … ,𝑎ேሻ of minimum 𝑙ଶ norm, i.e. the smoothest one

Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)

Machine Learning & Deep Learning - P. Gallinari108



Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)

Machine Learning & Deep Learning - P. Gallinari109

 Characterize the double descent phenomenon for
 A large variety of NN models: CNN, ResNet, Transformers
 Several settings: model-wise, epoch-wise, sample-wise (defined later)

 Propose a measure of complexity called « effective model
complexity »
 For non linear models, the number of parameters is not a characterization of the

function class complexity

Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)

Machine Learning & Deep Learning - P. Gallinari110

 Effective model complexity (EMC)
 A training procedure 𝒯 is any procedure that takes as input a training set 𝐷 ൌ

ሼ 𝑥ଵ,𝑦ଵ , …, 𝑥௡,𝑦௡ ሽ and outputs a classifier 𝒯ሺ𝐷ሻ mapping data to labels
 The effective model complexity of 𝒯 w.r.t. the distribution 𝒟 of 𝐷 is the maximum

number of samples 𝑛′ on which 𝒯 achieves on average a zero training error
 The EMC of training procedure 𝒯 w.r.t. distribution 𝒟 and parameter 𝜖 ൐

0, is defined as:

 𝐸𝑀𝐶𝒟,ఢ 𝒯 ൌ max 𝑛ᇱ 𝐸஽~𝒟೙ᇲ 𝐸𝑟𝑟𝑜𝑟஽ 𝒯 𝐷 ൑ 𝜖
 with 𝐸𝑟𝑟𝑜𝑟஽ 𝒯 𝐷 is the mean error on 𝐷.

 Regimes
 Assumption: the classifier 𝒯ሺ𝐷ሻ is trained on a dataset of size 𝑛
 Under-parameterized: 𝐸𝑀𝐶𝒟,ఢ 𝒯 smaller than 𝑛, i.e. 𝒯 achieves 0 error only on

training sets of size smaller than 𝑛, increasing 𝐸𝑀𝐶 will decrease the test error
 Over-parameterized: 𝐸𝑀𝐶𝒟,ఢ 𝒯 larger than 𝑛, increasing EMC will decrease the test

error
 Critical: 𝐸𝑀𝐶𝒟,ఢ 𝒯 around 𝑛, increasing EMC may decrease or increase the test

error (see figure)

Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)

Machine Learning & Deep Learning - P. Gallinari111

 Different settings for characterizing the double-descent
phenomenon
 i.e. the phenomenon appears under each setting and not only under the Model-

wise setting characterized by Belkin et al.
 Model-wise

 Fixed large number of training steps, models of increasing size,

 Epoch-wise
 Fixed large architecture, increase the number of training epochs

 Sample-wise
 Fixed model and training procedure, change the number of training samples

Summary

 Non linear machines were widely developed in the 90௜௘௦

 Fundations for modern statistical machine learning
 Fundations for statistical learning theory
 Real world applications

 Also during this period
 Recurrent Neural Networks

 Extension of back propagation

 Reinforcement Learning
 Early work mid 80ies

 Sutton – Barto Book 1998, including RL + NN

Machine Learning & Deep Learning - P. Gallinari112

Deep learning

Interlude: new actors – new practices

 GAFA (Google, Apple, Facebook,
Amazon) , BAT (Baidu, Tencent,
Alibaba), …, Startups, are shaping the
data world

 Research
 Big Tech. actors are leading the research

in DL
 Large research groups

 Google Brain, Google Deep Mind, Facebook
FAIR, Baidu AI lab, Baidu Institute of Deep
Learning, etc

 Standard development platforms,
dedicated hardware, etc

 DL research requires access to ressources

 sophisticated libraries
 large computing power e.g. GPU clusters
 large datasets, …



Machine Learning & Deep Learning - P. Gallinari114

Facebook AI
Research

Interlude – ML conference attendance growth

Machine Learning & Deep Learning - P. Gallinari115

 ML and AI conference Attendence

 NIPS (Neurips)
 2017 sold out 1 week after registration opening, 7000 participants
 2018, 2k inscriptions sold in 11 mn!

Interlude – Deep Learning platforms
 Deep Learning platforms

offer
 Classical DL models
 Optimization algorithms
 Automatic differentiation
 Popular options/ tricks
 Pretrained models
 CUDA/ GPU/ CLOUD support

 Contributions by large open
source communities: lots of
code available

 Easy to build/ train
sophisticated models

 Among the most populars
platforms:
 TensorFlow - Google Brain -

Python, C/C++
 PyTorch – Facebook- Python
 Caffe – UC Berkeley / Caffe2

Facebook, Python, MATLAB
 Higher level interfaces

 e.g. Keras for TensorFlow

 And also:
 PaddlePaddle (Baidu), MXNet

(Amazon), Mariana (Tencent), PAI
2.0 (Alibaba), …..

Machine Learning & Deep Learning - P. Gallinari116

Interlude - Modular programming: Keras simple example MLP
From https://keras.io/

Machine Learning & Deep Learning - P. Gallinari117

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

Load and format training and test data
Not shown - (x_train, y_train), (x_test, y_test)

model = Sequential()
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',

optimizer=sgd,
metrics=['accuracy'])

model.fit(x_train, y_train,
epochs=20,
batch_size=128)

score = model.evaluate(x_test, y_test, batch_size=128)

Load Training – Test data

Specify NN architecture:
• here basic MLP with 3

weight layers

Optimisation algorithm
• SGD
Loss criterion
• Cross entropy

Train for 20 epochs

Evaluate performance on test set

Interlude – Hardware

 2017 - NVIDIA V100 – optimized for
Deep Learning

 “With 640 Tensor Cores, Tesla V100 is
the world’s first GPU to break the 100
teraflops (TFLOPS) barrier of deep
learning performance. The next
generation of NVIDIA NVLink™ connects
multiple V100 GPUs at up to 300 GB/s to
create the world’s most powerful
computing servers.”

 Google Tensor Processor Unit – TPU V3

 Cloud TPU

Machine Learning & Deep Learning - P. Gallinari118

Motivations

Machine Learning & Deep Learning - P. Gallinari119

 Learning representations
 Handcrafted versus learned representation

 Often complex to define what are good representations

 General methods that can be used for
 Different application domains

 Multimodal data

 Multi-task learning

 Learning the latent factors behind the data generation
 Unsupervised feature learning

 Useful for learning data/ signal representations

 Deep Neural networks
 Learn high level/ abstract representations from raw data

 Key idea: stack layers of neurons to build deep architectures

 Find a way to train them

Useful Deep Learning heuristics

Deep NN make use of several (essential) heuristics for training
large architecture: type of units, normalization, optimization…

We introduce some of these ideas

Machine Learning & Deep Learning - P. Gallinari120

Deep Learning heuristics -Activation functions
Figures from:
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial3/Activation_Functions.html

Machine Learning & Deep Learning - P. Gallinari121

 In addition to the logistic or tanh units,,
other forms are used in deep
architectures – Some of the popular
forms are:
 Let 𝑧 ൌ 𝑏 ൅ 𝒘.𝒙
 RELU - Rectified linear units (used for

internal layers)
 𝑔 𝒛 ൌ max ሺ0, 𝐳ሻ

 Rectified units allow to draw activations to 0
(used for sparse representations) + derivative
remain large when unit is active

 Leaky RELU (used for internal layers)

 𝑔 𝒛 ൌ ቊ 𝐳 if𝑏 ൅ 𝒘.𝒙 ൐ 0
0.01 𝒛 otherwise

 Introduces a small derivative when 𝑏 ൅ 𝒘.𝒙 ൏
𝟎

 ELU (used for internal layers)

 𝑔 𝒛 ൌ ቊ 𝐳 if 𝐳 ൐ 0
𝛼 exp 𝑏 ൅ 𝒘.𝒙 െ 1 otherwise

 Swish
 𝑔 𝒛 ൌ 𝒛

ଵାୣ୶୮ ሺି𝒛ሻ

𝑥 axis 𝑏 ൅ 𝒘.𝒙, 𝑦 axis 𝑔 𝒙

Deep Learning heuristics -Activation functions
Figures from:
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial3/Activation_Functions.html

Machine Learning & Deep Learning - P. Gallinari122

 Visualisation of the gradient at different layers of a NN after
initialisation of the weights

 Dataset : FashionMNIST (images) 10 classes, gradient computed on a
batch of 256 images

Deep Learning heuristics - Activation functions

Machine Learning & Deep Learning - P. Gallinari123

 In addition to the logistic or tanh units, other forms are used in
deep architectures – Some of the popular forms are:
 Maxout

 𝑔 𝒙 ൌ max
௜
ሺ𝑏௜ ൅ 𝒘௜ .𝒙ሻ

 Generalizes the rectified unit
 There are multiple weight vectors for each unit

 Softmax (used for output layer)
 Used for classification with a 1 out of p coding (p classes)

 Ensures that the sum of predicted outputs sums to 1

 𝑔 𝒙 ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒃 ൅𝑊𝒙 ൌ ௘್೔శ ೈೣ ೔

∑ ௘್ೕశ ೈೣ ೕ೛
ೕసభ

Deep Learning heuristics
Normalisation

Machine Learning & Deep Learning - P. Gallinari124

 Units: Batch Normalization (Ioffe 2015)
 Normalize the activations of the units (hidden units) so as to coordinate the

gradients accross layers
 Let 𝐵 ൌ ሼ𝑥ଵ, … , 𝑥ேሽ be a mini batch, ℎ௜ሺ𝑥௝ሻ the activation of hidden unit 𝑖 for

input 𝑥௝ before non linearity
 Training

 Set ℎ௜ᇱ 𝑥௝ ൌ ௛೔ ௫ೕ ିఓ೔
ఙ೔ାఢ

where 𝜇௜ is the mean of the activities of hidden unit 𝑖 on batch
𝐵, and 𝜎௜ its standard deviation

 𝜇௜ and 𝜎௜ are estimated on batch 𝐵, 𝜖 is a small positive number
 The output of unit 𝑖 is then 𝑧௜ ൌ 𝛾௜ℎ′௜ 𝑥௝ ൅ 𝛽௜

 Where 𝛾 and 𝛽 are learned via SGD
 Testing

 𝜇௜ and 𝜎௜ for test are estimated as a moving average during training, and need not be
recomputed on the whole training dataset

Deep Learning heuristics
Normalization

Machine Learning & Deep Learning - P. Gallinari125

 Note on B.N.
 No clear agreement if BN should be performed before or after non linearity

 𝐿ଶ normalization could be used together with BN but reduced

 One of the most effective tricks for learning with deep NNs

 Other types of normalization have been proposed e.g. Layerwise Normalization similar
to BN, but layerwise and datum wise, etc.

 Gradient/ gradient clipping
 Avoid very large gradient steps when the gradient becomes very large - different

strategies work similarly in practice.

 Let 𝛻𝒘𝑐 be the gradient computed over a minibatch

 A possible clippling strategy is (Pascanu 2013)

 𝛻𝒘𝑐 ൌ ఇ𝒘௖
| ఇ𝒘௖ |

𝑣, with 𝑣 a norm threshold

Deep Learning heuristics
Dropout

Machine Learning & Deep Learning - P. Gallinari126

 Dropout (Srivastava 2014)
 Training

 Randomly drop units at training time
 Parameter: dropout percentage 𝑝
 Each unit is dropped with probability 𝑝

 This means that it is inactive in the forward and backward pass

 Testing
 Initial paper (Srivastava 2014)

 Keep all the units
 Multiply the units activation by 𝑝 during test

 The expected output for a given layer during the test phase should be the
same as during the training phase

Figure from Srivastava 2014

Deep Learning heuristics
Dropout

Machine Learning & Deep Learning - P. Gallinari127

 Inverted Dropout
 Current implementations use « inverted dropout » - easier implementation: the

network does not change during the test phase (see next slide)
 Units are dropped with probability 𝑝

 Multiplies activations by ଵ
ଵି௣

during training, and keep the network untouched

during testing

 Effects
 Increases independence between units and better distributes the representation

 Interpreted as an ensemble model; reduces model variance

Deep Learning heuristics
Dropout

Machine Learning & Deep Learning - P. Gallinari128

 Dropout for a single unit
 Let 𝑝 be the dropout probability
 Consider a neuron 𝑖 with inputs 𝒙 ∈ 𝑅௡ and weight vector 𝒘 ∈ 𝑅௡ including the bias term
 The activation of neuron 𝑖 is 𝑧௜ ൌ 𝑓ሺ𝒘.𝒙ሻ with 𝑓 a non linear function (e.g. Relu)
 Let 𝑏௜ a binomial variable of parameter 1 െ 𝑝

 Original dropout
 Training phase

 𝑧௜ ൌ 𝑏௜𝑓ሺ𝒘.𝒙ሻ, 𝑏௜ ∈ ሼ0,1ሽ
 Test phase

 𝑧௜ ൌ
ଵ

ଵି௣
𝑓ሺ𝒘.𝒙ሻ

 Inverted dropout
 Training phase

 𝑧௜ ൌ
ଵ

ଵି௣
𝑏௜𝑓 𝒘.𝒙 , 𝑏௜ ∈ ሼ0,1ሽ

 Test phase

 𝑧௜ ൌ 𝑓ሺ𝒘.𝒙ሻ
 Note

 The total number of neurons dropped at each step is the sum of Bernoullis 𝑏௜ , it follows a binomial distribution
𝐵ሺ𝑚, 𝑝ሻ where 𝑚 is the number of neurons on the layer of neuron 𝑖.

 Its expectation is the E 𝐵 𝑚, 𝑝 ൌ 𝑚𝑝
 𝐿ଶ normalization could be used together with dropout but reduced

The loss landscape of deep neural networks
from Li et al. 2018, https://arxiv.org/pdf/1712.09913.pdf

Machine Learning & Deep Learning - P. Gallinari129

 Developed a method for vizualizing the loss landscape that allows to
compare different NNs

 Hints
 Given 𝜃∗ a solution learned by a NN and 𝛿 , 𝜂 two random vectors of the same

size as 𝜃∗ , plus normalization heuristics on these vectors, plot the surface
𝑓 𝛼,𝛽 ൌ 𝐿ሺ𝜃∗ ൅ 𝛼𝛿 ൅ 𝛽𝜂ሻ

 Examples
 Networks trained on CIFAR-10 (image dataset for classification)

 Some messages
 NN depth has a dramatic effect on loss surface when no skip connection is used
 Wide models tend to have smoother surfaces
 Landscape geometry has a dramatic effect on generalization. Flat minimizers tend

to have lower test errors

The loss landscape of deep neural networks
from Li et al. 2018, https://arxiv.org/pdf/1712.09913.pdf

Machine Learning & Deep Learning - P. Gallinari130

 3-D plots
 ResNet-56 without and with skip connections

 2-D plots
 Resnets of different sizes (20, 56, 110 layers) without and with skip connections

 Centered on the learned min 𝜃∗

No skip connections

Skip connections
Convex landscape for
small (20 layers) NNs
and for Skip connections

Highly non convex
landscape for noSkip
NNs when size
increases.

CNN: Convolutional Neural Nets

Introduction
Classification

Object detection
Image segmentation

CNNs

Machine Learning & Deep Learning - P. Gallinari132

 CNNs were developped in the late 80ies for image and speech
applications

 Deep CNNs were successfully used for image applications
(classification and segmentation) in the 2010s – starting with the
ImageNet competition, and for speech recognition.
 Their use has been extended to handle several situations
 They come now in many variants
 They can often be used as alternatives to Recurrent NNs

CNNs
principle

Machine Learning & Deep Learning - P. Gallinari133

 Exploit local characteristics of the data via local connections
 e.g. images (2 D), speech signal (1 D)

 Local connections are constrained to have shared weight vectors
 This is equivalent to convolve a unique weight vector with the input signal

 Think of a local edge detector for images
 The 3 hidden cells here share the same weight vector

 (blue, red, green weight values)

 Several convolution filters can be learned simultaneously
 This corresponds to applying a set of local filters on the input signal

 e.g edge detectors at different angles for an image
 here colors indicate similar weight vectors, not weight values as above

CNNs
example

Machine Learning & Deep Learning - P. Gallinari134

 ConvNet architecture (Y. LeCun since 1988)
 Deployed at Bell Labs in 1989-90 for Zip code recognition
 Character recognition
 Convolution: non linear embedding in high dimension
 Pooling: average, max

parameters 64x9x9=5184, 256x9x9=20736, 256x101 = 60916

CNNs

Machine Learning & Deep Learning - P. Gallinari135

 In Convnet
 The first hidden layer consists in 64 different convolution kernels over the initial

input, resulting in 64 different mapping of the input
 The second hidden layer is a sub-sampling layer with a pooling tranformation

applied to each matrix representation of the first hidden layer
 etc
 Last layer is a classification layer, fully connected

 More generally
 CNNs alternate convolution, and pooling layers, and a fully connected layer at

the top.

CNNs
visualization

Machine Learning & Deep Learning - P. Gallinari136

 Hand writing recognition (Y. LeCun Bell labs 1989)

CNNs
Convolution: filter size and stride

Machine Learning & Deep Learning - P. Gallinari137

 2D convolution, stride 1, from 3x3 image to 2x2 image, 2x2 filter

 2 D convolution, stride 2, from 4x4 image to 2x2 image, 2x2 filter

𝑥ଵ 𝑥ଶ 𝑥ଷ
𝑥ସ 𝑥ହ 𝑥଺

𝑥଻ 𝑥଼ 𝑥ଽ

𝑦ଵ 𝑦ଶ
𝑦ଷ 𝑦ସ

𝑤ଵ 𝑤ଶ
𝑤ଷ 𝑤ସ

Filter

𝑦ଵ ൌ 𝑤ଵ𝑥ଵ ൅ 𝑤ଶ𝑥ଶ ൅ 𝑤ଷ𝑥ସ ൅ 𝑤ସ𝑥ହ

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ
𝑥ହ 𝑥଺ 𝑥଻ 𝑥଼
𝑥ଽ 𝑥ଵ଴ 𝑥ଵଵ 𝑥ଵଶ

𝑥ଵଷ 𝑥ଵସ 𝑥ଵହ 𝑥ଵ଺

𝑦ଵ 𝑦ଶ
𝑦ଷ 𝑦ସ

𝑤ଵ 𝑤ଶ
𝑤ଷ 𝑤ସ

Filter

𝑦ଵ ൌ 𝑤ଵ𝑥ଵ ൅ 𝑤ଶ𝑥ଶ ൅ 𝑤ଷ𝑥ହ ൅ 𝑤ସ𝑥଺

CNNs
Padding

Machine Learning & Deep Learning - P. Gallinari138

 Padding amounts at filling the border of the image, usually with 0
 The width of the padding border depends on the filter characteristics

0 0 0 0 0 0

0 𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 0
0 𝑥ହ 𝑥଺ 𝑥଻ 𝑥଼ 0

0 𝑥ଽ 𝑥ଵ଴ 𝑥ଵଵ 𝑥ଵଶ 0

0 𝑥ଵଷ 𝑥ଵସ 𝑥ଵହ 𝑥ଵ଺ 0

0 0 0 0 0 0

CNNs
Convolutions arithmetics

Machine Learning & Deep Learning - P. Gallinari139

 Input image 𝑛x𝑛, filter 𝑓x𝑓, padding 𝑝, stride 𝑠

 Output image is ௡ାଶ௣ି௙
௦

൅ 1 x ௡ାଶ௣ି௙
௦

൅ 1

 Floor function .
 in some cases a convolution will produce the same output size for multiple input

sizes. If 𝑖 ൅ 2𝑝 െ 𝑘 is a multiple of 𝑠, then any input size 𝑗 ൌ 𝑖 ൅ 𝑎, 𝑎 ∈
 ሼ0, . . . , 𝑠 െ 1ሽ will produce the same output size. This applies only for 𝑠 ൐ 1.

Note: more in (Dumoulin 2016), a guide to convolution arithmetic for Deep Learning

CNNs
on multiple channels, e.g. RGB images

Machine Learning & Deep Learning - P. Gallinari140

 Convolution generalizes to multiple channels. For images, the input
is usually a 3 D tensor, and the output is a 2 D tensor: the filter is
not swipped across channels usually, but only across rows and
columns of the corresponding channel.

6x6x3 image 3x3 filters – stride 1

*

4x4 image

inputs 1 filter – stride 1 1 output

∑

CNNs
on multiple channels

Machine Learning & Deep Learning - P. Gallinari141

 This generalizes to any number of input channels, and filters
 Below C input channels and 2 outputs

𝐶

𝐻

𝑊

𝐶

𝑤

ℎ

𝐶

𝑤

ℎ

inputs d filters – stride 1 d outputs

𝑊 െ 𝑤 ൅ 1

𝐻
െ
ℎ
൅

1

*

CNNs
1x1 convolutions on multiple channels

Machine Learning & Deep Learning - P. Gallinari142

 1x1 convolutions, perform a pixel wise weighted sum on several
channels
 They are used to reduce the size of a volume

 e.g. transforming a 𝐻x𝑊x𝐶 volume to a 𝐻x𝑊x𝐶’ volume with 𝐶’ ൏ 𝐶, by using 𝐶’, 1x1
convolutions

*

𝐻x𝑊x11x1x𝐶𝐻x𝑊x𝐶
𝐶 channels

𝐶ᇱ ൌ 1 convolution in
this example

𝐻

𝑊

CNNs
Pooling

Machine Learning & Deep Learning - P. Gallinari143

 Pooling
 Used to aggregate information from a given layer
 Usually Mean or Max operators are used for pooling
 Example: Max pooling, stride 2

 Pooling provides some form of invariance to input deformations
 Pooling arithmetics

5 7

2 4

CNNs
Transposed convolution

Machine Learning & Deep Learning - P. Gallinari144

 This is the reverse operation – to a convolution
 Increases the input image size

 Used for auto-encoders, object recognition, segmentation

 Example: from 2x2 image to 3x3 image, 2x2 filter, Stride 1 with Padding

0 0 0 0

0 𝑦ଵ 𝑦ଶ 0

0 𝑦ଷ 𝑦ସ 0

0 0 0 0

𝑥ଵ 𝑥ଶ 𝑥ଶ
𝑥ସ 𝑥ହ 𝑥଺

𝑥଻ 𝑥଼ 𝑥ଽ

𝑤ଵ 𝑤ଶ
𝑤ଷ 𝑤ସ

Filter

Note: more in (Dumoulin 2016), a guide to convolution arithmetic for Deep Learning

Transposed convolutions

 Convolution
 𝑥 ∗ 𝑤 ൌ 𝑧, with 𝑥 ∈ 𝑅ଽ, 𝑧 ∈ 𝑅ସ

 𝑥 ൌ
𝑥ଵ 𝑥ଶ 𝑥ଷ
𝑥ସ 𝑥ହ 𝑥଺
𝑥଻ 𝑥଼ 𝑥ଽ

, w ൌ
𝑤ଵ 𝑤ଶ
𝑤ଷ 𝑤ସ , z ൌ

𝑧ଵ 𝑧ଶ
𝑧ଷ 𝑧ସ

 Convolution in matrix form
 Lets flatten the vectors, the CNN convolution can be written in matrix form as:

 W𝑥 ൌ 𝑧

 𝑥 ൌ
𝑥ଵ
⋮
𝑥ଽ

, W ൌ

𝑤ଵ 𝑤ଶ 0 𝑤ଷ 𝑤ସ 0 0 0 0
0 𝑤ଵ 𝑤ଶ 0 𝑤ଷ 𝑤ସ 0 0 0
0 0 0 𝑤ଵ 𝑤ଶ 0 𝑤ଷ 𝑤ସ 0
0 0 0 0 𝑤ଵ 𝑤ଶ 0 𝑤ଷ 𝑤ସ

, z ൌ

𝑧ଵ
𝑧ଶ
𝑧ଷ
𝑧ସ

 Transposed convolution
 Transposed convolution in matrix form 𝑦 ൌ 𝑊்𝑧, 𝑧 ∈ 𝑅ସ 𝑎𝑛𝑑 𝑦 ∈ 𝑅ଽ

 W୘ ൌ

𝑤ଵ 0 0 0
𝑤ଶ 𝑤ଵ 0 0
0 𝑤ଶ 0 0
𝑤ଷ 0 𝑤ଵ 0
𝑤ସ 𝑤ଷ 𝑤ଶ 𝑤ଵ
0 𝑤ସ 0 𝑤ଶ
0 0 𝑤ଷ 0
0 0 𝑤ସ 𝑤ଷ
0 0 0 𝑤ସ

Transposed convoution
 Transposed convolution in convolutional form 𝑦 ൌ 𝑧 ∗ 𝑤

0 0 0 0

0 𝑧ଵ 𝑧 0

0 𝑧ଷ 𝑧ସ 0

0 0 0 0

𝑦ଵ 𝑦ଶ 𝑦ଷ
𝑦ସ 𝑦ହ 𝑦଺

𝑦଻ 𝑦଼ 𝑦ଽ

𝑤ସ 𝑤ଷ
𝑤ଶ 𝑤ଵ

Filter

CNNs
Unpooling

Machine Learning & Deep Learning - P. Gallinari148

 Reverse pooling operation
 Different solutions, e.g. unpooling a max pooling operation

 Remember the positions of the max and fill the other positions with 0

5 7

2 4

5 7

2 4

CNNs–Classification (Krizhevsky et al. 2012)

Machine Learning & Deep Learning - P. Gallinari149

 A landmark in object recognition - AlexNet
 ImageNet competition

 Large ScaleVisual Recognition Challenge (ILSVRC)

 1000 categories, 1.5 Million labeled training samples

 Method: large convolutional net

 650K neurons, 630M synapses, 60M parameters

 Trained with SGD on GPU

CNNs
Very Deep Nets trained with GPUs

Machine Learning & Deep Learning - P. Gallinari150

MSRA, [He et al. 2016] , Parameters 60 M

Oxford, [Simonyan 2014], Parameters 138 M

Google, [Szegedy et al. 2015], Parameters 24 M

Deeper Nets with small filters – training time several days up to 1 or 2
weeks on ImageNet

CNNs
ResNet [He et al. 2016]

Machine Learning & Deep Learning - P. Gallinari151

 152 ResNet 1st place ILSVRC classification competition
 Other ResNets 1st place ImageNet detection, 1st place ImageNet localization, MS-COCO detection

and segmentation
 Main characteristics

 Building block
 Identity helps propagating gradients
 Reduces the vanishing effect
 𝐹ሺ𝑥ሻ is called the residual
 Similar ideas used in other models

 Deep network with small convolution filters
 Mainly 3x3 convolutional filters

CNNs
ResNet [He et al. 2016b]

Machine Learning & Deep Learning - P. Gallinari152

 ResNet block
 𝑥௧ାଵ ൌ 𝑥௧ ൅ 𝐹 𝑥௧ ,𝑊௧

 𝑥் ൌ 𝑥௧ ൅ ∑ 𝐹 𝑥௜ ,𝑊௜
்ିଵ
௜ୀ௧

 The feature 𝑥் on the last layer can be represented as the feature 𝑥௧ of layer 𝑡 plus a
residual ∑ 𝐹 𝑥௜ ,𝑊௜

்ିଵ
௜ୀ௧

 ResNet Backward equation


డ஼
డ௫೟

ൌ డ஼
డ௫೅

డ௫೅
డ௫೟

ൌ డ஼
డ௫೅

ሺ1 ൅ డ
డ௫೟

∑ 𝐹ሺ𝑥௜ ,𝑊௜ ሻ்ିଵ
௜ୀ௧ ሻ

 Gradient డ஼
డ௫೟

can be decomposed in two additive term


డ஼
డ௫೅

propagates this gradient to any unit


డ
డ௫೟

∑ 𝐹ሺ𝑥௜ ,𝑊௜ ሻ்ିଵ
௜ୀ௧ propagates through the weight layers

Fig. He 2016, original ResNet block

CNNs
ResNet as a discretization scheme for ODEs (Optional)
 Ordinary Differential Equation


ௗ௑
ௗ௧
ൌ 𝐹ሺ𝑋 𝑡 ,𝜃 𝑡 ሻ, 𝑋 0 ൌ 𝑋଴ (1)

 Resnet module can be interpreted as a numerical discretization scheme for the
ODE:
 𝑋௧ାଵ ൌ 𝑋௧ ൅ 𝐺 𝑋௧ ,𝜃௧ - ResNet module (2)
 𝑋௧ାଵ ൌ 𝑋௧ ൅ ℎ𝐹 𝑋௧ , 𝜃௧ , ℎ ∈ ሾ0,1ሿ (simple rewriting of (2) replacing 𝐺ሺሻ with ℎ𝐹ሺሻ


௑೟శభି௑೟

௛
ൌ 𝐹 𝑋௧ , 𝜃௧

 Forward Euler Scheme for the ODE (1)
 ℎ time step

 Note: this type of additive structure (2) is also present in LSTM and GRU units (see RNN
section)

 Resnet
 Input 𝑋௧, output 𝑋௧ାଵ
 Multiple Resnet modules implement a discretization scheme for the ODE ௗ௑

ௗ௧
ൌ 𝐹ሺ𝑋 𝑡 ,𝜃 𝑡 ሻ

 𝑋ሺ𝑡ଵሻ ൌ 𝑋ሺ𝑡଴ሻ ൅ ℎ𝐹 𝑋ሺ𝑡଴ሻ,𝜃௧బ
 𝑋ሺ𝑡ଶሻ ൌ 𝑋ሺ𝑡ଵሻ ൅ ℎ𝐹 𝑋ሺ𝑡ଵሻ,𝜃௧భ , …

Machine Learning & Deep Learning - P. Gallinari153

CNNs
Resnet as a discretization scheme for ODEs

 This suggests that alternative discretization schemes will correspond
to alternative Resnet like NN models
 Backward Euler, Runge-Kutta, linear multi-step …

 Example (Lu 2018) linear multi-step discretization scheme
 𝑋௧ାଵ ൌ ሺ1 െ 𝑘௧ሻ𝑋௧൅𝑘௧𝑋௧ିଵ ൅ 𝐹 𝑋௧,𝜃௧

 Applications
 Classification (a la ResNet)
 Modeling dynamical systems

Machine Learning & Deep Learning - P. Gallinari154

Fig. (Lu 2018)

Convolutional Nets
ILSVRC performance over the years

Machine Learning & Deep Learning - P. Gallinari155

• Imagenet 2012 classification
challenge

CNN examples

Convolutional Nets
ILSVRC performance over the years

Machine Learning & Deep Learning - P. Gallinari156

Classification
CNNs and Transfer Learning

Machine Learning & Deep Learning - P. Gallinari157

 Training large NN requires
 large amount of labeled data
 Large GPU clusters

 Large labeled datasets are not available for all applications
 Deep Networks pretrained with large datasets like ImageNet are

used for other applications after some retraining/ fine tuning:
 Classification of images from different nature
 Classification of objects in large size images
 Object detection, Segmentation
 Learning latent representations of images

 Remark
 CNN trained on ImageNet have specific characteristics

 e.g. input: 224x224 images, centered on the objects to be classified
 How to adapt them to other collections?

Classification - Transfer learning - CNNs - Images from different
nature,M2CAI Challenge (Cadene 2016)

Machine Learning & Deep Learning - P. Gallinari158

 Endoscopic videos (large intestine)
 resolution of 1920 x 1080, shot at 25 frame per second at the IRCAD research center in Strasbourg, France.

27 training videos ranging from 15mn to 1hour, 15 testing videos
 Used for: monitor surgeons, Trigger automatic actions
 Objective: classification, 1 of 8 classes for each frame

 TrocarPlacement, Preparation, CalotTriangleDissection, ClippingCutting, GallbladderDissection, GallbladderPackaging,
CleaningCoagulation, GallbladderRetraction

 Resnet 200 pretrained with ImageNet -> reaches 80% correct classification



Classification - Transfer learning - CNNs - Images from different
nature, Plant classification (Wu 2017)

Machine Learning & Deep Learning - P. Gallinari159

 Digitized plant collection from Museum of Natural History – Paris
 Largest digitized world collection (8 millions specimens)
 Goal

 Identify plants characteristics for automatic labeling of worlwide plant collections
 O(1000) classes, e.g. opposed/alternate leaves; simple/composed leaves; smooth/with teeth leaves,

….

 Pretrained ResNet



Classification - Fully convolutional nets
CNNs – Classification of large images (Fig. Durand 2016)
How to deal with complex scenes?

Machine Learning & Deep Learning - P. Gallinari160

ImageNet style

Pascal VOC style

VOC07/ 12 MIT67 15 Scene COCO VOC12 Action

• Working on datasets with complex scenes (large and cluttered
background), not centered objects, variable size, ...

Classification - CNNs – Classification of large images (Durand 2016)
Sliding window => Convolutional Layers

Machine Learning & Deep Learning - P. Gallinari161

 Sliding window:
 Use the ImageNet trained CNN as a sliding window (a convolution filter) on the large image
 In order to do that, one must convert the fully connected layer

7x7x512 cells → 4096 cells
into a convolutional layer

Fully connected layer 7x7x512 cells -> 4096

ImageNet trained CNN

Converting Fully Convolutional Nets (FCN) to CNN

Machine Learning & Deep Learning - P. Gallinari162

 Fully connected layers can be converted to convolutional nets
 The following scheme is equivalent to 3 output cells fully connected to the input

cells, but is expressed as a convolution
 Colors correspondance below

Outputs
3 cells

Weight layer
each is 𝑛x𝑛x𝐶

Cell layer
𝑛x𝑛x𝐶

*

Each weight
vector is
𝑛x𝑛x𝐶

FCN classical view FCN convolutional view

Cell layer
𝑛x𝑛x𝐶

Outputs
3 cells

Converting Fully Convolutional Nets (FCN) to CNN

Machine Learning & Deep Learning - P. Gallinari163

 Fully connected layers can be converted to convolutional nets
 This does not change anything if the input size is the size of the weight layer
 It can be used as a convolution for larger input sizes, and then produces larger

outputs
 In this way, pre-trained networks can be used without retraining for larger

images

Outputs
(𝑁 െ 𝑛 ൅ 1)x(𝑁 െ 𝑛 ൅ 1)x1 each

Weight layer
𝑛x𝑛x𝐶 each

Cell layer
𝑁x𝑁x𝐶

*

CNNs – Classification of large images (Durand 2016)
Sliding window => Convolutional Layers

Machine Learning & Deep Learning - P. Gallinari164

Dotted lines: initial
Imagenet trained
network

CNNs – Classification of large images (Sermanet et al. 2014)
Sliding window => Convolutional Layers

Machine Learning & Deep Learning - P. Gallinari165



Fig: Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun, OverFeat: Integrated
Recognition, Localization and Detection using Convolutional Networks, 2014

Nice video by A. Ng (CAW3L04 Convolutional implementation of sliding windows) at
https://www.youtube.com/watch?v=XdsmlBGOK-k&list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF&index=26

CNNs – Classification of large images (Durand 2016)
Sliding window => Convolutional Layers

Machine Learning & Deep Learning - P. Gallinari166 car person

CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)

Generate images by combining
content and style
Makes use of a discriminatively
trained CNN
Image generation

 inverse problem on the CNN

Machine Learning & Deep Learning - P. Gallinari167

https://deepart.io

CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)

Machine Learning & Deep Learning - P. Gallinari168

 Idea (simplified)
 Use a pre-trained ImageNet NN
 𝒄 input content image, 𝐹௖ a filter

representation of 𝒄
 𝒂 input art image, 𝐺௔a filter

correlation representation of 𝒂
 𝒙 a white noise image, 𝐹௫ and 𝐺௫

the corresponding filter and filter
correlation representations

 loss:
 𝐿 ൌ 𝐹௖ െ 𝐹௫ ଶ ൅ 𝛼 𝐺௔ െ 𝐺௫ ଶ

 Generated image
 Solve an inverse problem

 𝒙ෝ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௫ሺ𝐿ሻ
 Solved by gradient

CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)

Machine Learning & Deep Learning - P. Gallinari169



Object detection

Machine Learning & Deep Learning - P. Gallinari170

 Objective: predicting classes and location of objects in an image
 Usually the output of the predictor is a series of bounding boxes with an object

class label

 Performance measure
 Let 𝐵 a target bounding box and 𝐵෠ the predicted one

 Intersection over Union: 𝐼𝑜𝑈 ൌ ௔௥௘௔ ஻∩஻෠
ୟ୰ୣୟ ஻௎஻෠

 Training
 Supervised training, e.g. Pascal Voc Dataset

PASCAL Annotation Version 1.00 Image filename :
"TUDarmstadt/PNGImages/motorbike-testset/motorbikes040-rt.png"
Image size (X x Y x C) : 400 x 275 x 3
Database : "The TU Darmstadt Database«
Objects with ground truth : 2 { "PASmotorbikeSide" "PASmotorbikeSide" }
Note that there might be other objects in the image # for which ground truth data has
not been provided.
Top left pixel co-ordinates : (1, 1)
Details for object 1 ("PASmotorbikeSide")
Original label for object 1 "PASmotorbikeSide" : "motorbikeSide«
Bounding box for object 1 "PASmotorbikeSide" (Xmin, Ymin) - (Xmax, Ymax) : (57, 133)
- (329, 265)
Details for object 2 ("PASmotorbikeSide")
Original label for object 2 "PASmotorbikeSide" : "motorbikeSide«
Bounding box for object 2 "PASmotorbikeSide" (Xmin, Ymin) - (Xmax, Ymax) : (153, 95)
- (396, 218)

Machine Learning & Deep Learning - P. Gallinari171

 Teaser YOLO démos
 First paper 2015 (J.Redmon who developedV1 to V3)
 YOLOV2 -

https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg?app=deskto
p&cbrd=1&ucbcb=1

 YOLOV3 - https://www.youtube.com/watch?v=MPU2HistivI
 Other actors developed further versions, YOLOV5, V6

CNNs for Object detection
Case study: YOLO (Redmon 2015), https://goo.gl/bEs6Cj

Machine Learning & Deep Learning - P. Gallinari172

 Classical CNN architecture
 Divides the input image into a 𝑆x𝑆 grid

 Each grid cell predicts
 𝐵 bounding boxes and confidence for these boxes

 5 numbers per box: 𝑥,𝑦 : 𝑏𝑜𝑥 𝑐𝑒𝑛𝑡𝑒𝑟, 𝑤,ℎ : 𝑏𝑜𝑥 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ൌ 𝑃 𝑂𝑏𝑗𝑒𝑐𝑡 . 𝐼𝑜𝑈ሺ𝑡𝑎𝑟𝑔𝑒𝑡,𝑝𝑟𝑒𝑑ሻ

 𝑃 𝑂𝑏𝑗𝑒𝑐𝑡 is the probability that an object appears in a grid cell

 The class probability for the object if any (only one object/ cell grid), i.e. 1 prediction /
cell
 𝑃ሺ𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡ሻ
 Note: at inference time they use the following score

 𝑃 𝐶𝑙𝑎𝑠𝑠 𝑜𝑏𝑗𝑒𝑐𝑡 .𝑃 𝑂𝑏𝑗𝑒𝑐𝑡 . 𝐼𝑜𝑈ሺ𝑡𝑎𝑟𝑔𝑒𝑡,𝑝𝑟𝑒𝑑ሻ instead of 𝑃ሺ𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡ሻ
 This includes confidence

 Only the boxes/classes with the higher score are kept

CNNs for Object detection
Case study: YOLO (Redmon 2015)

Machine Learning & Deep Learning - P. Gallinari173



Fig. Redmon 2015

Boxes

Classes

CNNs for Object detection
Case study: YOLO (Redmon 2015) - Network Design

Machine Learning & Deep Learning - P. Gallinari174

Output : 𝑆x𝑆xሺ𝐵x5 ൅ 𝐶ሻ tensor
for Pascal Voc dataset: 𝑆x𝑆x 𝐵x5 ൅ 𝐶 ൌ 7x7x 2x5 ൅ 20
With 𝐵: # boxes and 𝐶: # classes

Several 1x1xn convolutional structures to reduce the feature
space from preceeding layers

CNNs for Object detection
Case study: YOLO (Redmon 2015) - Design and Training

Machine Learning & Deep Learning - P. Gallinari175

 Pretrained on ImageNet 1000 class
 Remove classification layer and replace it with 4 convolutional layers + 2 Fully

Connected layers
 Activations: Linear for the last layer, leaky reLu for the others
 Requires a lot of know-how (design, training strategy, tricks, etc)

 Not described here – see paper…

 Improved versions followed the initial paper
 Generalizes to other types of images:

Image Semantic Segmentation

Machine Learning & Deep Learning - P. Gallinari176

 Objective
 Identify the different objects in an image

 Microsoft demo 2015 https://www.youtube.com/watch?v=FroRjEejA30
 Deep learning

 handles segmentation as pixel classification
 re-uses network trained for image classification by making them fully convolutional
 Currently, SOTA is Deep Learning

 Main datasets
 Voc2012, http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
 MSCOCO, http://mscoco.org/explore/

CNNs for Image Semantic Segmentation

Machine Learning & Deep Learning - P. Gallinari177

 DL for segmentation massively re-uses CNN architectures
pretrained for classification
 This is another example of transfer learning
 Here the goal is to generate classification at the pixel level and not at the

global image level
 Means that the output should be the same size (more or less) as the original image,

with each pixel labeled by an object Id.

 Full connections: too many parameters
 How to keep a pixelwise precision with a low number of parameters

 Two solutions have been developped
 Encoder – Decoder architectures with skip connections

 Encoder are similar to the ones used for classification and decoders use Transpose
Convolutions and Unpooling

 Dilated or a Trous convolutions : remove the Pooling/Unpooling operation

CNNs for Image Semantic Segmentation
Encoder-Decoder - Fully Convolutional Nets (Shelhamer 2016)

Machine Learning & Deep Learning - P. Gallinari178

 One of the first contribution to DL semantic segmentation,
introduces several ideas

 Auto-encoder with skip connections

 Fully connected -> convolutional trick

 End to end training for segmentation

CNNs for Image Semantic Segmentation
Encoder-Decoder - Fully Convolutional Nets (Shelhamer 2016)

Machine Learning & Deep Learning - P. Gallinari179

 FCN architecture: upsampling and skip connections
 Training loss = per pixel cross entropy
 Their initial pipeline (red rectangle) requires x 32 upsampling
 Improved results where obtained by combining several resolutions in the DNN

Resolution ଵ
ଷଶ

Upsampling x 32

+ Upsampling x 16

Upsampling x 8
+

Resolution ଵ
ଵ଺

Resolution ଵ
଼

Segmentation
Encoder-Decoder - Other models based on the same ideas

Machine Learning & Deep Learning - P. Gallinari180



SegNet – (Badrinarayanan 2017)

Popular U-Net, (Ronneberger 2015)

Segmentation
Dilated convolutions (Yu 2016)

Machine Learning & Deep Learning - P. Gallinari181

 Pooling used for classification is not adapted to segmentation
 The link with individual pixels is lost

 Proposed method
 Start from a Deep CNN trained from classification.
 Remove the last Fully Connected and Pooling layers
 Replace them with Dilated Convolution layers

 Dilated convolution layers organized hierarchically allow to keep large feature maps for
individual neurons with a « small » number of connections

 Size of the input is the same as the size of the output
 No downsampling as with pooling, i.e. keep the resolution

Segmentation
Dilated convolutions (Yu 2016)

Machine Learning & Deep Learning - P. Gallinari182

 1 D example

Dilatation 1

Dilatation 2

Dilatation 4

Receptive field 3

Receptive field 7

Receptive field 15

Segmentation
Dilated convolutions (Yu 2016)

Machine Learning & Deep Learning - P. Gallinari183

 1 D example

Dilatation 1

Dilatation 2

Dilatation 4

Receptive field 3

Receptive field 7

Receptive field 15

Segmentation
Dilated convolutions (Yu 2016)

Machine Learning & Deep Learning - P. Gallinari184

 1 D example

Dilatation 1

Dilatation 2

Dilatation 4

Receptive field 3

Receptive field 7

Receptive field 15

Segmentation
Dilated convolutions (Yu 2016)

Machine Learning & Deep Learning - P. Gallinari185

 In 2 D

 More recent architectures use improved versions of these two ideas

Fig from (Yu 2016)

Machine Learning & Deep Learning - P. Gallinari186

 Noisy data for vision
 Random rotations
 Random flips
 Random shifts
 Random “zooms”
 Recolorings

Recurrent networks

RNNs
Examples of tasks and sequence types

Machine Learning & Deep Learning - P. Gallinari188

 Sequence classification
 Input: sequence, output: class

 Time series classification

 Sentence classification (topic, polarity, sentiment, etc.)

 Sequence generation
 Input: initial state (fixed vector), output: sequence

 Text Generation

 Music

 Sequence to sequence transduction
 Input: sequence, output: sequence

 Natural language processing: Named Entity recognition

 Speech recognition: speech signal to word sequence

 Translation

RNNs

Machine Learning & Deep Learning - P. Gallinari189

 Several formulations of RNN where proposed in the late 80s, early 90s
 They faced several limitations and were not successful for applications

 Recurrent NN are difficult to train
 They have a limited memory capacity

 Mid 2000s successful attempts to implement RNN
 e.g. A. Graves for speech and handwriting recognition
 new models where proposed which alleviate some of these limitations

 Today
 RNNs are used for a variety of applications e.g., speech decoding, translation,

language generation, etc
 They became SOTA for sequence processing tasks around 2015. In 2020 alternative

NN ideas (Transformers) have replaced RNNs for most discrete sequence modeling
tasks. Initially developped as language models, they are used today in vision and
multimodal (e.g. text-image) tasks.

 In this course
 We briefly survey some of the developments from the 90s
 We introduce recent developments on RNNs

RNNs

Machine Learning & Deep Learning - P. Gallinari190

 Imagine a NN with feedback loops, i.e. no more a DAG
 This transforms the NN into a dynamical/ state-space system

 Information can circulate according to different dynamics
 Convergence, stable state?

 Supervision can occur at different times
 Inputs: fixed, sequences, etc….

 Two main families
 Global connections
 Local connections

 In practice, only a limited class of RNNs is used for applications

𝒙௧

Target 𝒚௧

RNNs local connections (90s)

Machine Learning & Deep Learning - P. Gallinari191

 Several local connection architectures proposed in the 90s

Fixed weights
Only the forward weights are learned:
SGD

All weights learned
𝒔୲ ൌ 𝑓 𝑊𝒔௧ିଵ ൅ 𝑈𝒙௧𝒔୲ ൌ 𝑓 𝑊𝒄௧ ൅ 𝑈𝒙௧

𝒙௧

Target 𝒚௧

𝒙௧

Target 𝒚௧

copy

𝑡ିଵ

𝑡ିଶ

𝒔௧𝒔௧

𝑈

𝑉

𝑊
𝑊

𝑈

𝑉

𝒄௧

RNNs global recurrences (90s)

Machine Learning & Deep Learning - P. Gallinari192

 Algorithm
 Back Propagation Through Time (BPTT)

 For general sequences: 𝑂 𝑛ସ 𝑖𝑓 𝑛 units

𝑥ଶ௧𝑥ଵ௧

𝑥ଶ௧𝑥ଵ௧

𝑥ଶ௧ାଶ𝑥ଵ௧ାଶ

𝑥ଶ௧ାଵ𝑥ଵ௧ାଵ
Network unfolding

Fig. (Pearlmutter, 1995, IEEE Trans. on Neural Networks
– nice review paper on RNN form the 90s)

Dynamics of RNN

Machine Learning & Deep Learning - P. Gallinari193

 We consider different tasks corresponding to different dynamics
 They are illustrated for a simple RNN with loops on the hidden units
 This can be extended to more complex architectures
 However, RNNs used today all make use of local connections similar to this

simple RNN

 Basic architecture

x

s

𝒚ෝ

U

V

W

RNNs
Dynamics of RNN – unfolding the RNN

Machine Learning & Deep Learning - P. Gallinari194



𝒙𝒕

𝒔𝒕

𝒚ෝ𝒕

𝑼

𝑽
𝑾

𝒙𝒕ା𝟏

𝒔𝒕ା𝟏

𝒚ෝ𝒕ା𝟏

𝑼

𝑽
𝑾

𝒙𝒕ି𝟏

𝒔𝒕ି𝟏

𝒚ෝ𝒕ି𝟏

𝑼

𝑽
𝑾

𝒙

𝒔

𝒚ෝ

𝑼

𝑽

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚ෝ𝑻

𝑼

𝑽

𝒙𝒕ି𝟏

𝒔𝒕ି𝟏

𝑼

𝑾

𝒙

𝒔𝒕

𝒚ෝ𝒕

𝑼

𝑽
𝑾 𝒔𝒕ା𝟏

𝒚ෝ𝒕ା𝟏

𝑼

𝑽
𝑾𝒔𝒕ି𝟏

𝒚ෝ𝒕ି𝟏

𝑽
𝑾

𝑼

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚ෝ𝑻

𝑼

𝑽

𝒙𝒕ି𝟏

𝒔𝒕ି𝟏

𝑼

𝑾 𝒔𝑻ା𝑹𝒔𝑻ା𝟏 𝑾′

𝒚ෝ𝑻ା𝟏

𝑽

𝒚ෝ𝑻ା𝑹

𝑽
𝑾′

Many to many, e.g. speech
or handwriting decoding,
Part of Speech Tagging

Many to one, e.g.
sequence classification

One to many, e.g. image
annotation

Many to many, e.g.
translation

RNNs
Dynamics of RNN – unfolding the RNN

Machine Learning & Deep Learning - P. Gallinari195

 Different ways to compute sequence encodings

𝒙

𝒔

𝒚ෝ

𝑼

𝑽

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚ෝ𝑻

𝑼

𝑽

𝒙𝒕ି𝟏

𝒔𝒕ି𝟏

𝑼

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚ෝ𝑻

𝑼

𝒙𝒕ି𝟏

𝒔𝒕ି𝟏

𝑼

𝑾

• The final state 𝒔𝑻 encodes
the sentence

• The whole state sequence
encodes the input sequence
– usually better: take
elementwise max or mean
of the hidden states.

• More on that on Attention
and Transformers

RNNs
Back Propagation Through Time

Machine Learning & Deep Learning - P. Gallinari196

 By unfolding the RNN, one can see that one builds a Deep NN

 Training can be performed via SGD like algorithms
 This is called Back Propagation Through Time

 Automatic Differentiation is used for training the RNNs

 RNNs suffer from the same problems as the other Deep NNs
 Gradient exploding

 Solution: gradient clipping

 Gradient vanishing
 In a vanilla RNN, gradient information decreases exponentially with the size of the sequence

 Plus limited memory
 Again exponential decay of the memory w.r.t. size of the sequence

 Several attempts to solve these problems
 We introduce a popular family of recurrent units that became SOTA around 2015:

 Gated units (GRU, LSTMs)

RNNs
Recurrent units: Long Short Term memory (LSTM – Hochreiter 1997),
Gated Recurrent Units (GRU – Cho 2014)

Machine Learning & Deep Learning - P. Gallinari197

 Vanishing gradient problem
 Consider a many to many mapping problem such as decoding or building a

language model (more on that later)

𝑠௧ାଵ ൌ 𝑓 𝑊𝑠௧ ൅ 𝑈𝑥௧ାଵ

x

s

𝒚ෝ

U

V

W 𝒔𝟐 W 𝒔𝒕ି𝟐𝒔𝟏 W 𝒔𝒕𝒔𝒕ି𝟏 W

𝜕𝑠௧

𝜕𝑠௧ିଵ
𝜕𝑠௧ିଵ

𝜕𝑠௧ିଶ
𝜕𝑠ଶ

𝜕𝑠ଵ

Unfolded recurrent cell

Gradient flow: vanishing
gradient

𝐶௧

𝜕𝐶௧

𝜕𝑠ଵ ൌ
𝜕𝑠ଶ

𝜕𝑠ଵ x … x
𝜕𝑠௧

𝜕𝑠௧ିଵ
𝜕𝐶௧

𝜕𝑠௧

If any of these
quantities is small, the
gradient from 𝐶௧ gets
smaller and smaller

RNNs
Recurrent units: Long Short Term memory (LSTM – Hochreiter 1997),
Gated Recurrent Units (GRU – Cho 2014)

Machine Learning & Deep Learning - P. Gallinari198

 Vanishing gradient problem

𝒔𝟐 W 𝒔𝒕ି𝟐𝒔𝟏 W 𝒔𝒕𝒔𝒕ି𝟏 W

𝜕𝑠௧

𝜕𝑠௧ିଵ
𝜕𝑠௧ିଵ

𝜕𝑠௧ିଶ
𝜕𝑠ଶ

𝜕𝑠ଵ

𝐶௧

𝜕𝐶௧

𝜕𝑠ଵ ൌ
𝜕𝑠ଶ

𝜕𝑠ଵ x … x
𝜕𝑠௧

𝜕𝑠௧ିଵ
𝜕𝐶௧

𝜕𝑠௧
𝜕𝐶ଶ

𝜕𝑠ଵ ൌ
𝜕𝑠ଶ

𝜕𝑠ଵ
𝜕𝐶ଶ

𝜕𝑠ଶ

𝐶ଶ

• In this example, the gradient
from 𝐶ଶ is much stronger
than the gradient from 𝐶௧

• This means that « long »
term dependencies are
difficult to capture with
RNNs

RNNs - Gated Units
Long Short Term memory (LSTM – Hochreiter 1997)
Gated Recurrent Units (GRU – Cho 2014)

Machine Learning & Deep Learning - P. Gallinari199

 Introducing « skip connections » - similar to ResNet

𝒔௧ ൌ 1 െ 𝒛௧ ⨀𝒔௧ିଵ ൅ 𝒛௧⨀𝒔′௧

Past value New candidate value:

Gating mechanism
⨀ is the Hadamard product
𝑈௭ and 𝑊௭ learned by SGD

𝒔′௧ ൌ tanh ሺ𝑈𝒙௧ ൅𝑊𝑠௧ିଵ)
𝒛௧ ൌ 𝜎 𝑈௭𝒙௧ ൅𝑊௭𝒔௧ିଵ

Skip connections: copy previous state

Gradient along skip connections: helps
gradient flowx

s

𝒚ෝ

U

V
W 𝒔𝟐 𝒔𝑻ି𝟐𝒔𝟏 𝒔𝑻𝒔𝑻ି𝟏𝑊 𝑊 𝑊 𝑊

RNNs
Gated Recurrent Units (GRU – Cho 2014)
Skip connections

Machine Learning & Deep Learning - P. Gallinari200

 The output 𝑠௝௧ of cell 𝑗 is a weighted sum of the
cell output at time 𝑡 െ 1, 𝑠௝௧ିଵ and a new value
of the cell 𝑠′௝௧

 𝒔௧ ൌ 1 െ 𝒛௧ ⨀𝒔௧ିଵ ൅ 𝒛௧⨀𝒔′௧

 𝑧 is a gating function
 Extreme cases

 If 𝑧 ൌ 0 , 𝑠௝௧is a simple copy of 𝑠௝௧ିଵ

 If 𝑧 ൌ 1 it takes the new value 𝑠′௝௧

 w.r.t the classical recurrent unit formulation, this new form
allows us to remember the value of the hidden cell at a
given time in the past and reduces the vanishing gradient
phenomenon

RNNs
Gated Recurrent Units (GRU – Cho 2014)

Machine Learning & Deep Learning - P. Gallinari201

 Skip connection with Forget Gate + Reset Gate

𝒔௧ ൌ 1 െ 𝒛௧ ⨀𝒔௧ିଵ ൅ 𝒛௧⨀𝒔′௧

Past value New candidate value:

Gating mechanism

𝒔′௧ ൌ tanh ሺ𝑈𝒙௧ ൅𝑊ሺ𝑟௧⨀𝑠௧ିଵ))
Forget gate 𝒛௧ ൌ 𝜎 𝑈௭𝒙௧ ൅𝑊௭𝒔௧ିଵ
Reset Gate 𝒓௧ ൌ 𝜎 𝑈௥𝒙௧ ൅𝑊௥𝒔௧ିଵ

⨀ is the Hadamard product

x

s

𝒚ෝ

U

V

W

RNNs
Gated Recurrent Units (GRU – Cho 2014) - followed

Machine Learning & Deep Learning - P. Gallinari202

 The gating function is a function of the current input at time t and
the past value of the hidden cell 𝒔௧ିଵ

 𝒛௧ ൌ 𝜎 𝑈௭𝒙௧ ൅𝑊௭𝒔௧ିଵ

 The new value 𝒔ᇱ௧ is a classical recurrent unit where the values at
time 𝑡 െ 1 are gated by a reset unit 𝒓௧
 𝒔′௧ ൌ tanh ሺ𝑈𝒙௧ ൅𝑊ሺ𝑟௧⨀𝑠௧ିଵ))

 The reset unit 𝒓௧allows us to forget the previous hidden state and
to start again a new modeling of the sequence
 This is similar to a new state in a Hidden Markov Model (but it is soft)

 𝒓௧ ൌ 𝜎 𝑈௥𝒙௧ ൅𝑊௥𝒔௧ିଵ

RNNs
Gated Recurrent Units (GRU – Cho 2014)

Machine Learning & Deep Learning - P. Gallinari203

 There are two main novelties in this GRU
 The 𝑧 gating function which implements skip connections and acts for reducing

the vanishing gradient effect
 The 𝑟 gating function which acts for forgeting the previous state and starting

again a new subsequence modeling with no memory

 Each unit adapts its specific parameters, i.e. each may adapt its own
time scale and memory size

 Training
 is performed using an adaptation of backpropagation for recurrent nets
 All the functions – unit states and gating functions are learned from the data

using some form of SGD

Long short term memory - LSTM

Machine Learning & Deep Learning - P. Gallinari204

 This was initially proposed in 1997 (Hochreiter et al.) and revised
later.

 State of the art on several sequence prediction problems
 Speech, handwriting recognition, translation
 Used in conjontions with other models e.g. HMMs or in standalone recurrent

neural networks
 The presentation here is based on (Graves 2012)

Long short term memory

Machine Learning & Deep Learning - P. Gallinari205

 In the LSTM, there are 3 gating functions
 i: input gating
 o: output gating
 f: forget gating

 Difference with the gated recurrent cell
 Similarities

 Both use an additive form for computing the hidden cell state (c) here.
 This additive component reduces the vanishing gradient effect and allows us to keep

in memory past state values.

 Both use a reset (called here forget (f)) gate
 The reset permits to start from a new « state » a subsequence prediction

 Differences
 No output gating in the GRU

 Reset does not play exactly the same role

c c’

o

𝒙𝒕

if

⊕

⨂

⨂ ⨂

s

⨂

Long short term memory

Machine Learning & Deep Learning - P. Gallinari206

 For the forward pass, the different activations are computed as
follows and the this order

 𝑖௧ ൌ 𝜎 𝑊௫௜𝑥௧ ൅𝑊௛௜𝑠௧ିଵ ൅𝑊௖௜𝑐௧ିଵ ൅ 𝑏௜
 𝑓௧ ൌ 𝜎 𝑊௫௙𝑥௧ ൅𝑊௛௙𝑠௧ିଵ ൅𝑊௖௙𝑐௧ିଵ ൅ 𝑏௙
 𝑐௧ ൌ 𝑓௧ ⊙ 𝑐௧ିଵ ൅𝑖௧ ⊙ tanh 𝑊௫௖𝑥௧ ൅𝑊௛௖𝑠௧ିଵ ൅ 𝑏௖
 𝑜௧ ൌ 𝜎 𝑊௫௢𝑥௧ ൅𝑊௛௢𝑠௧ିଵ ൅𝑊௖௢𝑐௧ିଵ ൅ 𝑏௢
 𝑠௧ ൌ 𝑜௧tanh ሺ𝑐௧ሻ

 𝑐௧௜ is a memory of cell i at time t, 𝑐௧is computed as for the GRU as a sum of 𝑐௧ିଵ and of
the new memory content c୲ᇱ ൌ tanh 𝑊௫௖𝑥௧ ൅𝑊௛௖ℎ௧ିଵ ൅ 𝑏௖

 𝑜 is an output gate

 𝜎 is a logistic function

 𝑊௖௜, 𝑊௖௙, 𝑊௖௢ are diagonal matrices

c c’

o

𝒙𝒕

if

⊕

⨂

⨂ ⨂

s

⨂

Bidirectional and multilayer RNNs

Machine Learning & Deep Learning - P. Gallinari207

RNNs Future

Machine Learning & Deep Learning - P. Gallinari208

 RNNs variants (GRU, LSTM) became the dominant approach around
2015, for several tasks including speech recognition, translation, text
generation etc

 Since 2019-2020 they have become superseded by other approaches
for many of these tasks
 Transformers are now SOTA for a large variety of tasks dealing with discrete

sequences, in NLP for example
 Note: after the Transformer » revolution » in NLP, they became popular in

domains s.a. vision.

Language models

Machine Learning & Deep Learning - P. Gallinari209

 Objective:
 Probability models of sequences ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥୲ሻ
 Items may be words, characters, character ngrams, word pieces, etc
 Formally: given a sequence of items, what is the probability of the next item?

 𝑝ሺ𝑥௧|𝑥௧ିଵ, … , 𝑥ଵሻ
 Example

 « S’il vous plaît… dessine-moi …» what next ?
 « 𝑥ଵ𝑥ଶ𝑥ଷ … … … … … . … . . 𝑥୲ିଵ… » what is 𝑥௧ ?

 Language models in everyday use
 Sentence completion

 Search engine queries

 Smartphone messages, etc

 Speech recognition, handwriting recognition, etc

Language models

Machine Learning & Deep Learning - P. Gallinari210

 Language models can be used to compute the probability of a piece
of text

 Let ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥୘ሻ be a sequence of text, its probability according
to a language model is:
 𝑝ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥୘ሻ ൌ ∏ 𝑝ሺ𝑥௧|𝑥௧ିଵ, … , 𝑥ଵሻ ்

௧ୀଵ
 With 𝑝ሺ𝑥௧|𝑥௧ିଵ, … , 𝑥ଵሻ computed by the language model

Language models
How to learn a language model - n-grams

Machine Learning & Deep Learning - P. Gallinari211

 A simple solution: n-grams
 n-grams are sequences of n consecutive words (or characters, or any items)
 Language model is based on n-gram statistics
 Markov assumption

 𝑥௧ only depends on the 𝑛 െ 1 preceding words
 𝑝 𝑥௧ 𝑥௧ିଵ, … , 𝑥ଵ =𝑝 𝑥௧ 𝑥௧ିଵ, … , 𝑥୲ି୬ାଵ

 Use Bayes formula 𝑝 𝑥௧ 𝑥௧ିଵ, … , 𝑥୲ି୬ାଵ ൌ ௣ሺ୶౪,௫೟షభ,…,௫౪ష౤శభሻ
௣ሺ௫೟షభ,…,௫౪ష౤శభሻ

 Given large text collections, it is possible to compute estimates of the posterior
probabilities

 An estimate could be 𝑝 𝑥௧ 𝑥௧ିଵ, … , 𝑥୲ି୬ାଵ ൌ ௖௢௨௡௧ ௫೟,௫೟షభ,…,௫౪ష౤శభ

௖௢௨௡௧ ௫೟షభ,…,௫౪ష౤శభ

 Where 𝑐𝑜𝑢𝑛𝑡 𝑥௧, 𝑥௧ିଵ, … , 𝑥୲ି୬ାଵ is the number of occurrences of the sequence in
the corpus

n-gram probability

n-1-gram probability

Language models
n-grams

Machine Learning & Deep Learning - P. Gallinari212

 Sparsity problem
 In order to get good estimates, this requires large text quantities
 The larger 𝑛 is, the larger the training corpus should be
 For a dictionnary of 10 k words, there could be

 10ସ୶ଶ bigrams

 10ସ୶ଷ trigrams, etc

 Note: the number of n-grams in a language is smaller than 10ସ୶௡ but still extremely
large and grows exponentially with n

 The model size increases exponentially with 𝑛
 n-gram counting is limited to relatively short sequences

 Only large companies like Google could afford computing/ storing estimates for 𝑛 ൐
10

Language models
n-grams

Machine Learning & Deep Learning - P. Gallinari213

 Additional problems
 Consider the sentence « Please open your mind » and a 4-gram model

 What if « mind » never occured in the corpus?
 The probability of the sequence becomes 0, which is not realistic
 Solution: every 4-gram is set to a minimum probability value of 𝜖
 This is a smoothing operation – there exists different smoothing estimates

 What if « Please open your » never occured in the corpus?
 The 4-gram probability cannot be computed
 Smooth using backoff estimates
 e.g. 𝑝 𝑝𝑙𝑒𝑎𝑠𝑒 𝑜𝑝𝑒𝑛 𝑦𝑜𝑢𝑟 𝑚𝑖𝑛𝑑 ൌ 𝑝ሺ𝑜𝑝𝑒𝑛 𝑦𝑜𝑢𝑟 𝑚𝑖𝑛𝑑ሻ

 More generally, n-gram models are often smoothed with n-1 gram, n-2 grams etc
 𝑝 𝑥௧ 𝑥௧ିଵ, … , 𝑥୲ି୬ାଵ ⋍ ∑ 𝛼௜𝑝 𝑥௧ 𝑥௧ିଵ, … , 𝑥୲ି୬ା௜௡ିଵ

௜ୀଵ

Language models
n-grams – text generation

Machine Learning & Deep Learning - P. Gallinari214

 Any language model can be used for text generation

 One can generate text of any length

mind
door
eyes

please—open your

0.1
0.03
0.2

Probability distribution
of the next word

0.1
0.03
0.2

Sample from
this distribution

and
for
in

please—open your mind

0.01
0.02
0.07

Sample from
this distribution

etc

Language models
n-grams – text generation

Machine Learning & Deep Learning - P. Gallinari215

 Example from https://projects.haykranen.nl/markov/demo/
 4 gram trained on the Wikipedia article on Calvin and Hobbes
 Generated text

 Example from https://filiph.github.io/markov/

Rosalyn is a standary children used each otherwise as he stereotypically comic stand for
an impulsive real-life Watterson's stuffed tiger, much as "grounded in reality rathmore
spacious circle: because associety The club has said they have the archive shifting into
low art some of the strip was one larger than Calvin articipate indulges in his hands
attribute red-and-black pants, magenta socks and Susie Derkins specifically characters
like school where were printerestrainstory

Language models
Neural networks

Machine Learning & Deep Learning - P. Gallinari216

 Fixed input size NN

Please open your • Input sentence, one hot
encoding

• Word representation, e.g.
w2Vec

• Hidden layer(s)

• Classification layer, softmax
among all vocabulary words

mind mouth
• The NN could

be typically a
convolutional
NN with all the
input word
representations
sharing the
same weights

• It could also be
made fully
convolutional

• Less sensitive
than n-grams to
sparsity

• Posterior estimate of the
next word

RNNs
Language models

Machine Learning & Deep Learning - P. Gallinari217

 RNNs offer an alternative approach to non recurrent NNs
 Objective:

 Probability models of sequences ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥୲ሻ
 Estimate with RNNs:

 𝑝ሺ𝑥௧|𝑥௧ିଵ, … , 𝑥ଵሻ

 𝑔 is typically a softmax
 𝑓 could be a sigmoid, Relu, …
 𝑥 will usually be a word/ item representation learned from large

corpora

𝑠௧ ൌ 𝑓 𝑊𝑠௧ିଵ ൅ 𝑈𝑥௧ିଵ 𝒚ෝ௧ ൌ 𝑔ሺ𝑉𝒔௧ሻ

memoryprediction

𝒙

𝒔

𝒚ෝ

𝑼

𝑽

𝑾

Recurrent neural networks Language models

Machine Learning & Deep Learning - P. Gallinari218

 Training
 Use a corpus of text, e.g. a sequence of words ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥୘ሻ
 Feed the sequence into the RNN, one word at a time
 Compute the output distribution 𝒚ෝ௧ for each time step

 𝒚ෝ௧ is a distribution on the word dictionary
 This is the estimated posterior probability distribution given past subsequence
 If the dictionary is V ൌ ሼ𝐴,𝐵,𝐶,𝐷ሽ:

 Loss function
 Classically the cross entropy between the predicted distribution 𝒚ෝ௧ and the target

distribution 𝒚௧

 Loss at time 𝑡 in the sequence: 𝐶௧ ൌ 𝐶 𝒚ෝ௧ ,𝒚௧ ൌ െ∑ 𝑦௜௧𝑙𝑜𝑔
௏
௜ୀଵ 𝑦ො୧௧ ൌ െ𝑙𝑜𝑔𝑦ො୶౪శభ

௧

 With 𝑦ො୶౪శభ
௧ denoting the predicted output for the target class 𝑦௜௧(i.e. next word to

predict)
 Loss over a sequence of length 𝑇 corpus 𝐶 ൌ ∑ 𝐶௧்

௧ୀଵ
 In practice, one uses a mini batch of sentences sampled from the corpus and use a

stochastic gradient algorithm

𝐴𝐵 𝐶𝐷
𝒚ෝ𝒕 ൌ 𝑷ሺ𝒙𝒕ା𝟏|𝒔𝒕ሻ

Recurrent neural networks Language models

Machine Learning & Deep Learning - P. Gallinari219

 Training

x

s

𝒚ෝ

U

V
W

𝒚ෝ𝒕 ൌ 𝑷ሺ𝒙𝒕ା𝟏|𝒔𝒕ሻ

𝒙𝟐

𝒔𝟐

𝒚ෝ𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚ෝ𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚ෝ𝟏

𝑼

𝑽
𝑾

𝐶ଵ 𝐶ଶ 𝐶ଷ

Begin at the beginning

𝒔𝟎 𝑾

െlog 𝑝ሺ"𝑎𝑡"|𝑠ଵሻ

Recurrent neural networks Language models

Machine Learning & Deep Learning - P. Gallinari220

 Training

x

s

𝒚ෝ

U

V
W

𝒚ෝ𝒕 ൌ 𝑷ሺ𝒙𝒕ା𝟏|𝒔𝒕ሻ

𝒙𝟐

𝒔𝟐

𝒚ෝ𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚ෝ𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚ෝ𝟏

𝑼

𝑽
𝑾

𝐶ଵ 𝐶ଶ 𝐶ଷ

Begin at the beginning

𝒔𝟎 𝑾

െlog 𝑝ሺ"𝑡ℎ𝑒"|𝑠ଶሻ

Recurrent neural networks Language models

Machine Learning & Deep Learning - P. Gallinari221

 Training

x

s

𝒚ෝ

U

V
W

𝒚ෝ𝒕 ൌ 𝑷ሺ𝒙𝒕ା𝟏|𝒔𝒕ሻ

𝒙𝟐

𝒔𝟐

𝒚ෝ𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚ෝ𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚ෝ𝟏

𝑼

𝑽
𝑾

𝐶ଵ 𝐶ଶ 𝐶ଷ

Begin at the beginning

𝒔𝟎 𝑾

െlog 𝑝ሺ"𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔"|𝑠ଷሻ

Recurrent neural networks Language models

Machine Learning & Deep Learning - P. Gallinari222

 Training

 Note
 Weights are shared: only one 𝑈, one 𝑉, one 𝑊 for the whole NN

x

s

𝒚ෝ

U

V
W

𝒚ෝ𝒕 ൌ 𝑷ሺ𝒙𝒕ା𝟏|𝒔𝒕ሻ

𝒙𝟐

𝒔𝟐

𝒚ෝ𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚ෝ𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚ෝ𝟏

𝑼

𝑽
𝑾

𝐶ଵ 𝐶ଶ 𝐶ଷ

Begin at the beginning

𝒔𝟎 𝑾

𝐶 ൌ෍𝐶௧
்

௜ୀଵ

Recurrent neural networks Language models

Machine Learning & Deep Learning - P. Gallinari223

 Training algorithm: Back Propagation Through Time - BPTT
 Consider a sequence of words ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥୘ሻ sampled from the training set
 Loss function for a sequence : 𝐶 ൌ ∑ 𝐶௧்

୲ୀଵ
 SGD: compute the loss for the sequence (actually a batch of sequences), compute the gradient

and upfate the parameters
 Recall, weights are shared: only one 𝑈, one 𝑉, one 𝑊

 Example: update of the shared 𝑊 weights
 Gradient of the loss for the whole sequence: compute the derivatives w.r.t. each 𝐶௧ and sums

them:


డ஼
డௐ

ൌ ∑ డ஼೟

డௐ௧ୀଵ...்

 Gradient of the loss for the loss at time 𝑡, 𝐶௧ :


డ஼೟

డௐ
ൌ ∑ డ஼೟

డௐ ሺ௜ሻ
௧
௜ୀଵ where డ஼೟

డௐ ሺ௜ሻ
is the gradient of the loss w.r.t. weight at position 𝑖 ൑ 𝑡

 Backpropagate over time steps 𝑖 ൌ 1 … 𝑡, summing the gradient: BPTT

 This training regime is called teacher forcing
 Successive sequential inputs correspond to the true sequence
 Different during inference (see next slide)

x

RNNs
Language models

Machine Learning & Deep Learning - P. Gallinari224

 Inference
 Suppose the RNN has been trained
 Inference processes by sampling from the predicted distribution

x

s

𝒚ෝ

U

V
W

𝒚ෝ𝒕 ൌ 𝑷ሺ𝒙𝒕ା𝟏|𝒔𝒕ሻ

𝒙𝟐

𝒔𝟐

𝒚ෝ𝟐

𝑼

𝑽
𝑾

𝒙𝒕

𝒔𝒕

𝒚ෝ𝒕

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚ෝ𝟏

𝑼

𝑽
𝑾𝒔𝟎 𝑾

SamplingSamplingSampling

RNNs
Language models – Word representation

Machine Learning & Deep Learning - P. Gallinari225

 Words, characters, n-grams, word pieces are all discrete data
 How to represent them

 The usual way is to embed the words, etc in a continuous space of high
dimension e.g. 𝑅ଶ଴଴, i.e. each word will be a vector in 𝑅ଶ଴଴

 This could be done
 Off line using some embeding technique (e.g. Word2Vec, see later)

 Advantage, this can be done by using very large text collections
 These representations could then be used for downstream tasks (e.g. classification)

 On line while training the language model
 In this case, the 𝑥s are initialized at random values in 𝑅௡ and are learned by

backpropagating the error, together with the other parameters
 We usually loose the benefit of training on large corpora

Language models – examples

 Language models can be used to learn text representations,
Generate text, Translation, Dialogue, etc

Language generation, Training on Tolstoy’s
War and Peace a character language model,
Stacked RNNs (LSTMs) (Karpathy 2015-
https://karpathy.github.io/2015/05/21/rnneffectiveness/)

Inverse Cooking: Recipe
Generation from Food Images,
Salvador et al CVPR 2019

Learning word vector representations
Word2Vec model (Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari227

 Goal
 Learn word representations

 Words or language entities belong to a discrete space

 They could be described using one hot encoding, but this is meaningless

 How to represent these entities with meaningful representations?

 Word2Vec model
 Learn robust vector representation of words that can be used in different Natural

Language Processing or Information retrieval tasks

 Learn word representations in phrase contexts

 Learn using very large text corpora

 Learn efficient, low complexity transformations

 Successful and influential work that gave rise to many developments and
extensions

 Still in use, but superseded by Transformer based learned representations

Semantics: words
How to encode words according to their semantic meaning

 Representing words as discrete symbols
 In traditional NLP, we regard words as discrete symbols: Words can be

represented by one-hot vectors - Each word is a distinct symbol
 Example: in web search, if user searches for “Seattle motel”, we would like to

match documents containing “Seattle hotel”.

 motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
 hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

 These two vectors are orthogonal.
 There is no natural notion of similarity for one-hot vectors!

 Vector dimension = number of words in vocabulary (e.g., 500,000)
 Very large dimensional discrete space - Problem for machine learning - sparsity

Semantics: words

 Instead: learn to encode similarity in the vectors themselves
 GloVe (Pennington et al. 2014)

Words in vector space
Representing words by their context

 Distributional semantics: A word’s meaning is given by the words
that frequently appear close-by
 One of the most successful ideas of modern statistical NLP!

 When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window).
 Use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…
…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

context words will
represent banking

Words in vector space
Representing words by their context

 Word embeddings
 We represent words 𝑤 by vectors 𝑣௪ so that words with similar contexts share

« close » representations in the vector space

 Key idea
 These representations are learned from very large corpora for representing a

large variety of situations/ contexts
 No need for supervision

 These embeddings will be used for doswnstream tasks, e.g. classification
 This is an example of self-supervised learning

𝒗𝒃𝒂𝒏𝒌𝒊𝒏𝒈 ൌ

 0.87
 0.45
െ0.34
െ0.63
 0.23
 0.16

Word embeddings
Word2Vec – Mikolov et al. 2013



𝑝 𝑤௢ 𝑤௖ ൌ
exp ሺ𝑣௢.𝑣௖ሻ

∑ exp ሺ𝑣௪.𝑣௖ሻ௪∈௏௢௖௔௕௨௟௔௥௬

Word embeddings projections on 2D space:
words with similar contexts are close in the
embedding space

𝑤௢: context word (into)
𝑤௖: central word (banking)
𝑣௢ vector representation of 𝑤௢
𝑣௖ vector representation of 𝑤௖

Learning word vector representations
(Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari233

 CBOW model
 Task

 Predict the midle word of a sequence of words

 Input and output word representations are learned jointly
 (random initialization)

 The projection layer is linear followed by a sigmoid
 Word weight vectors in the projection layer
are shared (all the weight vectors are the same)
 The output layer computes a hierarchical softmax

 See later

 This allows computing the output in

𝑂ሺlogଶሺ𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒ሻሻ instead of 𝑂 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒
 The context is typically 4 words before and 4 after

Learning word vector representations - Skip Gram model
(Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari234

 Task
 Predict the context words conditionned on the central

word of a sequence

 Input and output word representations are
learned jointly
 (random initialization)

 The projection layer is linear followed by a
sigmoid

 Input and outputs have different representations
for the same word

 The output layer computes a hierarchical softmax
 This allows computing the output in
𝑂ሺlogଶሺ𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒ሻሻ instead of 𝑂 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒

Learning word vector representations - Skip Gram model
(Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari235

 The context is typically 4 words before and 4
after

 Output words are sampled less frequently if they
are far from the input word
 i.e. if the context is 𝐶 ൌ 5 words each side, one selects
𝑅 ∈ ሼ1;𝐶ሽ

and use R words for the output context

Learning word vector representations - Skip gram model
(Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari236

 Loss average log probability

 𝐿 ൌ ଵ
்
∑ ∑ log𝑝ሺ𝑤௧ା௝|𝑤௧ሻି௖ஸ௝ஸ௖,௝ஷ଴
்
௧ୀଵ

 Where T is the number of words in the whole sequence used for training
(roughly number of words in the corpus) and 𝑐 is the context size

 𝑝 𝑤௢௨௧ 𝑤௜௡ ൌ
ୣ୶୮ ሺ𝒗ೢ೚ೠ೟ .𝒗ೢ೔೙ ሻ
∑ ୣ୶୮ ሺ𝒗ೢ.𝒗ೢ೔೙ ሻೇ
ೢసభ

 Where 𝒗௪ is the learned representation of the 𝑤 vector (the hidden layer),
𝒗௪೚ೠ೟ .𝒗௪೔೙ is a dot product and V is the vocabulary size

Learning word vector representations - Skip gram model
(Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari237

 𝑝 𝑤௢௨௧ 𝑤௜௡ ൌ
ୣ୶୮ ሺ𝒗ೢ೚ೠ೟ .𝒗ೢ೔೙ ሻ
∑ ୣ୶୮ ሺ𝒗ೢ.𝒗ೢ೔೙ ሻೇ
ೢసభ

 Note that computing this softmax function is impractical since it is proportional
to the size of the vocabulary

 In practice, this can be reduced to a complexity proportional to logଶ 𝑉 using a
binary tree structure for computing the softmax
 Other alternatives are possible to compute the softmax in a reasonable time

 In Mikolov 2013: simplified version of negative sampling

 𝑙 𝑤௜௡,𝑤ை௨௧ ൌ log𝜎 𝑣௪೚ೠ೟ .𝑣௪௜௡ ൅ ∑ log𝜎ሺെ𝑣௪೔ .𝑣௪௜௡ሻሻ
௞
௜ୀଵ

 with 𝜎 𝑥 ൌ ଵ
ଵାୣ୶୮ ሺି௫ሻ

Learning word vector representations
(Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari238

 Properties
 « analogical reasoning »
 This model learns analogical relationships between terms in the representation

space
 i.e. term pairs that share similar relations are share a similar geometric transformation

in the representation space
 Example for the relation « capital of »
 In the vector space

 Paris – France + Italy = Rome
 At least approximatively
 i.e. Rome is the nearest vector to
 Paris – France + Italy

 Reasoning via more complex inferences
 is however difficult:

 Combination of transformations
 to infer more complex facts is not effective

Figure from Mikolov 2013

Learning word vector representations
(Mikolov et al. 2013a, 2013b)

Machine Learning & Deep Learning - P. Gallinari239

 Paris – France + Italy = Rome

Word2Vec extensions, example of FastText

Machine Learning & Deep Learning - P. Gallinari240

 After W2V, several similar ideas and extensions have been published
 Among the more popular are Glove (Pennington 2014) and FastText

(Bojanowski 2017)
 Vector representations learned on large corpora with these methods are made

available
 FastText is a simple extension of the skipgram model in W2V, where n-grams are

used as text units instead of words in W2V
 Consider the word « where » and 3-grams. « where » will be represented as:

 <wh, whe, her, ere, re>, with « < » and « > » corresponding to special « begin »
and « end » characters

 A vector representation 𝑧௜ is associated to each n-gram 𝑖
 The word representation is simply the sum of the n-gram representations of the

word description

 Remember 𝑝 𝑤௢௨௧ 𝑤௜௡ ൌ
ୣ୶୮ ሺ𝒗ೢ೚ೠ೟ .𝒗ೢ೔೙ ሻ
∑ ୣ୶୮ ሺ𝒗ೢ.𝒗ೢ೔೙ ሻೇ
ೢసభ

in W2V

 The dot product 𝒗௪೚ೠ೟ .𝒗௪೔೙ is replaced by∑ 𝒗௪೚ೠ೟ . ௭೔∈ ௡୥୰ୟ୫ሺ௪೔೙ሻ 𝑧௜
 And similarly for the dot product 𝒗௪ .𝒗௪೔೙

Language models – Evaluation - Perplexity

Machine Learning & Deep Learning - P. Gallinari241

 A classical criterion for evaluating language models is perplexity
 It quantifies how well a probability distribution or probability model predicts a

sample.
 In the context of language models, perplexity measures how well a model predicts a sequence

of words.

 Perplexity is fundamentally related to the likelihood of a dataset according to the
language model.

 A language model 𝐿𝑀 assigns a probability to a sequence of words. For a given
sequence of words 𝒙 ൌ 𝑥ଵ, … , 𝑥் , let us denote its probability by the language
model 𝐿𝑀 as 𝑝௅ெ 𝑥ଵ, … , 𝑥்

Language models – Evaluation - Perplexity

Machine Learning & Deep Learning - P. Gallinari242

 A classical criterion for evaluating language models is perplexity
𝑃𝑃

 𝑃𝑃 𝒙; 𝐿𝑀 ൌ ଵ
௣ಽಾ ௫భ,…,௫೅

ଵ/்
ൌ ∏ ଵ

௣ಽಾሺ௫೟శభ|௫೟,…,௫భሻ
்ିଵ
௧ୀଵ

ଵ/்

 Where 𝑝୐୑ሺሻ is the probability estimate of the language model

 𝑃𝑃 𝒙; 𝐿𝑀 ൌ ∏ ଵ
∑ ௬೔

೟௬ො೔
೟ೇ

೔సభ

்
௧ୀଵ

ଵ/்
ൌ ∏ ଵ

௬ොೣ೟శభ
೟

்
௧ୀଵ

ଵ/்

 With 𝑦௜௧ ∈ ሼ0,1ሽ the target code at time 𝑡 for word 𝑖 and 𝑦ො௜௧ the corresponding
predicted value. 𝑦ො௫೟శభ

௧ is the prediction for input 𝑥௧ାଵ

 𝑃𝑃 𝒙; 𝐿𝑀 ൌ exp ሺଵ
்
∑ െ𝑙𝑛𝑦ො௫೟శభ

௧ ሻ்
௧ୀଵ ൌ exp ሺ𝐶ሻ

 This is the exponential of the cross-entropy loss 𝐶
 Perplexity for a language model 𝑃𝑃 . ; 𝐿𝑀 is estimated on a test set of sentences

Language models – Evaluation - Perplexity

Machine Learning & Deep Learning - P. Gallinari243

 Interpretation
 A lower perplexity indicates that the language model is better at predicting the

sequence and, therefore, it's more certain about the test data.
 Conversely, a higher perplexity suggests that the model has more difficulty

predicting the sequence and is less certain about the test data.
 Language models are often compared based on their perplexity scores, with

lower perplexity indicating a more accurate and reliable model.

Language models - Evaluation

Machine Learning & Deep Learning - P. Gallinari244

 Interpretations
 Weighted average branching factor of a language: average nb of words following

another word
 e.g. for random digit sequences, perplexity is 10

 Perplexity estimates on the WSJ corpus (1.5 M words test corpus, dictionnary
size = 20 𝑘 words) for n-gram models

Unigram Bigram Trigram

962 170 109
Fig. from XX

RNNs for translation

Machine Learning & Deep Learning - P. Gallinari245

 NN have been used for a long time in translation systems (as an
additional component, e.g. for reranking or as language model)

 In the mid 2010, translation systems have been proposed based on
recurrent neural networks with GRU or LSTM units.
 Initial papers: Sutskever et al. 2014, Cho et al. 2014

 General principle
 Sentence to sentence translation
 Use an encoder-decoder architecture
 Encoding is performed using a RNN on the input sentence (e.g. English)
 This transforms a variable length sequence into a fixed size vector which

encodes the whole sentence
 Starting with this encoding, another RNN generates the translated sentence (e.g.

French)
 Instead of using a fixed length encoding, later systems made use of an attention

mechanism

Encoder-Decoder paradigm: example of neural translation – (Cho
et al. 2014, Sutskever et al. 2014)

Machine Learning & Deep Learning - P. Gallinari246

 First attempts for DL Machine Translation with RNNs

 Proof of concept, did not match SOTA, several improvements since
this first attempt

 Now replaced by Attention Models - Transformers

Recurrent NN Unfolded recurrent NN for translation

x

h/s

𝒚ෝ

U

V
W

𝒙𝒕

𝒉𝟐

𝑼

𝑾

𝒙𝑻

𝒉𝑻

𝒚ෝ𝟏

𝑼

𝑽

𝒙𝒕ି𝟏

𝒉𝟏

𝑼

𝑾 𝒔𝑹𝒔𝟏 𝑾′

𝒚ෝ𝟐

𝑽

𝒚ෝ𝑹

𝑽
𝑾′

Translation

Machine Learning & Deep Learning - P. Gallinari247

 Let
 𝑥ଵ, … , 𝑥் be an input sentence
 𝑦ଵ, …𝑦்ᇲ be an output sentence
 Note that 𝑇 and 𝑇’ are most often different and that the word order in the two sentences is also

generally different

 Objective
 Learn 𝑝ሺ𝑦ଵ, … 𝑦்ᇲ|𝑥ଵ, … , 𝑥்)
 Encoder

 Reads each symbol of the input sentence sequentially using a RNN
 After each symbol the state of the RNN is changed according to 𝒉௧ ൌ 𝑓ሺ𝒙௧ ,𝒉௧ିଵሻ
 After reading the sentence, the final state is 𝒉் ൌ 𝒗

 Decoder
 Generates the output sequence by predicting the next symbol 𝑦௧ given 𝒔௧ିଵ, 𝑦௧ିଵ and the vector 𝒗

 𝒔௧ ൌ 𝑓ሺ𝒚௧ିଵ, 𝒔௧ିଵ, 𝐯ሻ
 𝑝 𝑦௧ 𝑦௧ିଵ, …𝑦ଵ,𝒗 ൌ 𝑔ሺ𝑦௧ିଵ, 𝒔௧ , 𝐯ሻ

 Training: cross-entropy loss
 max

ఏ
ଵ
ே
∑ log 𝑝ఏሺ𝒚𝒔௡|𝒙𝒔௡ሻே
௡ୀଵ , where 𝒙𝒔௡ and 𝒚𝒔௡ are sentences and 𝑝ఏ is the translation model, 𝑁 is

the number of sentences

Translation

Machine Learning & Deep Learning - P. Gallinari248

 Typical architecture
 RNN with 1000 hidden cells
 Word embeddings of dimension between 100 and 1000
 Softmax at the output for computing the word probabilities
 Of the order of 100 M parameters

Google Neural Machine Translation System as of 2016
(Wu et al 2016)
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Machine Learning & Deep Learning - P. Gallinari249

 General Architecture

Figure from Wu et al. 2016

Encoder: 8 stacked LSTM
RNN + residual connections

Decoder: 8 stacked LSTM
RNN + residual connections
+ Softmax output layer

Attention
mechanism

RNNs as neural image caption generator (Vinyals et al. 2015)

Machine Learning & Deep Learning - P. Gallinari250

 Objective
 Learn a textual description of an image

 i.e. using an image as input, generate a sentence that describes the objects and their
relation!

 Model
 Inspired by a translation approach but the input is an image

 Use a RNN to generate the textual description, word by word, provided a learned
description of an image via a deep CNN

Neural image caption generator (Vinyals et al. 2015)

Machine Learning & Deep Learning - P. Gallinari251

 Loss criterion
 max

ఏ
∑ log𝑝ሺ𝑆|𝐼; 𝜃ሻூ,ௌ

 Where (𝐼, 𝑆) is an associated couple (Image, Sentence)

 Notations correspond to the figure

 log𝑝ሺ𝑆|𝐼;𝜃ሻ ൌ ∑ log𝑝 𝑆௧ 𝐼, 𝑆଴, … , 𝑆௧ିଵே
௧ୀଵ

 𝑝 𝑆௧ 𝐼, 𝑆଴, … , 𝑆௧ିଵ is modeled with a RNN with 𝑆଴, … , 𝑆௧ିଵ encoded into the
hidden state ℎ௧ of the RNN

 Here 𝒔௧ାଵ ൌ 𝑓 𝒔௧, 𝑥௧ is modelled using a RNN with LSTM cells
 For encoding the image, a CNN is used

Neural image caption generator (Vinyals et al. 2015)

Machine Learning & Deep Learning - P. Gallinari252



Attention Mechanism

Initial historical developments and examples

Machine Learning & Deep Learning - P. Gallinari253

Attention mechanism

Machine Learning & Deep Learning - P. Gallinari254

 Objective: focus on specific parts of the data representation for
taking the current decision
 Implemented as an additional differentiable modules in several architectures

 Illustration: attention on image while generating sentences

Figs. from Xu et al. 2015

Attention mechanism



𝒉ଵ 𝒉௜ 𝒉௡

𝒉௜ ∈ 𝑅ௗ : input, e.g. embedding
or hidden output (e.g. RNN
hidden layer)
𝒖 ∈ 𝑅ௗ: additional info.
𝒄 ∈ 𝑅ௗ : context vector
𝑒௜ ∈ 𝑅 : attention factor
𝛼௜ ∈ 𝑅 : attention coefficient
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒௜ ൌ ୣ୶୮ ሺ௘೔ሻ

∑ ୣ୶୮ ሺ௘ೕሻ೙
ೕసభ

Objective: learn a combination of input
vectors ℎ௜ with attention weights
focusing on the most relevant parts of
the input signal 𝒉

𝑒௜ ൌ 𝑓௔௧௧ሺ𝒖,𝒉௜ሻ

𝛼௜ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑒௜ሻ

𝒄 ൌ෍𝛼௜𝒉௜
௡

௜ୀଵ

𝒖

𝑒ଵ

𝛼௡𝛼ଵ

𝑒௡

Further processing, e.g.
classification of 𝒄

Machine Learning & Deep Learning - P. Gallinari255

Attention mechanism

 Different attention functions 𝑓௔௧௧:
 Additive

 𝑓௔௧௧ 𝒖,𝒉௜ ൌ 𝒗்tanh ሺ𝑊ଵ𝒉௜ ൅𝑊ଶ𝒖ሻ, 𝒗 ∈ 𝑅ௗ ,𝒉௜ ∈ 𝑅ௗ ,𝑊ଵ ∶ 𝑑x𝑑,𝑊ଶ ∶ 𝑑x𝑑

 Multiplicative
 𝑓௔௧௧ 𝒖,𝒉௜ ൌ 𝒖𝑻𝑊𝒉௜ , 𝒖 ∈ 𝑅ௗ ,𝑊 ∶ 𝑑x𝑑

 All the parameters ሺ𝑊, 𝑣,𝑢ሻ are learned
 Many variants of these formulations

Machine Learning & Deep Learning - P. Gallinari256

Attention mechanism
For document classification (adapted from Yang et al. 2016)

Machine Learning & Deep Learning - P. Gallinari257

 Objective: classify documents using a sequential model of attention
 Document : word sequence 𝑤ଵ, … ,𝑤்

 Objective: classify the document among predefined classes – learning criterion:
log likelihood

 Word sequence encodings (e.g. pretrained via Word2Vec): 𝑥ଵ, … , 𝑥்

 Corresponding hidden state sequence: 𝒉ଵ, … ,𝒉் obtained via a Recurrent NN

𝒙𝟐

𝒉𝟐

𝒙𝑻

𝒉𝑻

𝒙𝟏

𝒉𝟏

𝒄

Soft Max: classification

Word representation (pre-
trained embeddings)

Hidden state representation
(RNN)

𝜶𝟏 𝜶𝟐 𝜶𝑻

u
Additional info. vector

Fixed size document
representation

Attention mechanism
Example: document classification (adapted from Yang et al. 2016)

Machine Learning & Deep Learning - P. Gallinari258

 𝒗௝ ൌ tanh 𝑊𝒉௝ ൅ 𝒃 (vector)

 𝛼௝ ൌ
ୣ୶୮ 𝒗ೕ.𝒖
∑ 𝒗𝒕.𝒖೟

: attention weight (real value)

 𝒄 ൌ ∑ 𝛼௝𝒉௝்
௝ୀଵ : fixed size document representation (vector)

 𝒖 : context vector to be learned (vector)

Parameters to be learned:
• Attention 𝑊, 𝑏, 𝑢
• Others: RNN, Softmax classifier

𝒙𝟐

𝒉𝟐

𝒙𝑻

𝒉𝑻

𝒙𝟏

𝒉𝟏

𝒄

Soft Max: classification

Word representation

Hidden state representation

𝜶𝟏 𝜶𝟐 𝜶𝑻

u

Context vector

Attention mechanism
Example: document classification (adapted from Yang et al. 2016)

Machine Learning & Deep Learning - P. Gallinari259

 Illustration (Yang et al. 2016)
 Yelp reviews: ratings from 1 to 5 (5 is the best)
 Classification = sentiment/ polarity classification
 Hierarchical attention: word and sentence levels
 Blue = word weight in the decision
 Red = sentence weight in the decision (hierarchical attention model – 2 levels:

sentences and words within a sentence)

Attention mechanism
for translation (adapted from Bahdanau et al. 2015 – initial
introduction of attention in RNNs)

Machine Learning & Deep Learning - P. Gallinari260

 Classical Encoder – Decoder framework for translation
 Encoder

 Input sentence ሼ𝒙ଵ, … ,𝒙்ሽ word embeddings

 Encoder: 𝒉௧ ൌ 𝑓௛ሺ𝒙௧,𝒉௧ିଵሻ implemented via a RNN / LSTM
 𝒉௧ is the hidden state for input 𝒙௧

 𝒄 ൌ 𝑞ሺ𝒉ଵ, … ,𝒉்ሻ for the original Encoder-Decoder
framework, typically 𝒄 ൌ 𝒉் the last
hidden state for the input sentence

 Decoder
 Output sentence ሼ𝒚ଵ, … ,𝒚ோሽ for simplification input and output

sentences are taken at the same length

 𝑝 𝒚௧ 𝒚ଵ, … ,𝒚௧ିଵ, 𝒄 ൌ 𝑔ሺ𝒚௧ିଵ, 𝒔௧, 𝒄ሻ implemented via a RNN or LSTM +
softmax

 𝒔௧ is the hidden state of the decoder for output 𝒚௧

 Decoding is conditionned on a unique vector 𝒄 for the whole sentence

Attention mechanism
for translation (adapted from Bahdanau et al. 2015, initial introduction
of attention)

Machine Learning & Deep Learning - P. Gallinari261

 Classical Encoder – Decoder framework for translation

𝒙𝒕

𝒉𝒕

𝑼

𝑾

𝒙𝑻

𝒉𝑻

𝒚ෝ𝟏

𝑼

𝑽

𝒙𝒕ି𝟏

𝒉𝒕ି𝟏

𝑼

𝑾
𝒔𝑹𝒔𝟐 𝑾′

𝒚ෝ𝟐

𝑽

𝒚ෝ𝑹

𝑽
𝑾′

Attention mechanism
for translation (adapted from Bahdanau et al. 2015, initial introduction
of attention)

Machine Learning & Deep Learning - P. Gallinari262

 Attention mechanism
 Instead of conditionning the output 𝒚௜ on the final context 𝒄 ൌ 𝒉், the attention

mechanism will use as context 𝒄௜ a linear combination of the 𝒉௧, 𝑡 ൌ 1 …𝑇
 One 𝒄௜ is computed for each 𝒚௜ instead of a common context 𝒄 for all 𝒚௜s

 The encoder is the same as before
 Decoder

 𝑝 𝒚௜ 𝒚ଵ, … ,𝒚௜ିଵ,𝒙 ൌ 𝑔ሺ𝒚௜ିଵ, 𝒔௜ , 𝒄௜ሻ
 𝒔௜ ൌ 𝑓ሺ𝒔௜ିଵ,𝒚௜ିଵ, 𝒄𝒊ሻ

 Context vector
 𝑒௜௝ ൌ 𝑎ሺ𝒔௜ିଵ,𝒉௝ሻ computed via a simple MLP for example

 𝛼௜௝ ൌ
ୣ୶୮ ௘೔ೕ

∑ ୣ୶୮ ௘೔ೖ೅
ೖసభ

weight of ℎ௝when decoding 𝑦௜

 𝒄௜ ൌ ∑ 𝛼௜௝𝒉௝்
௝ୀଵ context vector

 The whole system is trained end to end

Attention mechanism
for translation (adapted from Bahdanau et al. 2015, initial introduction
of attention)

Machine Learning & Deep Learning - P. Gallinari263

 Attention mechanism

𝒙𝟐

𝒉𝟐

U
𝒙𝑻
U

𝒙𝟏

𝒉𝟏

U

𝒔𝒊 𝒔𝑻𝒔𝒊ି𝟏

𝒚𝒊𝒚𝒊ି𝟏

𝒄௜

𝛼௜ଵ 𝛼௜ଶ 𝛼௜்

𝒉𝑻

Transformer Networks

Initial paper: Vaswani 2017

Story Telling and Illustrations used in the slides:

J. Alammar 2018 - 2019 - http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-gpt2/

P. Bloem 2019 - http://www.peterbloem.nl/blog/transformers

Machine Learning & Deep Learning - P. Gallinari264

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

Machine Learning & Deep Learning - P. Gallinari265

 Transformer networks were proposed in 2017
 They implement a self attention mechanism
 They became SOTA technology for many NLP problems
 Transformer blocks are now a basic component of the NN zoo
 They are key components for all the recent NLP transformer

architectures
 BERT family (Google), GPT family (OpenAI), T5 family (Google), etc

 After NLP they have been adapted by the Vision community

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018-
2019, P. Bloem 2019)
Self Attention

Machine Learning & Deep Learning - P. Gallinari266

 Self Attention is the fundamental operation of transformers
 Self attention is a sequence to sequence operation

 Input and output sequences have the same length

 Let 𝑥ଵ, 𝑥ଶ, … , 𝑥் and 𝑧ଵ, 𝑧ଶ, … , 𝑧் be respectively the input and output vector
sequence

 Self attention computes the output sequence as:

 𝑧௜ ൌ ∑ 𝛼௜௝𝑥௝௝

 With 𝛼௜௝ a normalized attention score

 A simple version of the normalized score could be:
 𝑒௜௝ ൌ 𝑥௜ . 𝑥௝
 𝛼௜௝ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒௜௝ ൌ ୣ୶୮ ௘೔ೕ

∑ ୣ୶୮ ௘೔ೖೖ

 𝛼௜௝ measures how 𝑥௜ and 𝑥௝ are important for predicting 𝑧௜

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Self Attention

Machine Learning & Deep Learning - P. Gallinari267

 Self Attention is the fundamental operation of transformers

Self Attention is the fundamental operation of transformers

𝑥௦௘௟௙ 𝑥஺௧௧௘௡௧௜௢௡ 𝑥௜௦ 𝑥௧௛௘ 𝑥௙௨௡ௗ௔௠௘௡௧௔௟ 𝑥௢௣௘௥௔௧௜௢௡ 𝑥௢௙ 𝑥௧௥௔௡௦௙௢௥௠௘௥

𝑧௦௘௟௙ 𝑧஺௧௧௘௡௧௜௢௡ 𝑧௜௦ 𝑧௧௛௘ 𝑧௙௨௡ௗ௔௠௘௡௧௔௟ 𝑧௢௣௘௥௔௧௜௢௡ 𝑧௢௙ 𝑧௧௥௔௡௦௙௢௥௠௘௥

𝑧௜ ൌ ෍ 𝛼௜௝𝑥௝
௝ୀ௦௘௟௙… ௧௥௔௡௦௙௢௥௠௘௥

Output
sequence

Input: word
sequence

Learned
embeddings

For 𝑖 ൌ "𝑆𝑒𝑙𝑓" 𝑡𝑜 "𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟":

embedding

self attention

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Self Attention

Machine Learning & Deep Learning - P. Gallinari268

 Self attention is the only mechanism in the transformer that propagates
information between vectors

 Any other operation is applied to each vector without interaction between
vectors

 In the above example 𝑧௙௨௡ௗ௔௠௘௡௧௔௟is a weighted sum over all embedding vectors
𝑥 weighted by their normalized dot product with the embedding 𝑥௙௨௡ௗ௔௠௘௡௧௔௟

 The dot product expresses how related two words in the input sequence are,
w.r.t. the learning task

 Note
 Self Attention sees the input as a set and not as a sequence
 Permutation in the inputs simply results in a permutation of the outputs
 An additional mechanism should be used in order to consider the sequence

information (more on that later)

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - Self Attention – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari269

 Current transformers make use of a more complex self attention
mechanism

 1. For each embedding 𝑥௜ create 3 vectors as a linear transformation
of 𝑥௜ : query, key, value
 query: 𝑞௜ ൌ 𝑊௤𝑥௜
 key: 𝑘௜ ൌ 𝑊௞𝑥௜
 value:𝑣௜ ൌ 𝑊௩𝑥௜

 With 𝑊௤, 𝑊௞ , 𝑊௩

Matrices of the appropriate
dimension

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Self Attention – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari270

 𝑥௜ is used for three roles:
 Query 𝑞௜ : it is compared to every vector 𝑥௝ to establish the weights for its

own output vector 𝒛𝒊
 Key 𝑘௜ : it is compared to every vector 𝑥௝ to establish the weights for the

output 𝒛𝒋
 Value 𝑣௜ : it is used in the weighted sum to compute each output vector
𝒛𝒋

 Separating the roles in three vectors 𝑞௜ ,𝑘௜ ,𝑣௜ , all linear
transformations of 𝑥௜ gives a more flexible model

 Illustration for computing the output vector 𝑧௜
 𝒒𝒊 and 𝒌𝒋 will be used for computing the attention score:

 𝑒௜௝ ൌ 𝑞௜ . 𝑘௝
 𝛼௜௝ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑒௜௝ሻ

 𝒗𝒋 will be used for computing the output item
 𝒛௜ ൌ ∑ 𝛼௜௝𝒗௝௝ ൌ ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑞௜ .𝑘௝ሻ𝒗௝௝

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari271

 2. Compute score from query and key
 Dot product of query and key value for each word

 Consider the sentence « Thinking Machines »

 𝑒௜௝ ൌ 𝑞௜ . 𝑘௝ - here we consider the first word Thinking (i.e. 𝑖 ൌ 1, 𝑗 ൌ 1,2 since we
have 2 words in the sentence)

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari272

 3. Normalize and softmax
 Divide by the square root of the dimension of the key vectors (8 in the figure)

 𝑒௜௝ ൌ
௤೔.௞ೕ
௞

, with k the dimension of the 𝑞,𝑘, 𝑣 vectors

 Compute softmax
 𝛼௜௝ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑒௜௝ሻ

 The softmax value indicates the weight of each word in the input sequence for
position 1 in the example

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari273

 4. Compute the output of the self attention layer at position 1, i.e.
(𝑧ଵሻ
 Multiply each value vector 𝑣 by the softmax score
 Sum up the weighted value vectors

 𝒛௜ ൌ ∑ 𝛼௜௝𝒗௝௝

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019) – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari274

 In matrix form for our 2 words sentence

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019) – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari275

 Compute the output of the self attention layer at position 1
 Matrix form

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)) - – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari276

 Multi-head self attention
 Duplicate the self attention mechanism
 Allows us to focus on different parts of the input sequence and to encode

different relations between elements of the input sequence
 Matrices for the different heads are denoted 𝑊௤

௥ ,𝑊௞
௥ ,𝑊௩

௥ with 𝑟 the index of
head 𝑟

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - – Queries, keys, values

Machine Learning & Deep Learning - P. Gallinari277

 Compute one output for each head

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019))

Machine Learning & Deep Learning - P. Gallinari278

 Multi-head self attention
 Two usual ways of applying multi-head

 1. Cut the embedding vector 𝑥௜ into chunks and generate 𝑞, 𝑘, 𝑣 from each chunk
 e.g. if the embedding is size 256 and we have 8 heads, each chunk will be of size 32, the
𝑊௤

௥ ,𝑊௞
௥ ,𝑊௩

௥ are of size 32x32

 2. Apply each head to the whole vector
 𝑊௤

௥ ,𝑊௞
௥ ,𝑊௩

௥ are of size 256x256

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)

Machine Learning & Deep Learning - P. Gallinari279

 Global output
 Concatenate the individual head outputs
 Combine them with an additional matrix 𝑊଴ in order to produce an output of

size 𝑘 , for example the initial size of the embeddings

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)

Machine Learning & Deep Learning - P. Gallinari280

 Summary of multi-head self attention

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Transformer module

Machine Learning & Deep Learning - P. Gallinari281

 A tranformer module combines different operations and is roughly
defined as follows (several variants – here we detail an encoder
module as in Vaswani 2017)

 The example takes two word as input and outputs two transformed
encodings • Normalization layers (layer

normalization)
• Multiple self attention modules

per encoder
• Residual (skip) connections like

in ResNet (see dashes --->)
• Positional encoding

Layer normalization: normalize the
activations of a layer for each
sample by centering and
reduction of the layer activation
values for that sample

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Transformer module

Machine Learning & Deep Learning - P. Gallinari282

 Add and normalized detailed
 Residual connections are added before normalization

 Helps with the gradient

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Transformer architecture

Machine Learning & Deep Learning - P. Gallinari283

 Stack multiple transformer modules

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Transformer architecture

 Attention: word dependencies

Fig. (Vaswani 2017)
Machine Learning & Deep Learning - P. Gallinari284

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)

 Positional encoding
 In order to account for the word order, the model makes use of a positional

encoding together with the first word embeddings (first transformer module in
the transformer multilayer architecture)
 An information is added to each input embedding which helps determining the position

of the word in the sentence.
 This information is added to the input embeddings at the bottom of the transformer

module
 The encoding can be learned like word embeddings – this requires learning one

embedding for each position
 The encoding can be defined according to some function 𝑓:𝑁 → 𝑅௞

 In the original transformer paper, the encoding is defined as follows:
 Let 𝑃𝐸 denote the Positional Encoding, 𝑃𝐸 ∈ 𝑅ௗx𝑅௡, i.e. vector of length n, size of

the sequence, and each positional encoding is of size 𝑑 (same size as embeddings 𝒗).

 𝑃𝐸_ሺ𝑝𝑜𝑠, 2𝑖ሻ ൌ sin ሺ𝑝𝑜𝑠 / 10000
మ೔
೏ ሻ , 𝑃𝐸_ሺ𝑝𝑜𝑠, 2𝑖 ൅ 1ሻ ൌ cos ሺ𝑝𝑜𝑠 / 10000

మ೔
೏ ሻ

 With 𝑝𝑜𝑠 the position in the sequence and 𝑖 ∈ ሼ1, … ,𝑑ሽ the dimension in the
position vector

Machine Learning & Deep Learning - P. Gallinari285

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

Machine Learning & Deep Learning - P. Gallinari286

 Positional encoding

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

Machine Learning & Deep Learning - P. Gallinari287

 Intuition on the Query/Key/value components (J. Alammar 2019)
 Consider the sentence

 « a robot must obey the orders given it by human beings … »
 « It » refers to « a robot »

 This is what self attention should detect

 Consider self attention in the decoder module when processing the token « it »

Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

Machine Learning & Deep Learning - P. Gallinari288

 Intuition on the Query/Key/value components (J. Alammar 2019)
 The Query is a representation of the current word used to score against all the

other words (using their keys). We only care about the query of the token we’re
currently processing.

 Key vectors are like labels for all the words in the segment. They’re what we
match against in our search for relevant words.

 Value vectors are actual word representations, once we’ve scored how relevant
each word is, these are the values we add up to represent the current word.

Analogy: searching through a filing cabinet. The
Query is like a note with the topic you’re
researching. The Keys are like the labels of the
folders inside the cabinet. When you match the tag
with a note, we take out the contents of that folder,
the Value vector. Except you’re not only looking for
one value, but a blend of values from a blend of
folders.

Transformer networks
Example: classifier (Bloem 2019)

Machine Learning & Deep Learning - P. Gallinari289

 Binary classifier for word sequences
 Targets: positive/ negative
 The output sequence is averaged in order to produce a fixed size vector
 Loss: cross entropy

Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Example: text generation transformer - autoregressive model

Machine Learning & Deep Learning - P. Gallinari290

 Character level transformer for predicting next character from an
input sequence
 Input: a sequence
 Output next character for each point in the sequence, i.e. language model
 i.e. the target sequence is the input shifted one character to the left

Transformer networks
Example: text generation transformer - autoregressive model (Bloem
2019)

Machine Learning & Deep Learning - P. Gallinari291

 Because the transformer has access to the whole « h e l l » sequence, prediction
for « e l l » becomes trivial

 If one wants to learn an autoregressive model one should prevent the
transformer to look forward in the sequence

 Character level transformer for predicting next character from an input
sequence

 For that one makes use of a MASK to the matrix of dot products before the
softmax in the self attention module

 Note: multiplication here is the elementwise multiplication
Here x௜ is the input in position i and y௜ the output in position i

Transformer networks
Example: text generation transformer - autoregressive model (Bloem
2019)

Machine Learning & Deep Learning - P. Gallinari292

 Example followed
 Training from sequences of length 256, using 12 transformer blocks and 256

embedding dimensions
 After training, let the model generate characters from a 256 input character

sequence seed
 For a sequence of 256 input characters the Transformer generates a distribution for

the new character (257௧௛).

 Sample from this distribution and feed back to the input for predicting the next
(258௧௛) character, etc

Sample output (training from 10଼ characters from Wikipedia
including markups):
1228X Human & Rousseau. Because many of his stories were originally
published in long-forgotten magazines and journals, there are a number of
[[anthology|anthologies]] by different collators each containing a different
selection. His original books have been considered an anthologie in the
[[Middle Ages]], and were likely to be one of the most common in the [[Indian
Ocean]] in the [[1st century]]. As a result of his death, the Bible was
recognised as a counter-attack by the [[Gospel of Matthew]] (1177-1133),…

Cross-attention

Machine Learning & Deep Learning - P. Gallinari293

Appendix - Historical side: Transformer networks (Vaswani 2017)

 The first implementation of Transformer was proposed by (Vaswani 2017) as an
encoder-decoder scheme

 Modern implementation make use of transformer blocks, either encoders,
decoders or encoder-decoder schemes

 It is however interesting to look at the initial idea in order to understand the
vocabulary

 General scheme
 Stacks of encoder/ decoder modules

 Encoders (resp. decoders) have the same structure but do not share parameters

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

No pain no gain

on n’a rien sans rien

Input: word
embeddings

Output: word
probabilities/ best
sequence

Machine Learning & Deep Learning - P. Gallinari294

Appendix - Historical side: Transformer networks (Vaswani 2017,
illustrations J. Alammar 2018)

Machine Learning & Deep Learning - P. Gallinari295

 Encoder-Decoder modules structure

 Encoder
 Input flows through a self attention layer – encoding of a word in the sequence will depend on the other words
 Outputs of the self attention layer are fed in a feed-forward NN. The same network is used for each word

position

 Decoder: 2 differences with the encoder
 1. The decoder has an additional encoder-decoder attention layer that focuses on relevant parts of the input

provided by the encoder (when the self attention module below it looks at the info from the lower layer of the
decoder).

 2. For the self attention module, the decoder can only look at past information to predict the next word – this
is similar to the autoregressive example seen before

Appendix - Historical side: Transformer networks (Vaswani 2017)
illustration: J. Alammar 2018

Machine Learning & Deep Learning - P. Gallinari296

 Encoder + Decoder modules

Appendix - Historical side: Transformer networks (Vaswani 2017)
illustration: J. Alammar 2018

Machine Learning & Deep Learning - P. Gallinari297

 Modern architectures use either encoder (BERT), decoder (GPT) or
encoder-decoder (T5) schemes
 BERT (Google) makes use of masked inputs (more on that later) and looks at

the full input sequence
 GPT (Open AI) is an autoregressive model (like a classical language model) and

looks only at past items for predicting the future
 T5 (Google) is an encoder-decoder model designed for reformulating several

NLP tasks in a text to text framework

Large size transformers
examples

Contextual encodings:
Large size SOTA Transformer models: GPT – Decoder model

BERT – encoder model
T5 – Encoder Decoder model

Machine Learning & Deep Learning - P. Gallinari298

Large size transformers
Some resources

Machine Learning & Deep Learning - P. Gallinari299

 HuggingFace Transformer library
 Offers several implementation of recent transformer models in PyTorch and Tensorflow

 https://huggingface.co/

 List of transformers from Huggingface
 https://huggingface.co/docs/transformers/index
 https://huggingface.co/models

 BERT

 Tutorial on BERT word embeddings https://mccormickml.com/2019/05/14/BERT-word-
embeddings-tutorial/

 BERT as used in Google search engine as of 2019
 https://searchengineland.com/faq-all-about-the-bert-algorithm-in-google-search-

324193#:~:text=BERT%2C%20which%20stands%20for%20Bidirectional,of%20words
%20in%20search%20queries.

 Demos for different NLP tasks from Allen AI
 https://demo.allennlp.org/
 For a GPT2 demo see « language modeling »

Large size transformers
Teaser

Machine Learning & Deep Learning - P. Gallinari300

 NLP
 ChatGPT (OpenAI) https://chat.openai.com/chat
 LaMDA - https://blog.google/technology/ai/lamda/,

https://arxiv.org/abs/2201.08239
 PALM - https://ai.googleblog.com/2022/04/pathways-language-model-palm-

scaling-to.html

 Text to Image
 Craiyon : public version of Dall-E - https://www.craiyon.com/
 Dall-e https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/

Large size language models based on transformers

Machine Learning & Deep Learning - P. Gallinari301

 Right after the seminal publication on transformers (Vaswany 2027), several large size
models based on these ideas were developed by different groups

 They have in common:
 Large size models and large corpora!!
 Credo:

 pretrain on large size corpora and fine tune on downstream tasks - Larger is better 
 Training on very large size corpora

 General objective: learn token representations in an unsupervised way from large corpora that could be used with
little adaptation for specific downstream tasks (requiring « small » labeled datasets) w/ or w/o fine tuning of the
whole model

 Easily adaptable for a variety of downstream tasks
 Token level e.g. Named Entity Recognition (NER), …
 Sentence level e.g. Query Answering Q/A, text classification, …

Fig: https://arxiv.org/pdf/2310.05694.pdf

Large size language models based on transformers
ELMo (Peters et al. 2018. Deep contextualized word representations. NAACL (2018)).

Machine Learning & Deep Learning - P. Gallinari302

 Contextual word representation
 In Word2Vec, FastText, GloVe, word representations are unique
 We might want context dependent word representations
 This is what ELMo introduced
 (slides from https://fr2.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018)

Large size language models based on transformers
GPT family (OpenAI)

Machine Learning & Deep Learning - P. Gallinari303

 GPT (Radford et al. 2018), GPT 2 (Radford et al. 2019), GPT 3 (Radford et
al. 2020) etc
 GPT means Generative Pre Training
 Language models based on transformer decoder architecture (Liu et al. 2018)

 As for the other Transformer models, training proceeds in 2 steps
 Unsupervised language modeling
 Fine tuning on downstream tasks
 Successive models are larger and larger and trained on larger and larger corpora

 GPT 2 comes in different versions from 117 M parameters (12 transformer decoder
blocks) to 1.542 M parameters (48 transformer decoder blocks)

 It is trained on a corpus of 8 M documents, 40 GB of text (scraped web pages curated by
humans to ensure document quality)

 Demonstrates the ability of language models to solve tasks they are not trained on
 Hence proposes an alternative to fine tuning

 GPT 3: 96 Transformer decoder modules stacked, 175 Billions parameters (2020)
 100 times bigger than GPT2
 Demonstrates thatVERY LARGE models perform well on zero shot and few shot learning
 Started developments by different companies on LLM (Large Language Models)

Large size language models based on transformers
GPT family (OpenAI)

Machine Learning & Deep Learning - P. Gallinari304

 The decoder model
 Basically a masked – autoregressive model
 More details in http://jalammar.github.io/illustrated-gpt2/

 Open AI Blog on GPT2
 https://openai.com/blog/better-language-models/
 Paper

 https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

 GPT3
 Paper

 https://arxiv.org/pdf/2005.14165.pdf
 API released in 2020

 https://openai.com/blog/openai-api/
 Demos

 https://beta.openai.com/
 https://beta.openai.com/examples/

 GPT3.5, GPT4
 Popularized by chatGPT

Large size language models based on transformers
GPT family (OpenAI)

Machine Learning & Deep Learning - P. Gallinari305

 Downstream tasks beyond language modeling
 GPT (Radford et al. 2018)

 Classification, Entailment, Similarity, Q/A with multiple choices

 Context slot for the downstream tasks: for Q/A (multiple choices) contains text +
questions

Transformer model
Unsupervised training

Downstream
tasks (fine tuning)

Large size language models based on transformers
GPT family (OpenAI) – GPT2

Machine Learning & Deep Learning - P. Gallinari306

 GPT 2
 Same general architecture than GPT with some modifications

 layer normalization changed, initialization, scaling, etc…

 Training dataset
 40 GB of text (scraped web pages curated by humans to ensure document quality)

 Input representation
 Modified Byte Pair Encoding (see later)

 Training
 Language model only (unsupervised)

 Demonstrates that language models trained in an unsupervised way can achieve good
performance, sometimes SOTA, on diverse tasks in few shot, zero shot learning
schemes

 Generalize the use of prompting for task conditioning and for providing few shots
examples
 Language allows to provide in a natural ways task indication and task examples
 Translation: (translate to French, English text, French text)
 Reading comprehension: (answer the question, document, question, answer)

Large size language models based on transformers
GPT family (OpenAI) – GPT2

Machine Learning & Deep Learning - P. Gallinari307

 Test tasks (not trained on)
 Language modeling on test datasets it has not been trained on – possibly

different from the web training dataset
 Predict the final word of sentences
 Reading comprehension

 Conditioning: document, associated conversation (sequence of questions and answers
about the text, final question GPT is asked to answer)

 Summarization
 Translation

 Conditioning
 Sequence of example pairs of the format english sentence = french sentence, and a

final english sentence =
 Greedy decoding is then used on the output of GPT2, first generated sentence is

used as translation

 Question answering

Large size language models based on transformers
GPT family (OpenAI) – GPT3

Machine Learning & Deep Learning - P. Gallinari308

 GPT3 is 100 times larger than GPT2 – 175 B parameters for the
larger model @year 2020

 Training dataset
 Same as for GPT2 – about 3 B words cleaned and augmented

 Model
 Same general architecture as GPT2 – auto-regressive decoder

 Demonstrates thatVERY LARGE models are able to perform SOTA
on few shot and zero shot learning
 Size change qualitatively the ability of the model
 Starts the exploration of LLM for solving a variety of language tasks
 At the core of later developments like ChatGPT

Large size language models based on transformers
GPT family (OpenAI) – GPT3

Machine Learning & Deep Learning - P. Gallinari309

 Importance of size

Large size language models based on transformers
GPT family (OpenAI) – GPT3

Machine Learning & Deep Learning - P. Gallinari310

 Few shot etc
Figure 2.1: Zero-shot, one-
shot and few-shot,
contrasted with traditional
fine-tuning. The panels
above show
four methods for
performing a task with a
language model – fine-
tuning is the traditional
method, whereas zero-,
one-,
and few-shot, which we
study in this work, require
the model to perform the
task with only forward
passes at test
time. We typically present
the model with a few
dozen examples in the few
shot setting.

Large size language models based on transformers
GPT family (OpenAI) – GPT3

Machine Learning & Deep Learning - P. Gallinari311

 Arithmetic
 To test GPT-3’s ability to perform simple arithmetic operations without task-specific

training, we developed a small battery of 10 tests that involve asking GPT-3 a simple
arithmetic problem in natural language:

 • 2 digit addition (2D+) – The model is asked to add two integers sampled uniformly
from [0; 100), phrased in the form of a question, e.g. “Q: What is 48 plus 76? A: 124.”

 • 2 digit subtraction (2D-) – The model is asked to subtract two integers sampled
uniformly from [0; 100); the answer may be negative. Example: “Q: What is 34 minus 53?
A: -19”.

 • 3 digit addition (3D+) – Same as 2 digit addition, except numbers are uniformly
sampled from [0; 1000).

Large size language models based on transformers
GPT family (OpenAI) – GPT3

Machine Learning & Deep Learning - P. Gallinari312

 See prompting and few shot examples starting p 50 on
https://arxiv.org/pdf/2005.14165.pdf

 Few shot translation
 Training dataset contains 93% english words and 7% non english
 Language model trained on this corpus (no translation training)
 Evaluated on aligned datasets not seen during training

Large size language models based on transformers
GPT family (OpenAI) – GPT3

Machine Learning & Deep Learning - P. Gallinari313



Machine Learning & Deep Learning - P. Gallinari314

 Choosing an answer
 PIQA

 Common sense questions on the physical world

 COPA
 A task from the superGLUE dataset

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari315

 BERT family is a reference transformer model family
 BERT: Bidirectional Encoder Representations from Transformers
 It comes in many variants, see e.g. the available implementations in the Hugging Face

library, https://huggingface.co/
 It is used in many different contexts

 e.g. multilingual BERT (about 100 languages)

 As with GPT, BERT proceeds in two steps
 Unsupervised language model training on large corpora
 Supervised fine tuning for a variety of tasks

 Originality
 Two training criteria

 Masked Language Model (MLM) + Next Sentence Prediction (NSP)
 Remember: downstream tasks may be at the token (MLM criterion) or sequence (NSP

criterion) level
 Bidirectional Encoder: considers a whole sequence at each step and not only past

information like in auto-regressive models (GPT)
 The same architecture is used for unsupervised training and fine tuning (except from

output layers specific to downstream tasks)

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari316

 General overview
Next Sentence Prediction

(training loss)

Masked Language
model (training loss)

Input sentence pair

Masked sentence pair

Token embeddings –
input to the transformer

Output: final token
embeddings

CLS: start symbol

SEP: sentence
separator symbol

C: final transformation
of input token CLS

𝑇ଵ: final transformation
of input token Tok 1

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari317

 Input representation

 The initial token is always the special symbol CLS
 The final hidden state corresponding to this token is used as the input sequence agregate

representation for classification tasks
 Embeddings: WordPiece Embeddings with a 30k token vocabulary (detailed later)

 Segment embedding indicates 1st or 2nd sentence (learned)
 Position embeddings

 As in the transformer description or relative position depending on the model

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari318

 Training criteria
 Masked Language Model - MLM

 Mask 15% of the input tokens at random and predict the masked tokens.

 The final hidden vector corresponding to the Masked token are fed to a softmax layer
as in classical Language Models
 Note: additional tricks are used in practice for the masking

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari319

 Training criteria
 Next Sentence Prediction - NSP

 2 classes classification problem: is sentence B following sentence A in the corpus?
 Training on 50% positive/ negative samples
 1௦௧item output
 This is supposed to encode whole input sentences

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari320

 Pre-training data
 Books Corpus (800 M words)
 English Wikipedia (2500 M words)

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari321

 Fine tuning
 Plug the task specific inputs and

outputs into BERT and fine tune
end to end.

 At the output, the token
representations are fed into an
output layer for token level tasks
(sequence Tagging like NER, Q/A)
and the CLS representation is fed
into an output layer for
classification (e.g. entailment,
sentiment analysis)

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari322

 Feature Learning
 Instead of fine tuning, the model could be used to extract token representations

from a pre-trained model. The token are then fed into task specific architectures
without fine tuning of the token representations (as with Word2Vec).
 The paper indicates performance not far from fine tuning

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari323

 Feature Learning

Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning - P. Gallinari324

 RoBERTa (Liu et al 2019)
 Follow up of BERT, analyzes key hyperparameters of BERT and proposes efficient

strategies
 Has became a reference for BERT like architectures
 Main findings

 MLM training criterion is enough, no need for NSP

 Training with large batches improves performance

 More training data improves performance

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari325

 Illustrations from
 Raffel, C., et al. 2020. Exploring the Limits of Transfer Learning with a Unified

Text-to-Text Transformer. JMLR. 21, (2020), 1–67.
 Slides: https://colinraffel.com/talks/mila2020transfer.pdf

 Objective of the paper
 Explore different strategies for large size Tranformers on a variety of NLP tasks

 model architectures, pre-training and fine tuning training objectives, transfer learning,
scaling, etc

 Strategy
 Introduce a Text-to-Text framework allowing handling several NLP tasks in a

unified way

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari326

 Framework: Text-to-Text Transfer Transformer (T5)
 Reformulate NLP tasks used in classical benchmarks (classification,

summarization, translation) in a Text-to-Text framework
 Both input and output are textual strings

 Evaluate within this unified framework different model design choices

Task premise:
this string

defines the task

Input
sentence

Output
sentence

Translation

Classification

Regression

Summarization

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari327

 Framework: Text-to-Text Transfer Transformer (T5)
 Text-to-Text requires a decoder to generate text

 BERT encoders are designed to produce a single output per token, i.e. they are ok for
classification tasks or text span selection, not directly applicable for generation

 This frameworks allows them to use maximum likelihood (typically cross-entropy) as
a training objective for both pretraining and fine tuning

 Note:
 at test time, they use greedy decoding
 Vocabulary: Sentencepiece with a 32 k vocabulary

 Examples how to reframe NLP tasks in T5
 Translation

 Input: « translate English to German:That is good », translate English to German is a premise
(a promt) that defines the task

 Output: « das ist gut »
 Text classification

 MNLI benchmark: goal is to predict wether a premise implies (« entailment »), contradicts
(« contradiction ») or neither (« neutral ») a hypothesis

 Input: « mnli premise: I hate pigeons. Hypothesis: my feeling towards pigeons are filled with
animosity »

 Output: target word « entailment »

Large size language models based on transformers
T5 (Google) - illustration: J. Alammar 2018

Machine Learning & Deep Learning - P. Gallinari328

 T5 architecture:
 different choices, best one is Encoder + Decoder close to the original

Transformer (Vaswani 2017)

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari329

 Pre-training dataset 750 GB of text extracted from the web and
cleaned (below examples of the cleaning process)
 Available at https://www.tensorflow.org/datasets/catalog/c4

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari330

 Unsupervised training objective
 Best one is similar to MLM in BERT (other choices discussed later)

Sample tokens in the
input text

Replace them with « sentinel » -
special tokens uniques over the
examples

Target: sentinel tokens +
missing tokens

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari331

 Workflow

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari332

 Large scale comparison
 Comparing different hyperparameters, like architecture, training criteria,

multitask versus pretraining + fine tuning, etc.

 Main findings
 Text-to-Text provides a simple way to train a single model on a variety of tasks
 Original encoder-decoder scheme works best in the T2T framework
 Objective: the MLM objective is superior to classical language based prediction
 Transfer training: fine tuning the whole model works better than tuning task

specific modules only
 Scale: larger models, more data increase the performance

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari333

 Large scale comparison, example: Architectures evaluated
 3 types of architectures involving 3 attention patterns

 Fully-visible: similar to BERT

 Causal: similar to GPT

 Causal with prefix: allows full attention of part of the input

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari334

 Large scale comparison, example: 3 architectures evaluated

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari335

 Large scale comparison, example: different objectives for training

Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning - P. Gallinari336

 Summary of experiments

Large size language models based on transformers

Machine Learning & Deep Learning - P. Gallinari337

 Recap on models architectures
 Different schemes for using Transformers (figure from Lewis, et al. 2019. BART: Denoising

sequence-to-sequence pre-training for natural language generation, translation, and comprehension).

Tokenization

Machine Learning & Deep Learning - P. Gallinari338

Tokenization

Machine Learning & Deep Learning - P. Gallinari339

 A text is a sequence of characters
 An important step is the segmentation of the sequence into

meaningful units – this is calleds tokenization
 All the methods for dealing with NLP (RNNs, Transformers) use some form of

tokenization.
 This means that a pretrained model should be used with the

corresponding tokenization

 Note
 This is not the only one preprocessing step, cleaning, e.g. lowercase, or other

normalization operations might be performed.

Tokenization

Machine Learning & Deep Learning - P. Gallinari340

 Example from:
 https://huggingface.co/transformers/tokenizer_summary.html

 Consider the sentence:
 "Don't you love Transformers? We sure do."

 Naive tokenization methods
 Split words by spaces

 ["Don't", "you", "love", "Transformers?", "We", "sure", "do."]

 Split items by spaces and punctuation
 ["Don", "'", "t", "you", "love", "Transformers", "?", "We", "sure", "do", "."]

Tokenization

Machine Learning & Deep Learning - P. Gallinari341

 Rule based tokenizers
 spaCy: a free, open-source library for NLP in Python. It offers a rule based

tokenizer. spaCY splits on spaces and then looks individual substrings: looks for
special tokens (may be user defined), and splits off prefixes, suffixes, infixes.

 Results in (too) large vocabulary – not used with transformers

 For the sentence "Don't you love Transformers? We sure do.” this would give
(https://spacy.io/usage/spacy-101#annotations)
 ["Do", "n't", "you", "love", "Transformers", "?", "We", "sure", "do", "."]

Tokenization - Subword tokenization - examples

Machine Learning & Deep Learning - P. Gallinari342

>>> from transformers import BertTokenizer

>>> tokenizer=BertTokenizer.from_pretrained("bert-base-uncased")

>>> tokenizer.tokenize("I have a new GPU!")

["i", "have", "a", "new", "gp", "##u", "!"]

>>> from transformers import XLNetTokenizer

>>> tokenizer=XLNetTokenizer.from_pretrained("xlnet-base-cased")

>>> tokenizer.tokenize("Don't you love Transformers? We sure do.")

["▁Don", "'", "t", "▁you", "▁love", "▁", "Transform", "ers", "?", "▁We", "▁sure", "▁do", "."]

Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

Machine Learning & Deep Learning - P. Gallinari343

 Relies on a pre-tokenizer that splits training data into words
 e.g. space tokenization, spaCy, etc
 Then compute the frequency of each word

 Algorithm
 Split all words into unicode characters – this constitutes the initial vocabulary
 While the vocabulary limit size is not reached

 Find the most frequent symbol bigram in the vocabulary
 Merge the symbols to create a new symbol and add this new symbol to the vocabulary

 Size of vocabulary and # merge operations are parameters of the algorithm
 Used in GPT (478 base symbols and 40 k merges)
 GPT2 uses a variant, replacing unicode characters by Bytes and using 256 bytes as

base symbols (a unigram character may need multiple bytes for its encoding) and 50 k
merges plus an « unk » symbol for symbols not seen during training, i.e. a 50257
dictionary size
 With Byte BPE, no need for « unk » symbol, all the Bytes are seen during training

Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

Machine Learning & Deep Learning - P. Gallinari344

 Example
Dictionary (5 words) Frequency

h u g 10

p u g 5

p u n 12

b u n 4

h u g s 5

Dictionary Frequency

h ug 10

p ug 5

p u n 12

b u n 4

h ug s 5

Vocabulary (7 symbols)

b, g, h, n, p, s, u

Vocabulary

b, g, h, n, p, s, u, ug

Pair (u,g) is the most frequent
(20) bigram, add a new symbol,
« ug » in the vocabulary, and
merge the corresponding
representations

Pair (u,n) is the most frequent
(16) bigram, add a new symbol,
« un » in the vocabulary, and
merge the corresponding
representations

Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

Machine Learning & Deep Learning - P. Gallinari345

 Example

Dictionary Frequency

hug 10

p ug 5

p un 12

b un 4

hug s 5

Dictionary Frequency

h ug 10

p ug 5

p un 12

b un 4

h ug s 5

Pair (h, « ug ») is the most
frequent (15) bigram, add a
new symbol, « ug » in the
vocabulary, and merge the
corresponding representations

Vocabulary

b, g, h, n, p, s, u, ug, un

Vocabulary

b, g, h, n, p, s, u, ug, un, hug

At test time, all the new text is
decomposed according to the
final dictionary, e.g. « bug » is
tokenized as [« b », »ug »] and
symbols not seen during training
are replaced by a special
symbol « unk »

Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

Machine Learning & Deep Learning - P. Gallinari346

 Merge is performed at the word level and not at the level of whole
sentences or sequences
 This is to save computation cost

 If there are N symbols, naive implementation of most frequent bigram requires 𝑂ሺ𝑁ଶሻ
operations

Tokenization - Subword tokenization
Wordpiece (Schuster 2012) – BERT uses a variant of Wordpiece

Machine Learning & Deep Learning - P. Gallinari347

 Similar to BPE, but merge rule changes
 Instead of merging the most frequent bigrams, Wordpiece merges the symbol

pair that maximises the likelihood of a unigram language model trained on the
training data, once added to the vocabulary

 Log likelihood at step t

 𝐿 𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑡 ൌ ∑ log𝑝ሺ𝑥௜ሻ௫೔∈௏௢௖௔௕௨௟௔௥௬ሺ௧ሻ

 If we fusion symbols 𝑥௝ and 𝑥௞ , the new log likelihod is

 𝐿 𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑡 ൅ 1 ൌ 𝐿 𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑡 ൅ log ௣ሺ௫ೕ,௫ೖሻ
௣ ௫ೕ ௣ሺ௫ೖሻ

 Then one merges the couple 𝑥௝ and 𝑥௞ that maximizes log ௣ሺ௫ೕ,௫ೖሻ
௣ ௫ೕ ௣ሺ௫ೖሻ

This is the mutual information between the 2 symbols

Tokenization - Subword tokenization
Sentencepiece (Kudo 2018) – used in XLNet

Machine Learning & Deep Learning - P. Gallinari348

 Does not use pre-tokenization but considers the text as a raw input
stream then including space and separation characters.

 Makes use of BPE or Unigram (another tokenizer not described
here) for constructing the appropriate vocabulary.
 Makes use of a special data structure (priority queue based algorithm) to reduce

the asymptotic runtime from 𝑂ሺ𝑁ଶሻ to 𝑂ሺ𝑁𝑙𝑜𝑔𝑁ሻ

 Properties
 Could be used easily on a variety of languages including languages that do not

use spaces to separate words (e.g. Chinese)
 Does not require any language specific tokenizers

Dowsnstream tasks used to evaluate large transformers models

Machine Learning & Deep Learning - P. Gallinari349

 Classification tasks – GLUE and Super Glue Benchmarks
 MNLI Multi-Genre Natural Language Inference

 is a large-scale, crowdsourced entailment classification task (Williams et al., 2018).
Given a pair of sentences, the goal is to predict whether the second sentence is an
entailment, contradiction, or neutral with respect to the first one.

 QQP Quora Question Pairs
 is a binary classification task where the goal is to determine if two questions asked on

Quora are semantically equivalent (Chen et al., 2018).
 QNLI Question Natural Language Inference

 Is a version of the Stanford Question Answering Dataset (Rajpurkar et al., 2016) which
has been converted to a binary classification task (Wang et al., 2018a). The positive
examples are (question, sentence) pairs which do contain the correct answer, and the
negative examples are (question, sentence) from the same paragraph which do not
contain the answer.

 SST-2 The Stanford Sentiment Treebank
 is a binary single-sentence classification task consisting of sentences extracted from

movie reviews with human annotations of their sentiment (Socher et al., 2013).

Dowsnstream tasks used to evaluate large transformers models

Machine Learning & Deep Learning - P. Gallinari350

 CoLA The Corpus of Linguistic Acceptability
 is a binary single-sentence classification task, where the goal is to predict whether an

English sentence is linguistically “acceptable” or not (Warstadt et al., 2018).

 STS-B The Semantic Textual Similarity Benchmark
 is a collection of sentence pairs drawn from news headlines and other sources (Cer et

al., 2017). They were annotated with a score from 1 to 5 denoting how similar the two
sentences are in terms of semantic meaning.

 MRPC Microsoft Research Paraphrase Corpus
 consists of sentence pairs automatically extracted from online news sources, with

human annotations for whether the sentences in the pair are semantically equivalent
(Dolan and Brockett, 2005).

 RTE Recognizing Textual Entailment
 is a binary entailment task similar to MNLI, but with much less training data (Bentivogli

et al., 2009).14

Dowsnstream tasks used to evaluate large transformers models

Machine Learning & Deep Learning - P. Gallinari351

 Question Answering
 The Stanford Question Answering Dataset (SQuAD v1.1) is a collection of 100k

crowdsourced question/answer pairs (Rajpurkar et al., 2016). Given a question
and a passage from Wikipedia containing the answer, the task is to predict the
answer text span in the passage.

 The SQuAD 2.0 task extends the SQuAD 1.1 problem definition by allowing for
the possibility that no short answer exists in the provided paragraph, making the
problem more realistic.

 Q/A with multiple choices
 The Situations With Adversarial Generations (SWAG) dataset contains 113k

sentence-pair completion examples that evaluate grounded commonsense
inference (Zellers et al., 2018). Given a sentence, the task is to choose the most
plausible continuation among four choices.

References: papers used as illustrations for the presentation

Machine Learning & Deep Learning - P. Gallinari352

 Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks. In Proceedings of The 34th International Conference
on Machine Learning (pp. 1–32). Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks. In ICCV (pp. 2223–2232).

 Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.

 Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly Learning To Align and Translate. In Iclr 2015.
https://doi.org/10.1146/annurev.neuro.26.041002.131047

 Baydin Atilim Gunes , Barak A. Pearlmutter, Alexey Andreyevich Radul, Automatic differentiation in machine learning: a survey. CoRR abs/1502.05767
(2017)

 Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proceedings of
the National Academy of Sciences of the United States of America, 116(32), 15849–15854. https://doi.org/10.1073/pnas.1903070116

 Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5, 135-146.

 Cadène R., Thomas Robert, Nicolas Thome, Matthieu Cord:M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and
Hidden Markov Model for Video Frames Classification. CoRR abs/1610.05541 (2016)

 Chen M. Denoyer L., Artieres T. Multi-view Generative Adversarial Networks without supervision, 2017 , https://arxiv.org/abs/1711.00305.

 Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.
https://doi.org/10.1109/TPAMI.2017.2699184

 Cho, K., Gulcehre, B. van M.C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. 2014. Learning Phrase Representations using RNN Encoder –
Decoder for Statistical Machine Translation. EMNLP 2014 (2014), 1724–1734.

 Cybenko, G. (1993). Degree of approximation by superpositions of a sigmoidal function. Approximation Theory and Its Applications, 9(3), 17–28.

 Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. In arxiv.org/abs/1603.07285 (pp. 1–31).

 Durand T. , Thome, N. and Cord M., WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks, CVPR 2016.

 Frome, A., Corrado, G., Shlens, J., Bengio, S., Dean, J., Ranzato, M.A. and Mikolov, T. 2013. DeViSE: A Deep Visual-Semantic Embedding Model. NIPS
2013 (2013).

 Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In CVPR (pp. 2414–2423).

References: papers used as illustrations for the presentation

Machine Learning & Deep Learning - P. Gallinari353

 Goodfellow I, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio , Generative adversarial nets, NIPS 2014, 2672-2680

 Goodfellow, I., Pouget-Abadie, J., & Mirza, M. (2014). Generative Adversarial Networks. NIPS, 2672--2680.

 Guhring et al., 2020, Expressivity of deep neural networks, arXiv:2007.04759

 He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual learning for image recognition. In CVPR, 770–778.

 He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity mappings in deep residual networks. In ECCV, 630–645.

 He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2017–Octob, 2980–2988.

 Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward Networks [J]. Neural Networks, 4(2), 251–257.

 Ioffe S., Szegedy C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 1995, http://arxiv.org/abs/1502.03167

 Jalammar 2018 - http://jalammar.github.io/illustrated-transformer/

 Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., & Girshick, R. (2017). CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. In CVPR (pp. 1988–1997).
https://doi.org/10.1109/CVPR.2017.215

 Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Fei-Fei, L., Zitnick, C. L., & Girshick, R. (2017). Inferring and Executing Programs for Visual Reasoning. In ICCV (pp. 3008–3017).
ttps://doi.org/10.1109/ICCV.2017.325

 Krizhevsky, A., Sutskever, I. and Hinton, G. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information. (2012), 1106–1114.

 Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J. and Ng, A. 2012. Building high-level features using large scale unsupervised learning. Proceedings of the 29th International Conference on
Machine Learning (ICML-12). (2012), 81–88.

 Lerer, A., Gross, S., & Fergus, R. (2016). Learning Physical Intuition of Block Towers by Example. In Icml (pp. 430–438). Retrieved from http://arxiv.org/abs/1603.01312

 Lin, M., Chen, Q., & Yan, S. (2013). Network In Network. In arxiv.org/abs/1312.4400. https://doi.org/10.1109/ASRU.2015.7404828

 Lin, Z., Feng, M., Santos, C. N. dos, Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A Structured Self-attentive Sentence Embedding. In ICLR.

 Liu, P.J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, Ł. and Shazeer, N. 2018. Generating wikipedia by summarizing long sequences. ICLR (2018), 1–18.

 Mathieu, M., Couprie, C., & LeCun, Y. (2016). Deep multi-scale video prediction beyond mean square error. In ICLR (pp. 1–14). Retrieved from http://arxiv.org/abs/1511.05440

 Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. In arxiv.org/abs/1411.1784.

 Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. In NIPS Deep Learning Workshop.
https://doi.org/10.1038/nature14236

 Nakkiran, P., Kaplum, G., Bansal, Y., Yang, T., Barak, P., & Sutskever, I. (2020). Deep Double Descent: Where Bigger Models and More Data Hurt. ICLR, 1–24.

 Pearlmutter B.A., Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Trans on NN, 1995

References: papers used as illustrations for the presentation

Machine Learning & Deep Learning - P. Gallinari354

 Pennington, J., Socher, R. and Manning, C.D. 2014. GloVe : Global Vectors for Word Representation. EMNLP 2014 (2014), 1532–1543.

 Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In
arxiv.org/abs/1511.06434 (pp. 1–15). https://doi.org/10.1051/0004-6361/201527329

 Radford, Luke Metz, Soumith Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016,
http://arxiv.org/abs/1511.06434

 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. In CVPR (pp. 779–788).

 Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. and Lee, H. 2016. Generative Adversarial Text to Image Synthesis. Icml (2016), 1060–1069.

 Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016). Generative Adversarial Text to Image Synthesis. In Icml (pp. 1060–1069).

 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In MICCAI 2015: Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241).

 Ruder S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

 Shelhamer, E., Long, J., Darrell, T., Shelhamer, E., Darrell, T., Long, J., … Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3431–3440).

 Srivastava N., Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov: Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research 15(1): 1929-1958 (2014)

 Sutskever, I., Vinyals, O. and Le, Q. V 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems
(NIPS) (2014), 3104–3112.

 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention Is All You Need. In NIPS.
 Vinyals, O., Toshev, A., Bengio, S. and Erhan, D. 2015. Show and Tell: A Neural Image Caption Generator, CVPR 2015: 3156-3164

 Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., … Goodlin, R. C. (1975). 1975 Adaptive noise cancelling: Principles
and applications. Proceedings of the IEEE, 63(12), 1692–1716. https://doi.org/10.1109/PROC.1975.10036

 Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
Jeffrey Dean, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, Technical Report, 2016.

References: papers used as illustrations for the presentation

Machine Learning & Deep Learning - P. Gallinari355

 Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., … Bengio, Y. (2015). Show, Attend and Tell: Neural Image
Caption Generation with Visual Attention. In Icml-2015 (pp. 2048–2057). https://doi.org/10.1109/72.279181

 Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for Document Classification.
In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language

 Yu, F., & Koltun, V. (2016). Multi-Scale Context Aggregation by Dilated Convolutions. In ICLR, arxiv.org/abs/1511.07122.

Multi-layer Perceptron – SGD Training
Summary of the algorithm with MSE loss + sigmoid units

Machine Learning & Deep Learning - P. Gallinari356

 The algorithm is described for a MSE loss – similar derivations for
other losses

 MLP with 𝑀 ൅ 1 layers of cells numbered 0 (input layer), …, 𝑀(output layer), 𝑀 weight
layers numbered 𝑊 1 , … ,𝑊 𝑀 ,𝑤௜௝ሺ𝑚ሻ is the weight from cell 𝑗 in layer 𝑚െ 1 to
cell 𝑖 in layer 𝑚 (and is one of the components of 𝑊௠

 Algorithm
 Sample an example 𝒙,𝒚 ,𝒙 ∈ 𝑅௡, 𝐲 ∈ 𝑅௣

 Compute output 𝒚ෝ ൌ 𝐹ௐሺ𝒙ሻ,𝒚ෝ ∈ 𝑅௣

 Compute difference 𝜹 ൌ 𝒚 െ 𝒚ෝ ൌ 𝑦ଵ െ 𝑦ොଵ, … , 𝑦௣ െ 𝑦ො௣
்

 Back propagate this error from the last weight layer to the first weight layer:
 𝑤௜௝ሺ𝑚ሻ ൌ 𝑤௜௝ሺ𝑚ሻ ൅ ∆𝑤௜௝ሺ𝑚ሻ  update equation for layer 𝑚 and weight 𝑤௜௝௠

 ∆𝑤௜௝ 𝑚 ൌ 𝜖𝑒୧ 𝑚 𝑧୨ሺ𝑚 െ 1ሻ  gradiant for 𝑤௜௝ሺ𝑚ሻ
 « 𝑒 » is the quantity that will be back propagated

 𝑒୧ 𝑀 ൌ 𝛿௜𝑔′ሺ𝑎௜ሺ𝑀ሻሻ if 𝑖 is an output cell with 𝛿௜ ൌ ሺ𝑦௜ െ 𝑦ො௜ሻ
 𝑒୧ 𝑚 ൌ 𝑔′ሺ𝑎௜ሺ𝑚ሻሻ∑ 𝑒௛ 𝑚 ൅ 1 𝑤௛௜ሺ𝑚 ൅ 1ሻ௛ ௣௔௥௘௡௧௦ ௢௙ ௜ if 𝑖 is not an output cell

