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Course Outline and Organization

» Introductory ML course with a focus on Neural Networks and Deep Learning

» Organization
» Courses 14 x 2 h —P,. Gallinari
» Practice and exercises 14 x2 h

» QOutline

» Introduction
Basic Concepts of Machine Learning
» Neural Networks and Deep Learning
Introductory Concepts - Perceptron-Adaline
Linear Regression and Logistic Regression - Optimization Basics
Multilayer Perceptrons — Generalization Properties
Convolutional Neural Networks —Vision applications
Recurrent Neural Networks — Language applications
Transformers and attention models — Language applications
Kernel machines

v

Gaussian processes
» Meta-learning
Neural processes
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Ressources

» Books

» The following two books cover the course (more or less)
Understanding Deep Learning by S.].D. Prince 2023 is a recent book covering many topics from the course?
0 Does not delve into the details but provides a good overview of the domain bases
O Awvailable at http://udlbook.com

Deep Learning, Foundations and concepts, by C. Bishop
O  https://www.bishopbook.com/

Pattern recognition and Machine Learning, C. Bishop, Springer, 2006
0 Chapters3,4,5,6,7,9,

» Many other books can be profitable, e.g.
Deep Learning, An MIT Press book, I. Goodfellow,Y. Bengio and A. Courville, 2017
0O  http://www.deeplearningbook.org/

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, T. Hastie, R. Tibshirani, J.
Friedman, Springer, 2009

O Version pdf accessible : http://statweb.stanford.edu/~tibs/ElemStatLearn/

Bayesian Reasoning and Machine Learning, D. Barber, Cambridge University Press, 2012
0 Version pdf accessible : http://www.cs.ucl.ac.uk/staff/d.barber/brml/

» Courses

» Several on line ressources, covering this topic and others
Course slides and material: Machine Learning, Deep Learning for Vision, Natural Language Processing, ...
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Machine Learning General
Framework

4 learning problems

Risk, Empirical Risk




4 learning problems

» ML develops generic methods for solving different types of
problems

» Typical classification of ML problems:
» Supervised
» Unsupervised
» Semi-supervised

» Reinforcement
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4 learning problems
Supervised learning

» Training set: couples (inputs, target) (x1,y%), .., (xV, y")

» Objective : learn to associate inputs to outputs

»  With good generalization properties

» Classical problems: classification, regression, ranking
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» Most applications today fall under the supervised learning paradigm
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4 learning problems
Unsupervised learning

» Training set

N

» Only input data x1, ..., xV, no target
» Objective
» Extract some regularities from data

Similarities, relations between items, latent factors explaining data generation

» Use
>

Density estimation, clustering, latent factors identification, generative models
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4 learning problems
Semi-supervised learning

» Task

» Similar to supervised learning

» Training set
» Small humber of labeled data (xl,yl), e (xN;)’N)

» Large number of unlabeled data xV*1 N+M

» Obijective

» Extract information from unlabeled data useful for labeling examples
e.g. structure

e, X

» Joint learning from the two datasets

O
Q%OOO
O O
O O
O O O
Cop0 @

» Use

» When large amounts of data are available and labeling is costly
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4 learning problems
Reinforcement learning

» Training set
» Couples (input, qualitative target)
» x's may be sequences (temporal credit assignment), y' are qualitative targets (e.g. 0,1), deterministic or

stochastic
» Paradigm
» Learning by exploring the environment, using reinforcement signals (reward)
. . . . Environnement
» Exploration/ exploitation paradigm
i /
/
— Action
Perception
Récompense
» Use

» command, sequential decision, robotis, two players game, dynamic programming, ...
» RL for games
Backgammon (TD Gammon Thesauro 1992)
Trained on 1.5 M plays
Plays against itself
» DeepRL
AlphaGo (2015), AlphaGo Zero (2017)
Alphazero (2017)
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Risk — Empirical Risk
Probabilistic formalism

» Data

» Random vectors (z) generated from distribution p(z)

» Learning model

» F = {Fy}g with 6 the model parameters, usually real parameters

» Loss

» cg(2) for model Fy and example z

» Risk

» Ry =E;[co(@] = [ co(2)p(2)dz
» Optimal solution
» Fgx = argmingRy
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Risk — Empirical Risk
Learning from examples

» Data

b= {Zi}i=1..1v

» Empirical risk
1 .
» =+ ie1 Co(2)

» Empirical risk minimization principle
F g+ minimizing the theoretical risk is approximated by Fz mimizing the empirical risk

Is that sufficient ? Answer is No

» Inductive framework

» We will consider the following ML framework
The model learns on an available training set

Once trained parameters are fixed and the model can be used for inference and/or
evaluated on a test set
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Example of generic ML problems

»  Classification
» z=(x,y),y €{0,1}
» Fy threshold functions
» R :probability of incorrect classification
» C :error frequency
» Regression
» z=(x,y),y €ER
» Fy real functions (e.g. linear NNs) co(2) = |ly — Fg(x)||?
» R :expectation of quadratic error
» C :sum of quadratic errors
» Density estimation

0ify = Fg(x)
1 otherwise

co(z) = {

r» Z=X
» Fp real functions
» R :likelihood (expectation) cg(z) = —Inpy (%)

» C : empirical estimator of likelihood (sum)
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Neural Networks and Deep Learning




Context




Context
Deep Learning today

>
>

Deep Learning is today the most popular paradigm in data science

Popularized since 2006, first by some academic actors and then by
big players (GAFAs, BATs, etc)

It has initiated a « paradigm shift » in the field of data science / Al
and definitely changed the way one will exploit data

» e.g. key players have made available development platforms (initiated e.g. with
TensorFlow, PyTorch, Jax, ...)

Allowing the development in a « short time » of complex processing chains
Making complex DL methods available for a large community

Today DL is developing at a much larger scale, including

» Software development platforms and environments

» Services in multiple domains: biotech, health, weather forecast, finance, etc
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Machine Learning successes

» Initially concerns the numerical world and GAFAs/BATs applications
» Semantic data analysis: vision, speech, language, traces;

» Virtual worlds, e.g. games

Generative models 2022 Stable-diffusion
https://stablediffusionweb.com/

Generative models - (Karras et al.
2019) — Style GAN - NVIDIA

Alphastar, Vinyals et al.
2019 (Starcraft) -
Deepmind

DALL.E - 2021 https://openai.com/blog/dall-e/
Text: an armchair in the shape of an avocado. . . .

Make it be the size

of the rocketship times 0.75

ChatGPT 2022 OpenAl-Codex 2021
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Machine learning successes

» Progressively targets other domains

» Examples Al4Science

Weather forecast
GraphCast — Google
& DeepMind 2022
ECMWEF website

Experimental: GraphCast ML model: Mean sea level

pressure and 850 hPa wind speed

CECMWF

17

Foundation models
Spatio-temporal
dynamics —

Hao et al. (ICML 2024)
http://arxiv.org/abs/2403.03542

Multiple PDE datsets
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Figure 1. An illustration of pre-training a PDE foundation model
using massive data from multiple PDE datasets. The pre-trained
model is then used for fine-tuning different downstream operator
learning tasks, which can be complex. (Best viewed in color)
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Introductory NN concepts

Intuitive introduction via 2 simple —historical- models
Perceptrons and Adalines




Neural Networks inspired Machine Learning
Brain metaphor

» Artificial Network Networks are an important paradigm in Statistical Machine
learning and Artificial Intelligence

» Human brain is used as a source of inspiration and as a metaphor for
developing Artificial NN

» Human brain is a dense network 10! of simple computing units, the neurons. Each neuron is
connected — in mean- to 10* neurons.

» Brain as a computation model

Distributed computations by simple processing units
Information and control are distributed

Learning is performed by observing/ analyzing huge quantities of data and also by trials and errors
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Formal Model of the Neuron
McCulloch — Pitts 1943

Dendrites

\Cell body
=~ AXon

@_,_5.))/ Direction of message O

C L L *»~ For McCulloch — Pitts
on terminals synapse . .

-.»,-.)) with dendrites on target cell neuron, fis a threshold (sign)
5 function
’ @ o f

\\‘ o i

L_l otherwise

threshold _WO

A synchronous assembly of neurons is capable of universal
computations (aka equivalent to a Turing machine)
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Perceptron (1958 Rosenblatt)
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""l- i
ﬁ Association cells Decision cell (Figure from Perceptrons, Minsky and Papert 1969) LMy

» The decision cell is a threshold function (McCulloch — Pitts neuron)

F(x) = sgn(Qi=, wix; + wy)

» This simple perceptron can perform 2 classes classification
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Perceptron Algorithm (2 classes)

Data

Labeled Dataset {(xi,y"),i =1..N,x€R",y € {—1,1}}
Training set

Output
utpu Classifier specificatiol

classifier w € R™, decision F(x) = sgn(X™,w;x;)
Initialize w (0)
Repeat (1)

Choose an example (x(t), y(t))

1fy(©)w(t).x(t) < 0thenw(t + 1) = w(t) + ey(t)x(t)

«~—— Stochastic
Algorithm

Until convergence

» The learning rule is a stochastic gradient algorithm for minimizing the
number of wrongly predicted labels

» Multiple (p) classes: p perceptrons in parallel, 1 class versus all others!
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Linear discriminant function

F(x) =w.x+wy =X qgw;x; with xg = 1
» Decision surface : hyperplane F(x) = 0

» Properties

> w is a normal vector to the hyperplane, it defines its orientation
> distance from x to H : v = F(x)/||w||
> if wo = 0 H goes through the origin
~ Fix)>0
F|(x) v w / F =0
<+ F(x) <0
<~
+ O 0
O
O 0O
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Perceptron algorithm performs a stochastic gradient descent

» Loss function

r C=-— z:(x,y)missclassified W.Xy = — Z:(x,y)miss—classified c(x,y)
» Objective : minimize C

» gradient

aC

ac ac B
ow; Z(x,d)missclassified Xy

» grad,,C = (— —)Twith

ow,’ T owy

» Learning rule
» Stochastic gradient descent for minimizing loss C
» Repeat (t)
Choose an example (x(t), y(t))
w(t) =w(t—1) — e grad,c(x,y)
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Multi-class generalization

» Usual approach: one vs all

» p classes =p " 2 class problems " : class C; against the others
Learn p discriminant functions F(x),i=1..p
Decision rule: x € Ciif Fi(x) > Fi(x) forj #1i
This creates a partition of the input space
Each class is a polygon with at most p — 1 faces.

» Convex regions: limits the expressive power of linear classifiers
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Perceptron properties (1958 Rosenblatt)

» Convergence theorem (Novikof, 1962)
» LetD = {(xt,y1),...,(x",y")} a data sample. If

R = max [«
1<i<N

Sup min yi(w. xi) > p (p is called a margin)
w l

The training sequence is presented a sufficient number of time
2

. . R .
» The algorithm will converge after at most [ﬁ] corrections

» Generalization bound (Aizerman, |1964)
» If in addition we provide the following stopping rule:

. . 1+2Ink-Inn
Perceptron stops if after correction number k, the next m; = e data are correctly
recognized
» Then

1+41InR/p—Inn
—In(1-¢)

the perceptron will converge in at most 1 < [R?/p?] steps

with probability 1 — 7, test error is less than €

Link between training and generalization performance
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Convergence proof (Novikof)

» Hyp:lets take w* / |[|[w*|| =1
» Wy = 0, w,_4is the weight vector before the t* correction
» Wy = Wi_q + ey(t)x(t)
» W W = w1 W ey()x(t).wF = w1 wF + €p
» By induction w;.w* > tep

lwell® = lwe_qll? + 2ey(Owe—q. x(t) + €*[|x ()]

b Iwell? < lweq|I? + €2]lx(®)]I? since y(D)we_1. x(t) < 0 (remember that x(t)
is incorrectly classified)

»lwell? < llweqlI” + €*R?

» By induction ||w,||* < te?R?

 tep <wew < llwellw'll < VEeR[w"|
R?2 R?2
t<Slwl? =5

v
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Adaline — Adaptive Linear Element
(Widrow - Hoff 1959)

ADAPTIVE
SIGNAL
PROCESSING

Linear unit: F(x) = ); wix; +wy

Desired Response Input
(training signal)

» « Least Mean Square » LMS algorithm

» Loss: cxy) = |ly—-F@I|*
» Algorithm: Stochastic Gradient Descent (Robbins — Monro (1951))
(_Initialize w(0)
Iterate

0 Choose an example (x(t), y(t))

\_ O w(t+1)=w()—€l, clx,y) J
» Workhorse algorithm of adaptive signal processing: filtering, equalization, etc.
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Adaline example motivating the need for adaptivity from an
engineering perspective

» Adaptive noise cancelling

CHEST
LEADS

PRIMARY r========ass==ss======= -:Ei.rETEM

mPUT | BUTRUT
SIGNAL L UTPU
SOURCE o Tz
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ADAPTIVE ABDOMINAL

LEAD
s FILTER PLACEMENTS
£ i £ (s) ®)
REFERENCE, ERROA Fig. 14. Cancelling maternal heartbeat in fetal electrocardiography.
L | e e (a) Cardiac electric field vectors of mother and fetus. (b} Placement
ADAPTIVE NOISE CANCELLER of leads.
Fig. 1. The adaptive noise cancelling concept. ABDOMINAL LEAD ouTRuT

e
cugst 1 [
r LEAD

HEFEREM:EJ'
INPUTS

Fig. 15. Multiple-reference noise canceller used in fetal ECG experiment.

Heartbeat cancelling
Objective: get z as close as possible to the
baby signal s
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Adaline — heartbeat cancelling detailed

4
4

30

With the notations of the Figure
Hyp.:
S, Mg, Nq,Y are stationary with zero means
s is uncorrelated with ny,n; and then y
Filtering scheme
outputz =s+ng—y
Loss function to be minimized E[z?]

Then
72 =52+ (ng — )% + 2s(ng — y)

E[z%] = E[s*] + E[(ng — ¥)?] + 2E[s(no — y)]
E[z%] = E[s?] + E[(ny — y)?] since s and (ny — V) are not correlated
So that

Min E[z?] = E[s?] + Min E[(ny — y)?]
When the filter is trained to minimize E[z?], it also minimizes E[(ny — v)?]

Then y is the best LMS estimate of ng, and z is the best LMS estimate of signal s
(sincez—s =ng—Yy)

Machine Learning & Deep Learning - P. Gallinari



Introductory concepts
Summary of key ideas

» Learning from examples
» Perceptron and Adaline are supervised learning algorithm
» Training and test set concepts
Parameters are learned from a training set, performance is evaluated on a test set
Supervised means each example is a couple (x,y)
» Stochastic optimization algorithms
» Training requires exploring the parameter space of the model (the weights)

» For NNs, most optimization methods are based on stochastic gradient descent

» Generalization properties
» Learning # Optimization

» One wants to learn functions that generalize well
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Optimisation : gradient methods —
introduction




Optimization
Batch gradient algorithms

» Batch gradient general scheme
» Training Data Set
D = {(x4yY), .., x",y")}
» Objective
Optimize a loss function C(w) = ?’:1 cw (x4, ¥Y)
0 Sum of invidual losses ¢, (.,.) on each example (x!, y)

» Principle

Initialize w = w(0)
Iterate until convergence
O w(t+1) =w(t)+e(t)Ay(t)

A, (t) is the descent direction, €(t) is the gradient step

» Both are determined via local information computed from C(w), using
approximations of the |st or 2nd order of C(w)

e.g. steepest descent, is a 15¢ order gradient with : A, (t) = =V, C(t),e(t) = €
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Optimization
Batch second order gradients

» Consider a quadratic approximation of the loss function
» C is approximated via a parabola

0 Cw) = C(w(®) + (w—w(®) VC(w(®) + 1 (w - w(®) H(w - w(D)
0 where w(t) is the parameter vector at time t

2
O H is the Hessian of C(.) :H;; = —avi-acw-
i0W]

» Differentiating w.r.t. w
0 VC(w) =vC(w(t)) +Hw —w(t))
» The minimum of C is obtained for
o Vew)=0
» Several iterative methods could be used
E.g. Newton
o w(t+1)=w()—Hrc(w(t))
0 Complexity O(n®) for the inverse + partial derivatives

0 In practice on makes use of quasi-Newton methods : H~! is approximated
iteratively
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Optimization
Stochastic Gradient algorithms

>

Obijectives
» Training NN involves finding the parameters w by optimizing a loss

Difficulties

» Deep NN have a large number of parameters and meta-parameters, the loss is most often a non
linear function of these parameters: the optimization problem is non convex

» Optimization for Deep NN is often difficult:
Multiple local minima with high loss, .... might not be a problem in high dimensional spaces
Flat regions: plateaus -> 0 gradients, saddle points -> pb for 2"¢ order methods
Sharp regions: gradients may explode

Deep architectures: large number of gradient multiplications may often cause gradient vanishing or
gradient exploding

Solutions
» There is no unique answer to all these challenges

» The most common family of optimization methods for Deep NN is based on stochastic
gradient algorithms

Exploit the redundency in the data, at the cost of high variance in gradient estimates
» Deep Learning has developed several heuristic training methods
» They are provided in the different toolboxes (Pytorch etc)
» Some examples follow
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Optimization
Stochastic gradient algorithms (From Ruder 2016)

» Data + Loss
» Training Data Set

D ={('y), ..(x",y")}

» Loss function
oy = B a3

» All the algorithms are given in vector form

(a) SGD without momentum

» Basic Stochastic Gradient Descent
Initialise w(0)
[terate until stop criterion

4
4
> sample un exemple (x(t),y(t))
b wt+1) =w(t) — eV, c(x(t),y(t))
» Rq: might produce a lot of oscillations

(b) SGD with momentum

» Momentum
» Dampens oscillations Figures from (Ruder 2016)
m(t) = ym(t — 1) + €V, c(x(t), y(¢))
w(t+1) =w() —m((t)
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Optimization
SGD algorithms with Adaptive learning rate
» Adagrad

» One learning rate for each parameter w; at each time step t

» lteration t
Compute gradient g(t) = V,c(x(t), y(t)) Vector
Accumulate squared gradients for each component r;(t) = r;(t — 1) + (g;(t))? Scalar
0 kind of gradient variance
0 Sum of the squared gradients up to step t
Componentwise:

wi(t+ 1) =w;(t) — ﬁ Vw,c(x(8), ¥(1)) Scalar
» In vector form
w(t+1) =w() - ﬁ O F,c(x(t), y(t)) Vector

€

© elementwise multiplication, €’ (= 1078) avoids dividing by O,W is a vector with components
r €

€
\H"i(t)+6’

» Default : learning rate shrinks too fast
» RMS prop

» Replace r(t) in Adagrad by an exponentially decaying average of past gradients
r@=yr@t-D+A-yg®)Og®), 0<y<1
W(t + 1) = W(t) — W ©) Vi C(X(t),y(t)) Vector
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Optimization
SGD algorithm with momentum and Adaptive learning rate

» Adam (adaptive moment estimation)

» Computes

Adaptive learning rates for each parameter

An exponentially decaying avarage of past gradients (momentum)

An exponentially decaying average of past squared gradients (like RMSprop)
» lIteration t

Momentum term :m(t) = yym(t — 1) + e(1 — y;1)g(t)

Gradient variance term: r(t) =y,r(t—1)+e(1—y)g(t) © g(t)

wit+1) =w() - O m(t)

(t+/

Bias correction

0 The 2 moments are initialized at 0, they tend to be biased towards 0, the following
correction terms reduce this effect

0 Correct bias of m: m(t)—m(;)
1
0 Correct bias of r:r(t)= r(?
2
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Batch vs stochastic gradient

) = 12 C: global loss
TNLCk ¢, individual (pattern k) loss
K
C c .
A Batch k Stochastic
N—
" x —> X
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Gradient methods as numerical integration of ordinary
differential equations (ODE)

>

Let I: R* > R a function we seek to minimize
»  We make the assumption that [ is « well behaved »

Consider the following gradient flow equation

aw() _
| P = VW)

w(0) = w,
Taylor expansion around w(t) is:
dW(t) 2

Fraas 0(h*)

Lets take t = kh, by neglegting the second order terms, we get the explicit
Euler method for integrating ODEs

> Wiy = Wy — hVI(w(?))
»  Which is the steepest descent algorithm

Message

» This interpretation of Gradient Descent as a numerical integration method for the
gradient flow equation allows us to use the results from numerical analysis to
characterize useful properties e. g. stability / consistence of the method

» This is used for analyzing more sophisticated GD algorithms

» w(t+h)=w()+h
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Optimization
Summary

» Which method to use!?
» No « one solution for all problems »

» For large scale applications,Adam is often used today as a default choice
together with minibatches

» But... simple SGD with heuristic learning rate decay can sometimes be
competitive ...

» Batch, mini batch, pure SGD
» Stochastic methods exploit data redundancy
Mini batch well suited for GPU

v
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Regression and Logistic
Regression




Regression

» Linear regression

4
>

43

Objective : predict real values
Training set

(ot yh), . @, y™)

X € R™,y € R :single output regression
Linear model

F(x) =w.x =Y ow;x; with xy =1
Loss function

Mean square error
i\ 2

1 .
0 C=3L 0 —wx
Steepest descent gradient (batch)
_ _ _ 5_6 T
w=w()—€V,C,V,C= B 6wn)
s = 22 1aw (v —w.x) =—3X, (' — w.x)xl

w=w(t) +eXl (¥ —w.xl)x!

Machine Learning & Deep Learning - P. Gallinari
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Regression

» Geometry of mean squares

» Regression with multiple outputs y € RP

» Simple extension: p independent linear regressions
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Probabilistic Interpretation

» Statistical model of linear regression
y =w.x +€, where € isarandom variable (error term)
» Hypothesis € is i.i.d. Gaussian
~ 2 — 1 exp(—
e~N(0,07), p(e) = TP exp(—-—
The posterior distribution of y is then

1 (y-w.x)?
p(y % w) = —exp(— = 5—)

» Likelihood

Lw) = [T}l p(y" x5 w)

00 Likelihood is a function of w, it is computed on the training set
» Maximum likelihood principle

Choose the parameters w maximizing L(w) or any incresing function of L(w)
» In practice, one optimizes the log likelihood [(w) = logL(w)

I(w) = Nlog (\/Zim) — 2(172 Lyt —w, xi)z

This is the MSE criterion
» This provides a probabilistic interpretation of regression
» Under a gaussian hypothesis max likelihood is equivalent to MSE minimization
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Logistic regression — 2 classes

» Linear regression can be used (in practice) for regression or
classification

» For classification a proper model is logistic regression

1
Ey(x) = o(w.x) = 1+exp(—w.x)

» Logistic (or sigmoid) function

1
G(Z) - 1+exp(—2) 0.8
0,6
O hint 0.4/- e sigmoid
0d'(z) =0()(1—-0(2)) 02 -

» Hyp:y € {0,1}
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Logistic regression — 2 classes
Probabilistic interpretation

» Sincey € {0,1}, we make a Bernoulli hypothesis for the posterior
distribution

p(y =1lx;w) = E,(x) etp(y = 0lx;w) =1 -, (x)
In compact format

0 POl w) = (F(®) (1 - F,x) ™ withy € (0,13
» Likelihood

Lw) = % (B, (x)” (1 - F(x)
» Log-likelihood
l(w) = %L, y'logF,(x') + (1 — y) (log(1 — F, (x))

i

1-y

00 This is minus the cross-entropy between the target and the estimated posterior

distribution
» Steepest descent algorithm (batch) for minimizing cross entropy
. al(w) ; ; i
Componentwise: v N (y‘ —F, (x‘)) X},
Vector form: v,l=3N, (yi — Fw(xi)) xt
Algorithm

ow=w—el,C=w+eYN, (yi = Fw(xi)) xt
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Multivariate logistic regression

» Consider a p class classification problem

» Classes are encoded by “one hot” indicator vectors. Each vector is
of dimension p
Class 1:y = (1,0, ...,0)7
Class 2:y = (0,1, ...,0)T

Class p:y = (0,0, ..., 1T
» Fy(x) is a vector valued function with values in R?
» lts component i is a softmax function (generalizes the sigmoid)

exp(w;.x)
Z?z 1 €Xp(w;.x)

yi = Fyx); =
0 Note :here w; € R" is a vector, §; € R is the it" component of y
i Yi P y

» The probabilistic model for the posterior is a multinomial
distribution

exp(w;.x)

p(Class = i|x; w)—zp = softmax(w;.x)

exp(w;.x)
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Multivariate logistic regression

» Notations
» st = Wxlis the logit for input x*
W= (wy,..., wp)T is a pxn matrix of weights
st=(sl,..,s) eRp
» 9t = softmax(s’) is the output for input x! (here o applies component-wise, i.e. ?; = Softmax(sji))
¥ =@ 95" ERP
» Let Yy be a computed output for input x (we drop the index i for simplicity), then

a .
> 6_3: = ¥;(I;; — ¥;) with [;;elements of the identity matrix (1)
» Likelihood
» LW =pY|IX;w) =1V, ]_[?21()7})3’11' , X and Y are the column wise matrices of input and output vector
» Log likelihood
y W) =3N, 25-;13’; In )’7} again this is minus the cross entropy for the multiclass classification problem

»  Gradient of the log likelihood
b Vi lW) = =3 (9% — yi)x! by using identity (1)
»  Training algorithm
»  As before, one may use a gradient method for maximizing the log likelihood.
»  When the number of classes is large, computing the soft max is prohibitive, alternatives are required
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Probabilistic interpretation for non linear models

» These results extend to non linear models, e.g. when F,, (x) is a NN
» Non linear regression

» Max likelihood is equivalent to MSE loss optimization under the Gaussian
hypothesis

For multivariate (y € R,x € R™) non linear regression we have
y = F,(x) + €,¢6~N(0,0%)
(y_F(x))z)

202

p(y 1 w) = —exp(~
» log — likelihood I(w)
Iw) = Nlog (=) — 7 2, (v' - F(x))”
» Classification

» Max likelihood is equivalent to cross entropy maximization under Bernoulli/
multinomial distribution

00 2 classes: if y is binary and we make the hypothesis that it is conditionnally Bernoulli
with probability F(x) = p(y = 1|x) we get the cross entropy loss

[0 More than 2 classes: same as logistic regression with multiple outputs
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Logistic regression — Computational graph -SGD

» Forward pass

c(9,y):loss
c(¥,v) Forward propagation:
S=WwW.X
y: target y=0(s)
>
Notations

xX,w € R"

S> s,y €ER

y €{0,1}

<>
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Logistic regression — Computational graph - SGD

» Forward pass

c(9,y):loss

@ Forward propagation:
S=W.X
y=o0(s)
<>

D
<>

y: target
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Logistic regression — Computational graph - SGD

» Backward pass

y: target

dc  dcdy 0s

ow; 0y ds ow;
53

c(9,y):loss

Chain Rule

Machine Learning & Deep Learning -

Backward propagation:

dc _ dcdy
ds 09 0s
dc B dc 0s
ow; 0sdw;
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Logistic regression — Computational graph - SGD

For the cross entropy loss

» Backward pass S : N i
PASS 1wy = 3V, yilogyt + (1 — yD)log(1 — 9%) = ¥V, (5%, ¥Y)

c(9,y):loss

Backward propagation:

y: target 0s 0y
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Probabilistic interpretation of NN outputs
Mean Square loss

»
»

»

55

Derived here for multivariate regression (1 output), trivial extension to multiple outputs
Holds for any continuous functional (regression, logistic regression, NNs, etc)

Risk R = E, ,, [(y — h(x))z]
The minimum of R, MinyR, is obtained for h*(x) = E, [y|x]

The risk R pour the family of functions F,, (x) decomposes as follows:
2
R = Eyyl(y = Fy(®)’]

R =E,, [(y - E, [ylx])z] +Exy [(Ey [ylx] — Fw(x))z]
Let us consider E|, [(y — Ey[ylx])z]

This term is independent of the model F,, (.) and only depends on the problem characteristics (the
data distribution).

It represents the min error that could be obtained for this data distribution

h*(x) = E,[y|x] is the optimal solution to Min,R
2
Minimizing Ex,y[(y - Fw(x))z] is equivalent to minimizing E, ,, [(Ey [ylx] — FW(x)) ]

2
The optimal solution F,,(x) = argminy, £, ,, [(Ey lylx] — E, (x)) ] is the best mean square
approximation of E[y|x]
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Probabilistic interpretation of NN outputs

» Classification

» Let us consider multi-class classification with one hot encoding of the target
outputs

ie.y = (0,..,0,1,0,...,0)T with a 1 at position i if the target is class i and zero
everywhere else

hi = Eylylx] = 1+ P(Cilx) + 0+ (1 = P(Gilx)) = P(Ci|x)

i.e. F,,+() is the best LMS approximation of the Bayes discriminant function (which is
the optimal solution for classification with 0/1 loss)

» More generally with binary targets
hi = P(y; = 1|x)
» Note
» Similar results hold for the cross entropy criterion

» Precision on the computed outputs depends on the task

Classification: precision might not be so important (max decision rule, one wants the
correct class to be ranked above all others)

Posterior probability estimation: precision is important
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Multi-layer Perceptron




f@x) = 0(x)

0,8 -
Multi-layer Perceptron (inton - seinowski - wiliams 1986) ” /
» Neurons arranged into layers — oz S
» Each neuron is a non linear unit, e.g. SAS e b as
f(x),= th(x)

58

f(w.x) s

: cell weight vector -/0/
-

http://playground.tensorflow.org/

Note: ® is a pointwise operator, if x = (x1,%5), fO((x1,%5)) = (f(x1), f(x,)
P Machine Learning & Deep L(laar%ingf - (SD}Ggl?i%ari 0. fx2))




Multi-layer Perceptron - Training

» Stochastic Gradient Descent - The algorithm is called Back-
Propagation
» Pick one example (x,y) or a Mini Batch {(xi, yi)} sampled from the training
set

Here the algorithm is described for 1 example and for the sigmoid (f( ) =d( ))
non linearity

» Forward pass
0y=FEx=foW2)foW)x))
» Compute error

0 c(y,y ), e.g. mean square error or Cross entropy

» Backward pass

efficient implementation of chain rule

oc(y,y
¢ 0.y)

tj an'j

ij

Note: © is a pointwise operator, if x = (x4, x5), f@((xl,xz)) = (f(x1), f(x32))
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Algorithmic differentiation

» Back-Propagation is an instance of automatic differentiation /
algorithmic differentiation - AD
» A mathematical expression can be written as a computation graph
i.e. graph decomposition of the expression into elementary computations

» AD allows to compute efficiently the derivatives of every element in the graph
w.r.t. any other element.

» AD transforms a programs computing a numerical funtion into the program for
computing the derivatives

» All modern DL framework implement AD
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Notgtions 5 matrix derivatives
1 1

X = , V=
Xn Ym

Vector by scalar

9%
a_x B a.a
Ja D%y
Jda
Scalar by vector
% _ (oa
dx  \9x;’
Vector by vector
9y1
ay B 6x1.
0x 0Ym
6x1

Matrix cookbooks

, A ER,W: pXq

0y1
0xp

0Ym
0xn

Matrix by scalar

6W11
ow da
Ja aWpl
oa
Scalar by matrix
oa
da dwy,
ow da '
5W1q

http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf —

http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/ imm3274.pdf
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Jda
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Multi-layer Perceptron - Training

» Computational graph
c(z(2),y): loss
c(z(2))y) Forward propagation:

sm)=Wm)z(n—1)
y: target @@

Here, z(2) =%

z(n) = a(s(n))
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Multi-layer Perceptron - Training

» Forward pass

c(z(2),y): loss
c(z(2))y) Forward propagation:

sm)=Wm)z(n—1)
y: target @@

z(n) = a(s(n))
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Multi-layer Perceptron - Training

» Forward pass

c(z(2),y): loss
c(z(2))y) Forward propagation:

sm)=Wm)z(n—1)
y: target @@

z(n) = a(s(n))
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Multi-layer Perceptron - Training

» Forward pass

c(z(2),y): loss
c(z(2))y) Forward propagation:

sm)=Wm)z(n—1)
y: target @@

z(n) = a(s(n))
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Multi-layer Perceptron - Training

» Forward pass

c(z(2),y): loss
c(z(2))y) Forward propagation:

sm)=Wm)z(n—1)
y: target @@

z(n) = a(s(n))

@ Note: x, s(n), x(n) are vectors
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Multi-layer Perceptron - Training

» Forward pass

c(z(2),y): loss
c(z(2))y) Forward propagation:

sm)=Wm)z(n—1)
y: target @@

z(n) = a(s(n))

Note: x, s(n), x(n) are vectors
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Multi-layer Perceptron - Training

» Back Propagation: Reverse Mode Differentiation

c(z(2),y): loss

y: target
s(@
e GD)
S(D
amizn @

68 Machine Learning & Deep Learning -

) ) ac
Note: notations are in vector form, —

T ow
) . dc ac
IS a matrix, Py and P are row vectors

of the appropriate size
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Multi-layer Perceptron - Training

» Back propagation: Reverse Mode Differentiation
c(z(2),y): loss

: Backward propagation:
- target dc
y g 322 oc _ dc 0o (s(n)"
as(n) dz(n)
< @ dc B ) dc
w2 Vasm
dc dc B dc W
w(2) @D dz(n—1) ds(n) ()
S(D
dc ¢
Note: notations are in vector form, —
aw (1) @ oW

. . dc dc
IS a matrlx, a and a are row vectors

of the appropriate size
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Multi-layer Perceptron - Training

» Back propagation: Reverse Mode Differentiation

c(z(2),y): loss

y: target Oc
0z(2)
dc
e G)
S(D
dc
©

70 Machine Learning & Deep Learning -

Backward propagation:

92(2) dc _ dc , T
353 =7 6@ 3500 az(n)QJ (s(n))
dc B ) dc
w2 Vasm
dc dc
W(n)

dz(n—1) N ds(n)

. . dc
Note: notations are in vector form, —

ow
. . dc dc
IS a matrlx, a and a are row vectors

of the appropriate size
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Multi-layer Perceptron - Training

» Back propagation: Reverse Mode Differentiation

y: target

dc _ 41 dc
we - Voo

dc
ow (1)

71

c(z(2),y): loss

dc
0z(2)

dc
ds(2)

Backward propagation:

P20 o (@) = 2" (s
05(2) os(m) -~ oz(m) 27 S0V

dc _ ) dc
w2 Dasm
dc dc

dz(n — 1) N as(n) W)

. . dc
Note: notations are in vector form, —

ow
. . dc dc
IS a matrlx, a and a are row vectors

of the appropriate size
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Multi-layer Perceptron - Training

» Back propagation: Reverse Mode Differentiation

y: target

dc _ 41 dc
we - Voo

dc _ dc
aw() ~ *as(1)

72

c(z(2),y): loss

dc
0z(2)

dc
ds(2)

s(@
CON-
S(D
&

dc
ds(1)

Backward propagation:

Z% g e aza(cn) O’ (s(m)!

dc dc
05, oW (n) =z(n-1) ds(n)
dz(1) dc _ dc W(n)
92(1) 0z(n—1) ds(n)

3s() o' (s(2))

. . dc
Note: notations are in vector form, —

ow
. . dc dc
IS a matrlx, a and a are row vectors

of the appropriate size
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Multi-layer Perceptron — SGD Training — example - notations

» Notations
0 z(i) activation vector for layer i
0 z;(i) activation of neuron j in layer i

0 W (i + 1)weight matrix from layer i to layer i + 1, including bias weights
Wik (i) weight from cell k on layer i to cell j on layer i + 1

[0y computed output
091 =21(2) = gWip(2) + Wi )z + wip (27, (1))
0 z1(1) = g(W1o(1) + wi1 (D)xg + wyp(D)xz + wyz(1)x3)
0 W(l) = <W10(1) wi1(1)  wip(1) W13(1)>

Woo(1) wpi(1) wpa(1) wys(1)
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Multi-layer Perceptron — SGD Training —
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units) - forward pass

» For example x
The activations of all the neurons from layer 1 are computed in parallel
s(1) =W(1)x then z(1)=g(s(1))
0 with g(s(1)) = (g(s1 (1)), g(s2 (D)7

The activations of cells on layer 1 are then used as inputs for layer 2. The activations of
cells in layer 2 are computed in parallel.

5(2) = W(2)z(1) then y = z(2) = g(s(2))
O
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Multi-layer Perceptron — SGD derivation
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units)

» Forward pass

» Indices used below for this detailed derivation: i output cell layer, j hidden cell
layer, k input cell layer

W@ W2
( )j hid(de)n cell layer

»osp (1) = 2 wig(Dxge, z;(1) = g(s(1))
»osi(2) = X5 wij(2)7;(1), z;(2) = g(s:(2))
si(2) =2 wi;j( Q) gXk wir(Dxx),zi(2) = g wij(2)g (X wir(Dxy) )
» Loss

ye=1% 0 - 907 =15 (- 98 wy @z (1)
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Multi-layer Perceptron — SGD derivation
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units)

» Backward (derivative) pass
» Upgrade rule for weight w;;, layer m:w;;(m) = w;;(m) + Aw;;(m)

» 2" weight layer

ac ac a9y

Aw;;(2) = —€ = —€———

1j(2) ow;;(2) 9y i wij(2)
0yi 0si(2)

Aw;;(2) = € = Vi) 55 owi;(2)

Aw;;(2) = e(yi — yi)g,(si(z))zf(l)

Aw;;(2) = €e;(2)z; (1), with ¢;(2) = (y; — ¥1)g'(s:(2))
» |Ist weight layer

_ 8¢ _ ac dzj(m
Awij(1) = Cowym oz, owy; (1)
ac_ _ 0C 0%i _ N (v _ 55 9V 0si(2)
Y Liparents °f Joy;0z;(1) 2i Vi = i) 9s51(2) 0z;(1)
ac

5 e = 2 0= 909 (s:(2)wy (D)
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Multi-layer Perceptron — SGD derivation
Detailed derivation (MSE loss + sigmoid units)

0z;(1) _ 9z;(1) ds;(1) _ ¢
Owjk(1)  9sj(1) dwjr(1) 9 (51 (1))Zk

Awi (1) = Eziparents ofj(:Vi - yi)gl(si(z))wij(z) g’(sj(l))xk
ijk(l) = eef(l)xk with € = g’(sj(l)) Ziparents of j eiWij(Z)
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Back Propagation and Adjoint

» BP is an instance of a more general technique: the Adjoint method
» Adjoint method

» has been designed for computing efficiently the sensitivity of a loss to the
parameters of a function (e.g. weights, inputs or any cell value in a NN).

» Can be used to solve different constrained optimization problems (including BP)
» Is used in many fields like control, geosciences

» Interesting to consider the link with the adjoint formulation since this opens the
way to generalization of the BP technique to more general problems

e.g. continuous NNs (Neural ODE)
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Back Propagation and Adjoint

» Learning problem
» Minyc = %z’,ﬁzl c(F(x*),y*)
» With F(x) = Fjo-0F;(x)
» Rewritten as a constrained optimisation problem

» Minge= IR c(zFD),y")

() =FREA-1D,w®)

kKl—1)=F_;(z*(1-2),w(l -1
> Subjectto‘v’k=1...N<Z( ) 1-1(Z%( ), w( )

Z8(1) = F, (xk,"\;v(l))
» Note

z and W are vectors of the appropriate size
e.g. z(i) isn, (i) X Tand w(i) is ny, (i) X 1
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Back Propagation and Adjoint

» For simplifying, one considers pure SGD,i.e. N =1
» So that we drop the index k

» The Lagrangian associated to the optimization problem is
» Lxw) = ez, y) = Xizg A (2(0) — Fi(z( — 1), w(i)))

A; is a vector with the same size as z(i)

» Unknowns to be estimated:
z(i),w(i), ;i =1..1,
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Back Propagation and Adjoint

» We want to solve for the Lagrangian

» L, W) =c(z(D),y) — X1 4] (z(D) — Fi(z(i — 1), w(@))

» with unknowns: z(i),w(i), A;,i =1, ..., 1

» The partial derivatives of the Lagrangian are

oL 2T dc(z(l),y)
D A Toz) for the last layer [
9L T 7 0Fi(z@Ow(+1) . _ : . )
02 —A; + i 220 ,i=1,..,1—1 forintermediate layer i
aL T OF(z(i—1),w(i)) — 1]
aw@ M ow (i) Pl T
o= 2() —Fi-1D,0), i=
» Note

oL 0F 41 (z(D)wW(i+1)) .
- ()lsl><nz(l) o ()|51><nw(1) |sl><n,1(l) Ajisny (i) x 1,—/= zzl(i;” S
n, (i + 1) x n,(0) "’C(,(f—((?)” 1 x nz(l) SEA (1))“’(‘” is 1, (i) x 1, (i)
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Back Propagation and Adjoint

>

Forward equation

> % =z(i) — F;(z(i —1),w(i)), i = 1..1,represent the constraints

oL .
» Onewants— =0, i=1..1
91,

» Starting from i = 1 up to i = [, this is exactly the forward pass of BP

Backward equation
» Remember the Lagrangian

Lo, W) = c(z(),y) = Zizg 4 (D) — Fy(z( — 1, w(D)
» Since one imposes (z(i) — F; (Z(i — 1),W(i)) = 0 (forward pass), one can choose
AT as we want

» Let us choose the As such that a—L_ =0,Vi
dz(1)

» The As can be computed backward Startingati = [ downtotoi =1

T _ 9c(z(),y)
A = 9z(1)

AT _ AT 0Fit1(z(D)w(i+1)) _ T 0z(i+1)
l 1+1 aZ(l) 1+1 aZ(l)
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Back Propagation and Adjoint

» Derivatives

» All that remains is to compute the derivatives of L wrt the I;
oL AT 0F;i(z(i—1),w(i))
ow(i) it ow(i)

y Vi

0Fi(z(i—-1)w(i)) _ 0z(i)
ow(i) — aw(i)

easy to compute
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Back Propagation and Adjoint — Algorithm Recap

» Recap, BP algorithm with Adjoint
» Forward

oL
» Solve forward— = (0
EY

z(1) = F1(z(0), w(1))

z(i) = Fi(z(i = 1), w(@))

» Backward

oL
» Solve backward =

9z(i)

T _ 9c(z(),y)
A = 9z(1)

AT _ AT 0Fit1(z(D)w(i+1)) _ T 0z(i+1)
l 1+1 aZ(l) 1+1 aZ(l)

» Derivatives

oL .1 O0Fi(z(i-1),w(i))
aw()  itl aw (i)

y Vi
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Adjoint method — Adjoint equation

» Let us consider the Lagrangian written in a simplified form
» Lx,w) =c(z(D,y) -1 g(z,w)

z,w represent respectively all the variables of the NN and all the weights
zisal X n, vectorand wis a 1 X ny, vector

g(z,w) = 0 represents the constraints written in an implicit form

0 here the system z(i) — Fl_l(z(i — 1),W(i)) =0,i=1..1

The derivative of L(x,w) wrt w is

dtlew) _ 00z _ 499 9z 4 99
dw 9z ow 0z aW ow
ac 0 0

) =G, — A" g) AT 22

ow
0z
» In order to avoid computing P choose A such that

9¢ _ ar99 _ 0, rewriten as:

0z 0z
agT dc
— = —— <<<<<<<<< Adjoint Equation
0z 0z
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Adjoint method

» Ais determined from the Adjoint equation
» Different options for solving A, depending on the problem

» For MLPs, the hierarchical structure leads to the backward scheme

86 Machine Learning & Deep Learning - P. Gallinari



Multi-layer Perceptron — stochastic gradient

» Note

4
4
>

87

The algorithm has been detailed for « pure » SGD, i.e. one datum at a time
In practical applications, one uses mini-batch implementations

This accelerates GPU implementations

The algorithm holds for any differentiable loss/ model

Deep Learning on large architectures makes use of SGD variants, e.g. Adam
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Loss functions

» Depending on the problem, and
on model, different loss functions
may be used

» Mean Square Error
» For regression
» Classification, Hinge, logistic,

» Classification loss
Number of classification errors
Exemples
Oy€eRP,ye{—-1,1}F

» Hinge, logistic losses are used as
proxies for the classification loss

Figure from
Bishop 2006

= = : ] 5

z coordinate: z = y.y (margin)

CMSE@:\J’) = ||y — }/’\”2 R
Chinge @ y) = [1—y.y] =max(0,1-%.y)
Clogistic(y' y) =In(1+ exp(—?. y))
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Approximation properties of MLPs

» Results based on functional analysis
» (Cybenko 1989)

Theorem | (regression): Let f be a continuous saturating function, then the space of
functions g(x) = ;-lejf(wj. .X) is dense in the space of continuous functions on the unit
cube C(I).i.e.Vh e C(I)etVe > 0,3 g:|g(x) —h(x)|<eonl

Theorem 2 (classification): Let f be a continuous saturating function. Let F' be a decision
function defining a partition on I. Then Ve > 0, there exists a function g(x) =

i=1Vjf(wj..x) and a set D c I such that measure(D) =1 —€(D) and |g(x) — F(x)| < €
onD

» (Hornik et al., 1989)

Theorem 3 : For any increasing saturating function f,and any probability measure m on R™ ,

the space of functions g(x) = ?zlvjf(wj. .X) is uniformely dense on the compact sets
C(R™) - the space of continuous functions on R™

» Notes:
None of these result is constructive

Recent review of approximation properties of NN: Guhring et al., 2020, Expressivity of deep
neural networks, arXiv:2007.04759
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Complexity control

Bias —Variance

Overtraining and regularization




Generalization and Model Selection

>

Complex models sometimes perform worse than simple linear

models

» Overfitting/ generalization problem

Knowledge

R

Experience

Overfitting

Empirical Risk Minimization is not sufficient

» The model complexity should be adjusted both to the task and to the
information brought by the examples

4
4

91

Machine Learning & Deep Learning -

P. Gallinari

Both the model parameters and the model capacity should be learned

Lots of practical method and of theory has been devoted to this problem




Complexity control

Overtraining / generalization for regression

4 Example (Bishop 06) fit of a sinusoid with polynomials of varying degrees

M =0

—8— Training
—8— Test

» Model complexity shall be controlled (learned) during training

» How!?

92
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Complexity control

» One shall optimize the risk while controling the complexity

» Several methods
» Reégularisation (Hadamard ...Tikhonov)
Theory of ill posed problems
» Minimization of the structural risk (Vapnik)
» Algebraic estimators of generalization error (AIC, BIC, LOO, etc)
» Bayesian learning

Provides a statistical explanation of regularization

Regularization terms appear as priors on the parameter distribution
» Ensemble methods

Boosting, bagging, etc
» Many others especially in the Deep NN literature (seen later)
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Regularisation

» Hadamard

» A problem is well posed if
A solution exists

It is unique and stable
4

Example of ill posed problem (Goutte 1997)

Discontinuity of the parabolic interpolation
T

y(

-0.5

xop

» Tikhonov

» Proposes methods pour transforming a ill posed problem into a “well” posed
one

94
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Bias-variance decomposition

» lllustrates the problem of model selection, puts in evidence the
influence of the complexity of the model

» Remember: MSE risk decomposition

2 2 2
Exy |(y = B )| = Euy | (v = By y12])°] + Exy | By y1x] = Fu (1)) ]
Let h*(x) = E, [y|x] be the optimal solution for the minimization of this risk
» In practice, the number of training data for estimating E,,[y|x] is limited

The estimation will depend on the training set D

Uncertainty due to the training set choice for this estimator can be measured as
follows:

[0 Sample a series of training sets, all of size N: D4, D,, ...
0O Learn E,(x, D) for each of these datasets
[0 Compute the mean of the empirical errors obtained on these different datasets
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Bias-variance decomposition

2

» Let us consider the quadratic error (F(x; D) — h*(x)) for a datum x and for the
solution F, (x; D) obtained with the training set D (in order to simplify, we consider a
1 dimensional real output, extension to multidimensional outputs is trivial)

Let Epp(py[Fy(x; D)] denote the expectation w.r.t. the distribution of D, p(D)
B (Fw(x; D) — h"‘(x))2 decomposes as:
(Fy(t; D) = 1* ()" = (Fy(x; D) — Ep[Ry (x; D)] + Ep[Fy (x; D)] — h* ()’
(FW(X; D) _ h*(X))z — (FW(X; D) - ED [Fw(x; D)])Z + (ED [Fw(x} D)] - h*(x))z
+ 2(Ry(x; D) — Ep[R, (x; DD (Ep[Ry (x; D)] — h*(x))
» Expectation w.r.t. D distribution decomposes as:
Ep[(Fy(x; D) — h*(x))°] = (EplFy (x; D)] — h* (0))? + Ep[(F, (x; D) — Epl[F, (x; D))?]
= bias? + variance

» Intuition

Choosing the right model requires a compromise between flexibility and simplicity
00 Flexible model : low bias — strong variance

00 Simple model : strong bias — low variance
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The Bias-Variance Decomposition (Bishop PRML 2006)

» Example: 100 data sets from the sinusoidal, varying the degree of regularization
Model: gaussian basis function, Learning set size = 25, A is the regularization parameter
0 High values of A correspond to simple models, low values to more complex models
Left 20 of the 100 models shown
Right : average of the 100 models (red), true sinusoid (green)

Figure illustrates high bias and low variance (4 = 13)

In\ =26
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The Bias-Variance Decomposition (Bishop PRML 2006)

» Example: 100 data sets from the sinusoidal, varying the degree of regularization
Same setting as before
0 Figure illustrates low bias and high variance (4 = 0.09)

1t 1L
t MBS t

NN

AN

0f ‘\\‘«‘fij‘\\ 0f
\\
W
DN
~1} ~1}
0 s 1 0 s 1

Remark

0 The mean of several complex models behaves well here (reduced variance)
[0 — leads to ensemble methods
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The Bias-Variance Decomposition (Bishop PRML 2006)

» From these plots, we note that an over-regularized model (large 1)
will have a high bias, while an under-regularized model (small 1) will
have a high variance.

0.15

(bias)”
variance

0.12¢

(blas) + variance
test error

0.09 |

0.06 |

0.03 |

\

In \
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Regularisation

» Principle: control the solution variance by constraining function F
» Optimise C =C, +4C,
» C is a compromise between

C, :reflects the objective e.g. MSE, Entropie, ...
C, : constraints on the solution (e.g. weight distribution)

» A :constraint weight

» Regularized mean squares
» For the linear multivariate regression

y C = % é\’:l(yi — w.xi)2 + %Z?=1|Wj|q

q = 2 regularization L,,q = 1 regularization L; also known as « Lasso »

qg=10.5 g=1 qg=2 qg=41

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter 4.
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Régularisation

» Solve

Min,, € = <3N, (y' — w.x')” + 230 [w;|".2> 0

» Amounts at solving the following constrained optimization problem

Min,, C = % NGt - w.x")2

» Effect of this constraint

101

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer ¢ = 2 on the left and the lasso
regularizer ¢ = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w".
The lasso gives a sparse solution in
which wi = 0.
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Under constraint Z?=1|Wj| < s for a given value of s
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Fig. from Bishop 2006
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Regularization

» Penalization L,

» Loss

C=C +A%|w|

» Gradiant
v,C = Aw + 7,C,
» Update

w=w-—¢€V,C =01—-el)w—€l,C,
Penalization is proportional to w
» Penalization L,
» Loss
C=C +AY"|wl
» Gradiant
n,C = Asign(w) + V,Cy
sign(w) is the sign of w applied to each component of w
» Update
w=w-—e€l},C =w—elsign(w) — €,,C;
Penalization is constant with sign sign(w)
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Other ideas for improving generalization in NNs

» Several heuristics have been developed in order to force inductive biases
for NNs — some

4

4
4
4

103

Gradient descent and stochastic gradient descent perform implicit regularization
Weights initialization
Early stopping
Data augmentation
By adding noise
00 with early work from Matsuoka 1992 ; Grandvallet and Canu 1994 ; Bishop 1994
00 and many new developments for Deep learning models
By generating new examples (synthetic, or any other way)
Note: Bayesian learning and regularization
Regularization parameters correspond to priors on these model variables
Ensembling
Model averaging
[0 Average models outputs: reduces the variance
Functional ensembling (recently developed)

O Average the network weights on the training trajectory
00 As for 2022: SOTA in classification (e.g. vision tasks)

Machine Learning & Deep Learning - P. Gallinari



Generalization in modern Deep Learning

» Deep Learning models often do not follow the common complexity

| performance wisdom

» Extremely large models / with no complexity control (like e.g. regularization or
early stopping), may reach good performance, better than models trained with

the usual complexity control ingredients
» Observed in modern deep learning
High complexity models with zero train error may not overfit and lead to accurate

predictions on unseen data
O This observation questions the usual claim and the theoretical beliefs such as Bias —

Variance dilemma

» Example

» Double descent phenomenon
Based on (Belkin 2019) and (Nakkiran 2020)

Machine Learning & Deep Learning - P. Gallinari
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Generalization in modern Deep Learning - Double Descent

» Observed by different authors but formalized as a general concept
in (Belkin 2019)

» General message

» Learning curves as a function of model capacity (complexity) exhibit a two
regimes phenomenon coined as « double descent »

» Classical regime corresponds to under-parameterized models and exhibits the
classical U shaped curve corresponding to the bias-variance intuition

Models do not achieve perfect interpolation

The test risk first decreases and then increases when the model starts interpolating
» Modern interpolation regime corresponds to over-parameterized models

Models may achieve near zero train error i.e. near perfect interpolation

Test risk value may decrease below the level of the best classical regime risk value
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Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)

A . B
under-fitting , over-fitting under-parameterized over-parameterized
. Test risk Test risk
";“'D ; '_kdm “classical” “modern”
=] i o= ! ¢ & 4
ﬁ . Q’j regime interpolating regime
\ 1
~ o ‘Training risk - Training risk:
sweet spot\;f - S~ « _interpolation threshold
Capacity of H Capacity of H

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias-variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-

capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

» All the models to the right of the interpolation threshold have a zero
training error
» Tentative explanation

» The notion of « capacity of the function class » does not fit the inductive bias
appropriate for the problem and cannot explain the observed behavior

» The inductive bias seems to be the smoothness of a function as measured by a
certain function space norm
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Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)

» Caracterization on classification problems
» Model: Random Fourier Features
» Equivalent to 1 hidden layer NN with fixed weights in the first layer
i.e. only the last weight layers are learned, i.e. convex problem

Because of the linearity of the trainable component, the complexity can be measured by the
number of basis functions (nb of hidden cells)

[0 Or at least this provides a proxy for the complexity
» Random Fourier Features
» Consider a class of function denoted Hy : h(x):R% - R
With h(x) = X¥_, apd(x; vy) with ¢(x; v) = exp(i < v,x >) - (the complex exponential)
Where the vy, ..., vy are sampled independently from the standard normal distribution in R¢

The ¢ (x; v) are N complex basis functions

This may be implemented as a NN with 2N basis functions corresponding to the real and
imaginary parts of ¢

» Learning procedure
Given a training set (x1, y1) ... (x™, y™), train via ERM, i.e. minimize %Z?zl(h(xi) — yi)z

When the minimizer is not unique (always the case when N > n) choose the one with
coefficients (a4, ..., ay) of minimum [, norm,i.e. the smoothest one
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Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)

Zero-one |oss Squared |oss
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ig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient #; norms (log scale), and training risks of the RFF
nodel predictors h, y learned on a subset of MNIST (n= 10%, 10 classes). The interpolation threshold is achieved at N = 10%.



Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)

» Characterize the double descent phenomenon for
» A large variety of NN models: CNN, ResNet, Transformers

» Several settings: model-wise, epoch-wise, sample-wise (defined later)

» Propose a measure of complexity called « effective model
complexity »
» For non linear models, the number of parameters is not a characterization of the
function class complexity

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
i 1
05 i — Test 0.7 ____ Optimal Early
§ : Train Stopping
= | _ 0.6/ 10
,_::_, 0.4 - 5
1 b
‘© 0.3 ' w 0.5
— N ] . —
= N s Interpolation 7 100
~0.21 \ ! Threshold L 0.4
r ¥ =
IE’ 0.1 \: 0.3 1000
| S
O3 10 20 30 40 50 60 025y 10 20 30 40 50 60
ResNetl1l8 width parameter ResNetl8 Width Parameter

Figure |: Left: Train and test error as a function of model size, for ResNetl8s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

Epochs



Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)

» Effective model complexity (EMC)

» A training procedure T is any procedure that takes as input a training set D =
{(xLyD), ..., (x™, y™)} and outputs a classifier 7 (D) mapping data to labels

» The effective model complexity of 7" w.r.t. the distribution D of D is the maximum
number of samples n' on which T achieves on average a zero training error

» The EMC of training procedure J° w.r.t. distribution D and parameter € >
0, is defined as:
» EMCp(T) = max {n’ E o [ErrorD(T(D))] < 6}
with Errory (T(D)) is the mean error on D.
» Regimes
» Assumption: the classifier (D) is trained on a dataset of size n

» Under-parameterized: EM Cyp, (T") smaller than n,i.e. T achieves 0 error only on
training sets of size smaller than 7, increasing EMC will decrease the test error

» Over-parameterized: EM Cp (7') larger than n, increasing EMC will decrease the test
error

»  Critical: EM Cp (T") around n, increasing EMC may decrease or increase the test
error (see figure)
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Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)

» Different settings for characterizing the double-descent
phenomenon

» i.e.the phenomenon appears under each setting and not only under the Model-
wise setting characterized by Belkin et al.

» Model-wise

Fixed large number of training steps, models of increasing size,
» Epoch-wise

Fixed large architecture, increase the number of training epochs
» Sample-wise

Fixed model and training procedure, change the number of training samples
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Summary

» Non linear machines were widely developed in the 90%¢S
» Fundations for modern statistical machine learning
» Fundations for statistical learning theory

» Real world applications

Applications of
Neural Networks

W Bl

» Also during this period
» Recurrent Neural Networks
Extension of back propagation

» Reinforcement Learning

Early work mid 80ies
Sutton — Barto Book 1998, including RL + NN
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Deep learning




Interlude: new actors — new practices

4

» GAFA (Google, Apple, Facebook,
Amazon) , BAT (Baidu, Tencent,
Alibaba), ..., Startups, are shaping the
data world

» Research b DeepMind

» Big Tech. actors are leading the research
in DL

» Large research groups

Google Brain, Google Deep Mind, Facebook
FAIR, Baidu Al lab, Baidu Institute of Deep
Learning, etc

» Standard development platforms,
dedicated hardware, etc

» DL research requires access to ressources

sophisticated libraries
large computing power e.g. GPU clusters
large datasets, ...
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Interlude — ML conference attendance growth

» ML and Al conference Attendence

Attendance at Large Conferences, 2010-22
Source: Al Index, 2022 | Chart: 2023 Al Index Report

30
25
20

15 15.53, NeurlPS

10 10.17, CVPR

Number of Attendees (in Thousands)

8.01, ICRA
5.35, ICLR
5
= 3.56, AAAI
0
2010 20m 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

» NIPS (Neurips)

» 2017 sold out | week after registration opening, 7000 participants
» 2018, 2k inscriptions sold in 11 mn!
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Interlude — Deep Learning platforms

» Deep Learning platforms » Among the most populars
offer platforms:
» Classical DL models » TensorFlow - Google Brain -
» Optimization algorithms Python, C/C++ " )
» Automatic differentiation » PyTorch — Facebook- Python **
» Popular options/ tricks » Caffe — UC Berkeley / Caffe2”" """
» Pretrained models Facebook, Python, MATLAB
» CUDA/ GPU/ CLOUD support » Higher level interfaces

e.g. Keras for TensorFlow

X 0
Contributions by large open » And also: m

source communities: lots of
» PaddlePaddle (Baidu), MXNet

code available (Amazon), Mariana (Tencent), PA
» Easy to build/ train 2.0 (Alibaba), .....

sophisticated models
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Interlude - Modular programming: Keras simple example MLP

From https://keras.io/

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

f )
# Load and format training and test data

| # Not shown - (x_train, y_train), (x_test, y_test)

r

model = Sequential()

model.add(Dense(64, activation="relu’, input_dim=20))

.

Load Training — Test data

Specify NN architecture:
* here basic MLP with 3

model.add(Dense(64, activation="relu'))
@odel.add(Dense( 10, activation="softmax'))

\

sgd = SGD(Ir=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss="categorical_crossentropy’,

weight layers

Optimisation algorithm
« SGD

optimizer=sgd,
metrics=['accuracy'])

N

Loss criterion
* Cross entropy

r
model.fit(x_train, y_train,
epochs=20,
\_ batch_size=128) )

score = model.evaluate(x_test,y_test, batch_size=128)

Train for 20 epochs

Evaluate performance on test set
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Interlude — Hardware

» 2017 - NVIDIA V100 — optimized for

Deep Learning » Google Tensor Processor Unit —TPUV3

3X Faster on Deep Learning Training
8X V100 —
s
8X P100 =
s

BX K80 S —
s

2X CPU

361 Hours

. S ,  Cloud TPU
»  “With 640 Tensor Cores, Tesla V100 is

the world’s first GPU to break the 100
teraflops (TFLOPS) barrier of deep
learning performance. The next
generation of NVIDIA NVLink™ connects
multiple V100 GPUs at up to 300 GB/s to
create the world’s most powerful
computing servers.”
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Motivations

» Learning representations
» Handcrafted versus learned representation
Often complex to define what are good representations
» General methods that can be used for
Different application domains
Multimodal data

Multi-task learning
» Learning the latent factors behind the data generation
» Unsupervised feature learning
Useful for learning data/ signal representations
» Deep Neural networks

» Learn high level/ abstract representations from raw data
Key idea: stack layers of neurons to build deep architectures

Find a way to train them
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Useful Deep Learning heuristics

Deep NN make use of several (essential) heuristics for training
large architecture: type of units, normalization, optimization...

We introduce some of these ideas




Deep Learning heuristics -Activation functions

Figures from:
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial3/Activation_Functions.html

» In addition to the logistic or tanh units,, x axis b + w.x, y axis g(x)
other forms are used in deep St o
architectures — Some of the popular j — ok j — parn
forms are: 3 ~—— Gradient 3 ——— Gradient
» letz=b+w.x . p
» RELU - Rectified linear units (used for : :
internal layers) 0 =TT 0 ﬁc
0 g(z) = max(0,z) -1 -1
O Rectified units allow to draw activations to 0 4 -2 o 2 4 % -2 0 2 a4
(used for sparse representations) + derivative
remain large when unit is active . RelLU . LeakyRelLU
» Leaky RELU (used for internal layers) . [ . md
(z) = zifb+w.x>0 3 3
2 9% 710.01(2) otherwise 5 )
O I(;1troduces a small derivative when b + w.x < . ;
» ELU (used for internal layers) ’ | =
-1 =1
O (Z) = zif 2> 0 -4 -2 0 2 4 -4 -2 0 2 4
9 a(exp(b +w.x) — 1) otherwise
. " ELU " Swish
} SW'Sh — ActFn = ActFn
z 4 —— Gradient —— Gradient
= g(z) - 1+exp(-2z) 3
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Deep Learning heuristics -Activation functions

Figures from:

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial3/Activation_Functions.html

» Visualisation of the gradient at different layers of a NN after
initialisation of the weights

» Dataset : FashionMNIST (images) 10 classes, gradient computed on

batch of 256 images
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Deep Learning heuristics - Activation functions

» In addition to the logistic or tanh units, other forms are used in
deep architectures — Some of the popular forms are:

» Maxout
0 g(x) = max(b; + w;.x)
l

0 Generalizes the rectified unit

0 There are multiple weight vectors for each unit

» Softmax (used for output layer)

Used for classification with a 1 out of p coding (p classes)

00 Ensures that the sum of predicted outputs sums to |

ebi+(Wx)i
0 g(x) =softmax(b+ Wx) = )

j=1
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Deep Learning heuristics
Normalisation

» Units: Batch Normalization (loffe 2015)

>

124

Normalize the activations of the units (hidden units) so as to coordinate the
gradients accross layers

Let B = {x', ..., x"} be a mini batch, h;(x7) the activation of hidden unit i for
input x’ before non linearity

Training

Set h{(xj) = % where p; is the mean of the activities of hidden unit i on batch
B,and g; its standard deviation
Ui and g; are estimated on batch B, € is a small positive number
The output of unit i is then z; = yih’i(xj) + B;
0 Where y and  are learned via SGD
Testing

Ui and o; for test are estimated as a moving average during training, and need not be
recomputed on the whole training dataset
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Deep Learning heuristics
Normalization

» Note on B.N.
No clear agreement if BN should be performed before or after non linearity
L? normalization could be used together with BN but reduced
One of the most effective tricks for learning with deep NNs

Other types of normalization have been proposed e.g. Layerwise Normalization similar
to BN, but layerwise and datum wise, etc.

» Gradient/ gradient clipping
Avoid very large gradient steps when the gradient becomes very large - different

strategies work similarly in practice.
Let I/, c be the gradient computed over a minibatch

A possible clippling strategy is (Pascanu 201 3)
Vwc

v, with v a norm threshold
[[7well

o W,c=
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Deep Learning heuristics
Dropout

» Dropout (Srivastava 2014) Figure from Srivastava 2014
Training A -

00 Randomly drop units at training time

00 Parameter: dropout percentage p
00 Each unit is dropped with probability p

This means that it is inactive in the forward and backward pass ral

Figure 1: Dropout Neurnl Not Model. Loft: A s jard meurnl not with 2 hidden layoms. Right
An axampl [ & thinned ne fuced by Appiymg drog oul ) Lhe nelwork on the el
Cromsed units have boon ppe l

Testing
O Initial paper (Srivastava 2014)
0 Keep all the units
O Multiply the units activation by p during test

The expected output for a given layer during the test phase should be the
same as during the training phase
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Deep Learning heuristics
Dropout

» Inverted Dropout

Current implementations use « inverted dropout » - easier implementation: the
network does not change during the test phase (see next slide)

O Units are dropped with probability p
O Multiplies activations by ﬁ during training, and keep the network untouched
during testing
» Effects

Increases independence between units and better distributes the representation

Interpreted as an ensemble model; reduces model variance
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Deep Learning heuristics
Dropout

» Dropout for a single unit

Let p be the dropout probability
Consider a neuron i with inputs x € R™ and weight vector w € R™ including the bias term

The activation of neuron i is z; = f(w. x) with f a non linear function (e.g. Relu)
Let b; a binomial variable of parameter 1 — p

»  Original dropout
Training phase
O z;= blf(W x), bi € {0,1}
Test phase
0o z;= ﬁf(w. x)
» Inverted dropout

Training phase
0z = bif W), b € {0,1)

Test phase
O z;=f(w.x)
» Note

The total number of neurons dropped at each step is the sum of Bernoullis b;, it follows a binomial distribution
B(m, p) where m is the number of neurons on the layer of neuron i.

Its expectation is the E[B(m,p)] = mp
L? normalization could be used together with dropout but reduced
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The loss landscape of deep neural networks

from Li et al. 2018, https://arxiv.org/pdf/1712.09913.pdf

» Developed a method for vizualizing the loss landscape that allows to
compare different NINs

» Hints

» Given 6" a solution learned by a NN and § , 7 two random vectors of the same
size as 0, plus normalization heuristics on these vectors, plot the surface

fla,B) = L6 + ad + Bn)
» Examples

» Networks trained on CIFAR-10 (image dataset for classification)

» Some messages
» NN depth has a dramatic effect on loss surface when no skip connection is used
» Wide models tend to have smoother surfaces

» Landscape geometry has a dramatic effect on generalization. Flat minimizers tend
to have lower test errors
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The loss landscape of deep neural networks
from Li et al. 2018, https://arxiv.org/pdf/1712.09913.pdf

» 3-D plots

» ResNet-56 without and with skip connections

(a) without skip connections (b) with skip connections

} 2- D P I Ots Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter

normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

» Resnets of different sizes (20, 56, | 10 layers) without and with skip connections

Centered on the learned min 8*

™ Convex landscape for

Skip connections P (@ small (20 layers) NNs

N\ =" RN\ A and for Skip connections
- ™ S iR G0 A3 03 OU) 1 Ll e =k G AR oM R im "‘:I}Zn - = ,:‘,.‘ ] n.l‘,
(a) ResNet-20, 7.37% (b) ResNet-56, 5.89% (c) ResNet-110, 5.79%

TR T Highly non convex

ATRTIN landscape for noSkip
NNs when size

No skip connections ;)_i“ S

(d) ResNel-20-NS, 8.18% (¢) ResNet-56-NS, 13.31% (f) ResNet-110-NS, 16.44% INCreases.

Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.
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CNN: Convolutional Neural Nets

Introduction
Classification
Object detection

Image segmentation




CNNs

» CNNs were developped in the late 80ies for image and speech
applications

» Deep CNNs were successfully used for image applications
(classification and segmentation) in the 2010s — starting with the
ImageNet competition, and for speech recognition.

» Their use has been extended to handle several situations
» They come now in many variants

» They can often be used as alternatives to Recurrent NNs
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CNNs
principle

» Exploit local characteristics of the data via local connections
» e.g.images (2 D), speech signal (I D)

» Local connections are constrained to have shared weight vectors
» This is equivalent to convolve a unique weight vector with the input signal
Think of a local edge detector for images

The 3 hidden cells here share the same weight vector
00 (blue, red, green weight values)

» Several convolution filters can be learned simultaneously

» This corresponds to applying a set of local filters on the input signal
e.g edge detectors at different angles for an image
here colors indicate similar weight vectors, not weight values as above
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CNNs
example

» ConvNet architecture (Y. LeCun since 1988)
» Deployed at Bell Labs in 1989-90 for Zip code recognition
» Character recognition

» Convolution: non linear embedding in high dimension

» Pooling: average, max Layer 3
256@6x6 Layer 4
Layer 1 156@ 1 x1 Output
64x75x75 Layer 2 - ‘
. 4x75x7: ’ 101
input 64 @ 14x 14

83x83

9x9
0x9 i .
10x10 pooling,  onvolution

convolution O . _
5x5 subsampling (4096 kernels) Ryl
(64 kernels) X4 subsamp

# parameters 64x9x9=5184, 256x9x9=20736, 256x101 = 60916
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CNNs

» |In Convnet

» The first hidden layer consists in 64 different convolution kernels over the initial
input, resulting in 64 different mapping of the input

» The second hidden layer is a sub-sampling layer with a pooling tranformation
applied to each matrix representation of the first hidden layer

> etc
» Last layer is a classification layer, fully connected
» More generally

» CNNs alternate convolution, and pooling layers, and a fully connected layer at
the top.
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CNNs
visualization

» Hand writing recognition (Y.LeCun Bell labs 1989)

el

Ly

e |
=

B

| 3

=3

%

2
:{.

B W

B B
-1
4
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CNNs

Convolution: filter size and stride

» 2D convolution, stride 1, from 3x3 image to 2x2 image, 2x2 filter

= W

W»

Wy

X1 K’—é X3 W3

Filter il ol
x4_ X5 x6 E y4

= Wi X1+ WrXo + WaXs + Wy X
1 141 242 344 4X5

» 2 D convolution, stride 2, from 4x4 image to 2x2 image, 2x2 filter

. wy (W
x1 ﬂ/x?) X4 1 2

W3 | Wy

Filter 1l 2]
3|| Va

= WiX1 + WrXo + WaXe + Wy X
1 141 242 345 4X6
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CNNs
Padding

» Padding amounts at filling the border of the image, usually with 0
» The width of the padding border depends on the filter characteristics

ol O O O O | O
=
Ul
=
(o)
=
N
=
o
ol O O O O | O
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CNNs
Convolutions arithmetics

» Input image nxn, filter fxf, padding p, stride s

» Output image is lw + 1‘ X l%p_f + 1‘

S

» Floor function | . |

» in some cases a convolution will produce the same output size for multiple input
sizes. If i + 2p — k is a multiple of s, then any inputsizej = i +a,a €
{0,...,s — 1} will produce the same output size. This applies only for s > 1.

Note: more in (Dumoulin 2016), a guide to convolution arithmetic for Deep Learning
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CNNs
on multiple channels, e.g. RGB images

» Convolution generalizes to multiple channels. For images, the input
is usually a 3 D tensor, and the output is a 2 D tensor: the filter is
not swipped across channels usually, but only across rows and
columns of the corresponding channel.

inputs 1 filter — stride 1 1 output

6x6x3 image 3x3 filters — stride 1 4x4 image
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CNNs
on multiple channels

» This generalizes to any number of input channels, and filters

» Below C input channels and 2 outputs

inputs d filters — stride 1 d outputs

VP

A

v
4

v

w W —w+1
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CNNs
1x1 convolutions on multiple channels

» 1x1 convolutions, perform a pixel wise weighted sum on several
channels

» They are used to reduce the size of a volume

e.g. transforming a HxWxC volume to a HxWxC’ volume with ¢’ < C, by using C’, 1x1
convolutions

v

<& »
< —>

C channels
HxWXC 1x1xC HxWx1

C' = 1 convolution in
this example
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CNNs
Pooling

» Pooling
» Used to aggregate information from a given layer
» Usually Mean or Max operators are used for pooling

» Example: Max pooling, stride 2

4 1 7 4

35 1 2 B 7
01 3 4 |2
2 1 1 4

» Pooling provides some form of invariance to input deformations

» Pooling arithmetics
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CNNs
Transposed convolution

» This is the reverse operation — to a convolution

>

>

Note: more in (Dumoulin 2016), a guide to convolution arithmetic for Deep Learning

144

Increases the input image size

Used for auto-encoders, object recognition, segmentation

Example: from 2x2 image to 3x3 image, 2x2 filter, Stride 1 with Padding

Machine Learning & Deep Learning -

0 W1 W\

0 0 2 —
0 W3 W4_ 'Xl x2 x2
0
Yif]| Y2 Filter Xy | X5 | Xxg
0 Y3 | Ya |O
X7 | Xg | X9
0 0 0 0
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Transposed convolutions

» Convolution

» x*w =2z with x € R°, z € R*
X1 X2 X3
Wi Wy
y» x=|Xs2 X5 Xg ,W=( ),z
X7 Xg Xg

» Convolution in matrix form

Lets flatten the vectors, the CNN convolution can be written in matrix form as:

Wx =2z
WZ O W3

W1
X
X = 1 ’ W = 0 W1 Wy 0
% 0 0 Wy
9
0

0
0O 0 O

Wy
w3
W
Wy

0
Wy
0
W

0
0
W3
0

0
0
Wy
W3

0
0

Wy

Z1



» Transposed convolution

» Transposed convolution in matrix form y = W1z,

>

(

Wq
W

cocooXTFToX X o

0
0
0

0

0

z€R*and y € R®



Transposed convoution

» Transposed convolution in convolutional form y = z * w

0 U( Wy W\

W2 [ Wy V1

Filter
Y4

o |o |o o Y7




CNNs
Unpooling

» Reverse pooling operation

» Different solutions, e.g. unpooling a max pooling operation

Bl -

4
35 1 2 ‘ 7
01 3 4 ' 4

2 | 1 4

» Remember the positions of the max and fill the other positions with 0

0070
Ao 2o
y - 0 0 0 4
2 0 00
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CNNs—Classification (Krizhevsky et al. 2012)

» A landmark in object recognition - AlexNet

» ImageNet competition
Large Scale Visual Recognition Challenge (ILSVRC)

1000 categories, 1.5 Million labeled training samples
Method: large convolutional net

650K neurons, 630M synapses, 60M parameters
Trained with SGD on GPU

-~

27

- =]
v
-

b

-
-

[224
55

Max
pooling

Max
Stride' pooling

of 4

224 96

grille
pickup

beach wagoen
fire engine
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CNNs
Very Deep Nets trained with GPUs

Deeper Nets with small filters — training time several days up to 1 or 2
weeks on ImageNet

VGG, 16/19 layers, 2014

Oxford, [Simonyan 2014], Parameters 138 M

ol/2 |
ol/2 |
ol/2 |

< o~ o~ o~ ~ ~
Y. L) ) - - Lo
w wn w w

v, 64, pool/2
, 128
nv, 128, po
256
cony, 256
256
v, 256, po
conv, 512, po
\ 4
fc, 4096
\ 4
fc, 4096
v
fc, 1000

v
\ 4
3x3 conv, 512
v
\ 4

(=]
. ) m m m ™M ) m m ™
oM x o x x x x = x x x
m o m m o m o m m o

3x3 conv, 512, pool/2 I

m
>
m

3x3 con

m
>
o™

| 3x3 con

GoogleNet, 22 Iage;s, 2014 Google, [Szegedy et al. 2015], Parameters 24 M

ResNet, 152 |ayer5, 2015 MSRA, [He et al. 2016] , Parameters 60 M
e e
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34-layer residual

CNNs
ResNet [He et al. 2016]

4
4

152 ResNet 1st place ILSVRC classification competition

Other ResNets 1st place ImageNet detection, 1st place ImageNet localization, MS-COCO detection

and segmentation

Main characteristics

»  Building block
Identity helps propagating gradients
Reduces the vanishing effect
F(x) is called the residual o
Similar ideas used in other models .F[_Xj

X |—
y
weight layer
relu
L4 J X
s o identity

Flx) +x G:*)"
relu

»  Deep network with small convolution filters
Mainly 3x3 convolutional filters

Ll

M) e, 84, /2
o, f2
dxd @may 84
3x) @nv, 128
3x oow, 1N

m e -
E E |2 : 3
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CNNs
ResNet [He et al. 2016b]

» ResNet block '\@

b Xepqr = X¢ + F(x, We) g
T—l Rell)
2 xT = xt + Zi=t F(xl, Wl)

BN

addition
Fig. He 2016, original ResNet block

Rell
!

XM
» The feature x1 on the last layer can be represented as the feature x; of layer t plus a
residual Y1 ' F (x;, W;)

» ResNet Backward equation
9c _ ac axr _ acC 0 r—
= = e (L + 5 Xi F(a, W)

dx;  Oxr 0xt

. ac . .

» Gradient 5. an be decomposed in two additive term
t

>

ac . . .
5. Propagates this gradient to any unit
T

%Z?;tl F(x;, W;) propagates through the weight layers
t
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CNNs
ResNet as a discretization scheme for ODEs (Optional)

» Ordinary Differential Equation
ax
» —=FX(),0(0)),X(0) = X, (1)
» Resnet module can be interpreted as a numerical discretization scheme for the

ODE:

» Xep1 = Xe +G(X,0;4) - ResNet module (2)
» Xipq = X¢ + hF(Xe, 6¢), h € [0,1] (simple rewriting of (2) replacing G () with hF ()
y TR = F(X,,0,)
Forward Euler Scheme for the ODE (1)
h time step
» Note: this type of additive structure (2) is also present in LSTM and GRU units (see RNN
section)
» Resnet

» Input X;, output X; 4

» Multiple Resnet modules implement a discretization scheme for the ODE Z—f = F(X(t),0(t))
X(t1) = X(to) + hF(X(to), 6,)
X(tz) = X(t1) + hF (X (t1),6¢, ), ..
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CNNs
Resnet as a discretization scheme for ODEs

» This suggests that alternative discretization schemes will correspond
to alternative Resnet like NN models

» Backward Euler, Runge-Kutta, linear multi-step ...
» Example (Lu 2018) linear multi-step discretization scheme
> Xev1 = (1 — k) Xe+keXe 1 + F(Xe, 6¢)

. 2x fewer parameters
e

L

Test Accuracy(%)

Fig. (Lu 2018) Een =

] ] 10 12 14
#Parameters(x10°)

Figure 2: LM-architecture is an efficient structure that enables ResNet to achieve same level of

} APPI ication S accuracy with only half of the parameters on CIFAR10.
» Classification (a la ResNet)
» Modeling dynamical systems
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Convolutional Nets
ILSVRC performance over the years

+ Imagenet 2012 classification
challenge

* ImageNet 2013 - image classification challenge

Description 0.11197 Deep learning
2 NUS 0.12535 Deep learning

. 3 Oxford 0.13555 Deep learning
1 U. Toronto 0.15315 Deep learning
MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto .... Top 20
2 U. Tokyo 0.26172 Hand-crafted groups all used deep learning
. i .
3 U. Oxford 0.26979 features and ImageNet 2013 - object detection challenge
learning models. m
4 XEI'OX/l NRIA 0.27058 Bottleneck. UvA-Euvision  0.22581 Hand-crafted features
? NEC-MU 0.20895 Hand-crafted featuras
3 NYU 0.19400 Deep learning
Object recognition over 1,000,000 images and 1,000 categories (2 GPU)
* ImageNet 2014 — Image classification challenge CN N examples
I S 7 N
Google 0.06656 Deep learning
2 Oxford 0.07325 Deep learning

3 MSHA 0.08062 Deep learning

* ImageNet 2014 — object detection challenge

[ Rark | Name ___| Mean Average Precision | __Description |

1 Google 0.43933 Deep learning
2 CUHK 0.40656 Deep learning
3 Deeplinsight 0.40452 Deep learning
4 UvA-Euvision 0.35421 Deep learning
5 Berkley Vision  0.314521 Deaep learning
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Convolutional Nets
ILSVRC performance over the years

Classification Localization
0.26 o )
g © 04
) o 0.34
c 02 c 0.3
2 0.16 & 03 0.25
_S 0.12 E 0.2
= 0.1 =
0 0.07 ©
S 0.036 S 0.1 009  o.077
(-—) . 0.03 |
0 | i | 0
2010 2011 2012 2013 2014 2015 2016 2011 2012 2013 2014 2015 2016
ILSVRC year ILSVRC year
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Classification
CNNs and Transfer Learning

» Training large NN requires
» large amount of labeled data
» Large GPU clusters

» Large labeled datasets are not available for all applications

» Deep Networks pretrained with large datasets like ImageNet are
used for other applications after some retraining/ fine tuning;
» Classification of images from different nature
» Classification of objects in large size images
» Object detection, Segmentation
» Learning latent representations of images

» Remark
» CNN trained on ImageNet have specific characteristics

e.g. input: 224x224 images, centered on the objects to be classified
How to adapt them to other collections?
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Classification - Transfer learning - CNNs - Images from different
nature,M2CAI Challenge (Cadene 2016)

» Endoscopic videos (large intestine) ;

» resolution of 1920 x 1080, shot at 25 frame per second at the IRCAD research center in Strasbourg, France.
27 training videos ranging from 15mn to lhour, |5 testing videos

»  Used for: monitor surgeons, Trigger automatic actions

»  Objective: classification, | of 8 classes for each frame

TrocarPlacement, Preparation, CalotTriangleDissection, ClippingCutting, GallbladderDissection, GallbladderPackaging,
CleaningCoagulation, GallbladderRetraction

» Resnet 200 pretrained with ImageNet -> reaches 80% correct classification

| Model | Input ] Param. | Depth | Implem. | Forward (ms) [ Backward (ms) ‘
Vggl6 224 | 138M 16 GPU 185.29 437.89
InceptionV32 | 399 | 24M 42 GPU 102.21 311.94
ResNet-2003 224 65M 200 GPU 273.85 687.48
InceptionV3 399 24M 42 CPU 19918.82 23010.15

Table 1: Forward4+Backward with batches of 20 images.

InceptionV3 Extraction (repres. of ImageNet) 60.53
g InceptionV3 From Scratch (repres. of M2CAl) 69.13
InceptionV3 Fine-tuning (both representations) 79.06
ResNet200 | Fine-tuning (both representations) 79.24

158
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Classification - Transfer learning - CNNs - Images from different
nature, Plant classification (Wu 2017)

» Digitized plant collection from Museum of Natural History — Paris
» Largest digitized world collection (8 millions specimens)

» Goal
» ldentify plants characteristics for automatic labeling of worlwide plant collections
» O(1000) classes, e.g. opposed/alternate leaves; simple/composed leaves; smooth/with teeth leaves,

» Pretrained ResNet

i

VI
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Classification - Fully convolutional nets
CNNs — Classification of large images (Fig. Durand 2016)
How to deal with complex scenes?

Pascal VOC style

ImageNet style

|u_

« Working on datasets with complex scenes (large and cluttered
background), not centered objects, variable size, ...

?";f‘;’ﬂ :"l ) '1|-"-;. }

o G

_‘. :

.-" 0

" =y

v " x
i ¥ .*.I-_' -

VOCO07/ 12 MITG67 15 Scene  COCO VOC12 Action



Classification - CNNs — Classification of large images (Durand 2016)
Sliding window => Convolutional Layers

224x224x3 224x224x64 4096

112 x[112 x 128 Fully connected layer 7x7x512 cells -> 409¢

X 56 X 256

28><28><51214 » IQX7X512
A2ty 1%1%x4096 1 x1x 1000

@ convolution+ReLLU
max pooling

- fully connected+Rel.U

ﬁ softmax

» Sliding window: ImageNet trained CNN
» Use the ImageNet trained CNN as a sliding window (a convolution filter) on the large image
» In order to do that, one must convert the fully connected layer

7x7x512 cells — 4096 cells

into a convolutional layer
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Converting Fully Convolutional Nets (FCN) to CNN

» Fully connected layers can be converted to convolutional nets

» The following scheme is equivalent to 3 output cells fully connected to the input
cells, but is expressed as a convolution

» Colors correspondance below
FCN classical view FCN convolutional view

y i
it

Cell layer Outputs
3 cells
nXnXC e ch weight
vector is J Cell layer Weight layer Outputs
nxnxC nxnxcC each is nxnxC 3 cells
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Converting Fully Convolutional Nets (FCN) to CNN

» Fully connected layers can be converted to convolutional nets
» This does not change anything if the input size is the size of the weight layer

» It can be used as a convolution for larger input sizes, and then produces larger
outputs

» In this way, pre-trained networks can be used without retraining for larger

e /) A

* —_—
/// 4/ 4/
Cell layer Weight layer Outputs
NXNxC xnxC each (N —n+ 1)x(N —n + 1)x1 each
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CNNs — Classification of large images (Durand 2016)
Sliding window => Convolutional Layers

! / ! !
hxw'x3  h'xw'x64 h=2_—6 w=% -6
bl xwlx128
|
%’X%’X256 h X w X 4096
hf /
Ll %512 33 X33 X512

........................

.................

i

(7 convolution+ReLU

network

(7 max pooling

Machine Learning & Deep Learning - P. Gallinari

164

¥ Dotted lines: initial
Imagenet trained



CNNs — Classification of large images (Sermanet et al. 2014)
Sliding window => Convolutional Layers

H E =
i . Bl
10x10

5x5
1x1 1x1
14x14 — -1 e ———,
convdqun poohng conv conv conv
I i | |
nput 1st stage classifiel output
o " -
H mE L
6x6
i e 2x2 5x5 o A -

16x16 convoMUon pooling conv conv conv

Input st [,l-'l'tj'.' classifier output

Figure 5: The efficiency of ConvNets for detection. During training, a ConvNet produces only a
single spatial output (top). But when applied at test time over a larger image. it produces a spatial
output map, e.g. 2x2 (bottom). Since all layers are applied convolutionally, the extra computa-
tion required for the larger image is limited to the yellow regions. This diagram omits the feature
dimension for simplicity.

Fig: Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun, OverFeat: Intec Q) e
Recognition, Localization and Detection using Convolutional Networks, 2014 U Convolutional

seseamngs IMplementation of
sliding windows

Nice video by A. Ng (CAW3L04 Convolutional implementation of sliding windows) at
https://www.youtube.com/watch?v=XdsmIBGOK-k&list=PLkDaE6sCZn6GI29A0E31iwdVwSG-KnDzF &index=26
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CNNs — Classification of large images (Durand 2016)
Sliding window => Convolutional Layers

d > C

 S—

Feature

extraction
network

k-max+k-min L
pooling ?

hxw h xw
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CNN : A neural algorithm of Artistic Style (catys et al. 2016)
Generate images by combining
content and style

Makes use of a discriminatively
trained CNN

Image generation

» inverse problem on the CNN

https://deepart.io

K
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CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)

>

ldea (simplified)

4
>

Generated image

4

168

Use a pre-trained ImageNet NN

C input content image, F. a filter
representation of ¢

a input art image, G,a filter
correlation representation of a
x a white noise image, F, and G,,

the corresponding filter and filter
correlation representations

loss:
L= ”FC - FxHZ + a”Ga - lelz

Solve an inverse problem
X = argmin, (L)
Solved by gradient
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CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)

Y 2 p
4 Er= Z (G" - 4%) ‘Ctotal — a‘ccontcnt + .Bﬁstylf:

F—t—  GL =" FLFk.

iz =

ot aE; dEL II{
-7 pool4 JFL AFL-1 4

e

T,

L sotal

~A oz

Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image d is passed through the network
and its style representation A’ on all layers included are computed and stored (left). The content image 7 is passed through the network
and the content representation P in one layer is stored (right). Then a random white noise image ¥ is passed through the network and its
style features ' and content features /' are computed. On each layer included in the style representation, the element-wise mean squared
difference between G and A’ is computed to give the style loss £, (left). Also the mean squared difference between F' and P! is
computed to give the content loss Leontent (right). The total loss Lioear is then a linear combination between the content and the style loss.
Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively
update the image F until it simultaneously matches the style features of the style image @ and the content features of the content image 7
(middle, bottom).

-
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Object detection

» Objective: predicting classes and location of objects in an image

» Usually the output of the predictor is a series of bounding boxes with an object
class label

» Performance measure

» Let B a target bounding box and B the predicted one

area(BNB)

» Intersection over Union: IoU = —
area(BUB)

» Training

» Supervised training, e.g. Pascal Voc Dataset

# PASCAL Annotation Version 1.00 Image filename :
"TUDarmstadt/PNGImages/motorbike-testset/motorbikes040-rt.png"

Image size (XxY xC):400x275x 3

Database : "The TU Darmstadt Database«

Objects with ground truth : 2 { "PASmotorbikeSide" "PASmotorbikeSide" }

# Note that there might be other objects in the image # for which ground truth data has
not been provided.

# Top left pixel co-ordinates : (1, 1)

# Details for object 1 ("PASmotorbikeSide")

Original label for object 1 "PASmotorbikeSide" : "motorbikeSide«

Bounding box for object 1 "PASmotorbikeSide" (Xmin, Ymin) - (Xmax, Ymax) : (57, 133)
- (329, 265)

# Details for object 2 ("PASmotorbikeSide")

Original label for object 2 "PASmotorbikeSide" : "motorbikeSide«

Bounding box for object 2 "PASmotorbikeSide" (Xmin, Ymin) - (Xmax, Ymax) : (153, 95)
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» Teaser YOLO démos

» First paper 2015 (J.Redmon who developed V| toV3)

» YOLOV2 -
https://www.youtube.com/channel/lUC7ev3hNVkx4DzZ3LO | 9o0ebg?app=deskto

p&cbrd=1&ucbcb=1
» YOLOVS - https://www.youtube.com/watch?v=MPU2Histivl
» Other actors developed further versions,YOLOV5,Vé6
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CNNs for Object detection
Case study: YOLO (Redmon 2015), https://goo.gl/bEs6Cj

» Classical CNN architecture

» Divides the input image into a SxS grid
» Each grid cell predicts

B bounding boxes and confidence for these boxes
0 5 numbers per box: (x,y): box center, (w, h): box dimension, confidence
0 confidence = P(Object).loU(target, pred)

0 P(Object) is the probability that an object appears in a grid cell

The class probability for the object if any (only one object/ cell grid),i.e. 1 prediction /
cell

0 P(Class|Object)
00 Note: at inference time they use the following score
0 P(Class|object).P(Object).loU(target, pred) instead of P(Class|Object)
This includes confidence

0 Only the boxes/classes with the higher score are kept
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CNNs for Object detection
Case study: YOLO (Redmon 2015)

>

Fig. Redmon 2015

173

Classes

Figure 2: The Model. Our system models detection as a re-
gression problem. It divides the image into an even grid and si-
multaneously predicts bounding boxes, confidence in those boxes,
and class probabilities. These predictions are encoded as an
S xS x(B#*5+C)tensor.
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CNNs for Object detection
Case study: YOLO (Redmon 2015) - Network Design

448
iﬁ
12
i —
56 33[—\
448 4 28 Jﬁ—\ \
i —| X[ P
nz 58 i
i 14 7 7 r
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
Txixb64-52 3x3x192 1x1x128 1x1x256 Ix1x512 7,5 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-52 2x2-52 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s2
Maxpool Layer  Maxpool Layer
2x2-52 2x2-52

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

Output : SxSx(Bx5 + () tensor
for Pascal Voc dataset: SxSx(Bx5 + C) = 7x7x(2x5 + 20)

With B: # boxes and C: # classes
Several 1x1xn convolutional structures to reduce the feature

space from preceeding layers
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CNNs for Object detection
Case study: YOLO (Redmon 2015) - Design and Training

4
4

175

Pretrained on ImageNet 1000 class

Remove classification layer and replace it with 4 convolutional layers + 2 Fully
Connected layers

Activations: Linear for the last layer, leaky reLu for the others

Requires a lot of know-how (design, training strategy, tricks, etc)
Not described here — see paper...

Improved versions followed the initial paper

Generalizes to other types of images:

Ma Figure 6: Qualitative Resulis. YOLO running on artwork and natural images. 1t is mostly accurate although it does think one person in
an image is an airplana.



Image Semantic Segmentation

» Objective
» ldentify the different objects in an image

» Microsoft demo 2015 https://www.youtube.com/watch?v=FroRjEejA30

» Deep learning
» handles segmentation as pixel classification
» re-uses network trained for image classification by making them fully convolutional
» Currently, SOTA is Deep Learning

» Main datasets

»  Voc2012, http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
» MSCOCO, http://mscoco.org/explore/
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CNNs for Image Semantic Segmentation

» DL for segmentation massively re-uses CNN architectures
pretrained for classification
» This is another example of transfer learning
» Here the goal is to generate classification at the pixel level and not at the

global image level

Means that the output should be the same size (more or less) as the original image,
with each pixel labeled by an object Id.

Full connections: too many parameters
0 How to keep a pixelwise precision with a low number of parameters
» Two solutions have been developped

Encoder — Decoder architectures with skip connections

00 Encoder are similar to the ones used for classification and decoders use Transpose
Convolutions and Unpooling

Dilated or a Trous convolutions : remove the Pooling/Unpooling operation

177 Machine Learning & Deep Learning - P. Gallinari



CNNs for Image Semantic Segmentation
Encoder-Decoder - Fully Convolutional Nets (Shelhamer 2016)

» One of the first contribution to DL semantic segmentation,
introduces several ideas

» Auto-encoder with skip connections

21

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation

» Fully connected -> convolutional trick

“tabby cat”
&Uﬂvg@ I
96 s
\
convolutionalization

' tabby cat heatmap

|

S E

} End to end trai ning for Segmentation Figure 2. Transforming fully connected layers into convolution

layers enables a classification net to output a heatmap. Adding
layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.
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CNNs for Image Semantic Segmentation
Encoder-Decoder - Fully Convolutional Nets (Shelhamer 2016)

» FCN architecture: upsampling and skip connections
» Training loss = per pixel cross entropy
» Their initial pipeline (red rectangle) requires x 32 upsampling

» Improved results where obtained by combining several resolutions in the DNN

. 1
Resolution —
— 32

/ 32x upsampled
convl pooll conv2 pool2 conv3 pool3 conv4 poold convh poold corf¥6-T  prediction (FCN-32s)

I \

2x conv7

poold

Resolution — |
16

Upsampling x 32

16x upsampled
prediction (FCN-16s)

Upsampling x 16

8x upsampled
4dx conv7 prediction (FCN-8s)
2x poold [ ] ]

poold [ [ ]

Upsampling x 8

Resolution 5

Figure 3. Our DAG nets learn to combine coarse. high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-

stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the poo14 layer. at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from pool3, at stride 8, provide further precision.

1 I v wviauimic Lcaiimily X woGp Loallinity - . Janiniiani



Segmentation
Encoder-Decoder - Other models based on the same ideas

__Convolutional Encoder-Decoder Output

Input

Pocling Indices

SegNet — (Badrinarayanan 2017)

B Conv + Batch Normalization + ReLU Segmentation

RGB Image
i Focling Ml Upzampling Softmax

Fig. 2. An illustration of the SegNet archiecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its
input using the transiemed pool indice s from its encoder to produce a sparse eature map(s). It then performs convolution with a trainable filker bank
o densify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

input
image
tile

output
“I | segmentation
1 map

Popular U-Net, (Ronneberger 2015)

= CONv 3x3, ReLU
copy and crop
# max pool 2x2
# up-conv 2x2
= CONV 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.
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Segmentation
Dilated convolutions (Yu 2016)

» Pooling used for classification is not adapted to segmentation

» The link with individual pixels is lost

» Proposed method
» Start from a Deep CNN trained from classification.
» Remove the last Fully Connected and Pooling layers

» Replace them with Dilated Convolution layers

Dilated convolution layers organized hierarchically allow to keep large feature maps for
individual neurons with a « small » number of connections

Size of the input is the same as the size of the output

0 No downsampling as with pooling, i.e. keep the resolution
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Segmentation
Dilated convolutions (Yu 2016)

» 1 D example

Receptive field 150 O O OO O O QOO OO OO O  Dilatation 4

Receptive field 7 O O O O O0Q OO0 Dilatation 2

Receptive field3 O @ O O O O O@)@) Dilatation 1
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Segmentation
Dilated convolutions (Yu 2016)

» 1 D example

Receptive field 150 O O OO O O QOO OO OO O  Dilatation 4

Receptive field7 O O O @ O O O

Receptive field3 O O O O O O O@)@) Dilatation 1
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Segmentation
Dilated convolutions (Yu 2016)

» 1 D example

Receptive field 150 O O O OO O @ OO OO OO O  Dilatation 4

Receptive field7 O O O Q) O O OOQOO0O0O0OQ OO0 Dilatation 2

Receptive field3 O O O O@) O O@)@) Dilatation 1
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Segmentation
Dilated convolutions (Yu 2016)

» In2D
ges Fig from (Yu 2016)
(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F; is produced from Fy by a 1-dilated convolution; each element in Fy
has a receptive field of 3x 3. (b) F; is produced from Fy by a 2-dilated convolution; each element
in Fy has a receptive field of 7x 7. (c¢) F3 is produced from F; by a 4-dilated convolution; each
element in F; has a receptive field of 15x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

» More recent architectures use improved versions of these two ideas
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» Noisy data for vision
» Random rotations
» Random flips
» Random shifts
» Random “zooms”

» Recolorings
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Recurrent networks




RNNs
Examples of tasks and sequence types

» Sequence classification

» Input: sequence, output: class
Time series classification

Sentence classification (topic, polarity, sentiment, etc.)

» Sequence generation

» Input:initial state (fixed vector), output: sequence
Text Generation

Music

» Sequence to sequence transduction

» Input: sequence, output: sequence
Natural language processing: Named Entity recognition
Speech recognition: speech signal to word sequence

Translation
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RNNs

» Several formulations of RNN where proposed in the late 80s, early 90s

They faced several limitations and were not successful for applications
0 Recurrent NN are difficult to train
[0 They have a limited memory capacity

» Mid 2000s successful attempts to implement RNN

4
4

e.g. A. Graves for speech and handwriting recognition
new models where proposed which alleviate some of these limitations

» Today

>

>

RNNs are used for a variety of applications e.g., speech decoding, translation,
language generation, etc

They became SOTA for sequence processing tasks around 2015. In 2020 alternative
NN ideas (Transformers) have replaced RNNs for most discrete sequence modeling
tasks. Initially developped as language models, they are used today in vision and
multimodal (e.g. text-image) tasks.

In this course

4
4
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We briefly survey some of the developments from the 90s
We introduce recent developments on RNNs
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RNNs

» Imagine a NN with feedback loops, i.e. no more a DAG
» This transforms the NN into a dynamical/ state-space system

Information can circulate according to different dynamics Target y;
0 Convergence, stable state?

Supervision can occur at different times
Inputs: fixed, sequences, etc....

» Two main families Q
» Global connections
» Local connections

» In practice, only a limited class of RNNs is used for applications

190 Machine Learning & Deep Learning - P. Gallinari



RNNSs local connections (90s)

» Several local connection architectures proposed in the 90s

Target y, Target y;
s t71
. t72
/4
w (St
U
Xt
Fixed weights
Only the forward weights are learned: All weights learned
SGDg. = f(We,) + Ux, st =f(Wseq) +Ux,
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RNNs global recurrences (90s)

> Network unfolding

SORENOD =

» Algorithm
Back Propagation Through Time (BPTT)

For general sequences: 0 (n*)if n units

Fig. (Pearimutter, 1995, IEEE Trans. on Neural Networks
— nice review paper on RNN form the 90s)

Fg. Thaer an: vy anedl gy plottd against sedh cadver for 1000 e umi rum, with alll e uiis m che eework peturbed by 2
deans samenne absni syvvary -0 umass of came, The pesrasrbeusmns i che cavile neswvrk (k) wor umaleen i 20,1, ame i che figun sgle
wk (righ o
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Dynamics of RNN

» We consider different tasks corresponding to different dynamics
» They are illustrated for a simple RNN with loops on the hidden units
» This can be extended to more complex architectures

» However, RNNs used today all make use of local connections similar to this
simple RNN

» Basic architecture a
74

(s w
U
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RNNs
Dynamics of RNN — unfolding the RNN

Many to many, e.g. speech
or handwriting decoding,
Part of Speech Tagging

Many to one, e.g.
sequence classification

Many to many, e.g.

194 annotation Machine Learning & Deep Learning - P. Gallinari translation

One to many, e.g. image



RNNs
Dynamics of RNN — unfolding the RNN

» Different ways to compute sequence encodings

« The final state sT encodes
the sentence

 The whole state sequence
encodes the input sequence
— usually better: take
elementwise max or mean
of the hidden states.

* More on that on Attention
and Transformers
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RNNs
Back Propagation Through Time

>
>

By unfolding the RNN, one can see that one builds a Deep NN

Training can be performed via SGD like algorithms
» This is called Back Propagation Through Time

Automatic Differentiation is used for training the RNNs

RNNs suffer from the same problems as the other Deep NNs
» Gradient exploding
Solution: gradient clipping

» Gradient vanishing

In a vanilla RNN, gradient information decreases exponentially with the size of the sequence
» Plus limited memory

Again exponential decay of the memory w.r.t. size of the sequence
Several attempts to solve these problems

» We introduce a popular family of recurrent units that became SOTA around 2015:
Gated units (GRU, LSTMs)

196 Machine Learning & Deep Learning - P. Gallinari



RNNs
Recurrent units: Long Short Term memory (LSTM — Hochreiter 1997),

Gated Recurrent Units (GRU — Cho 2014)

» Vanishing gradient problem

» Consider a many to many mapping problem such as decoding or building a
language model (more on that later)

a Unfolded recurrent cell ct
v A
GDw (M )
U ds? gst-1  Ost

° dst Ost—2 dst—1

Gradient flow: vanishing

radient
sttl = f(Wst + Uxtt1) | If any of these

act 0s? dst dCt quantities is small, the
9st  gsl % Gst-1 st gradient from Ct gets
smaller and smaller
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RNNs
Recurrent units: Long Short Term memory (LSTM — Hochreiter 1997),

Gated Recurrent Units (GRU — Cho 2014)

» Vanishing gradient problem

0s? dst—1 dst
dst Jst—2 dst—1
* In this example, the gradient
from C? is much stronger act 0s? dst oact
than the gradient from C* 9st  gsi X gst-1 gt
 This means that « long » dC? 09s%0acC?
term dependencies are 9sl _ 9sl 0s?
difficult to capture with
RNNs
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RNNSs - Gated Units
Long Short Term memory (LSTM — Hochreiter 1997)
Gated Recurrent Units (GRU — Cho 2014)

> Introducing « skip connections » - similar to ResNet

Skip connections: copy previous state

,.f_p ........ @_"

0 Gradient along skip connections: helps
gradient flow

Past value New candidate value:

§'t = t—1
f s t—1 l = tanh(Uxt + Wst™1)
5= )®S + z* ©s’ zt = o(U,xt + W,st™1)

Z
\ / © is the Hadamard product

Gating mechanism U, and ¥, learned by SGD
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RNNs
Gated Recurrent Units (GRU — Cho 2014)
Skip connections

» The output Sjt of cell j is a weighted sum of the
cell output at time ¢t — 1, Sf_l and a new value
of the cell S'f
» st=>01-2z2H)Est"1 +zt@s"

» Zz is a gating function
Extreme cases
Oolfz=0, S]-tis a simple copy of sf_l
O If z = 1 it takes the new value st

J

w.r.t the classical recurrent unit formulation, this new form
allows us to remember the value of the hidden cell at a
given time in the past and reduces the vanishing gradient
phenomenon
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RNNs

Gated Recurrent Units (GRU — Cho 2014)

» Skip connection with Forget Gate + Reset Gate

Past value New candidate value:

st=1-z2HEst"1 + 2tEs't

N

Gating mechanism

s't = tanh(Uxt + W(rt@st™1))
Forget gate z¢ = g (U,xt + W,st™1)
Reset Gate rt = o(U,xt + W,.st™1)

201

(@ is the Hadamard product
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RNNs
Gated Recurrent Units (GRU — Cho 2014) - followed

» The gating function is a function of the current input at time t and
the past value of the hidden cell s‘~*
» zt = o(U,xt + W,st™1)

» The new value st is a classical recurrent unit where the values at
time t — 1 are gated by a reset unit 1,
» s’ =tanh(Uxt + W(rt@st™1))

» The reset unit r’allows us to forget the previous hidden state and
to start again a new modeling of the sequence

» This is similar to a new state in a Hidden Markov Model (but it is soft)
» rt=oU,xt+W,st™1)
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RNNs
Gated Recurrent Units (GRU — Cho 2014)

» There are two main novelties in this GRU

» The z gating function which implements skip connections and acts for reducing
the vanishing gradient effect

» The r gating function which acts for forgeting the previous state and starting
again a new subsequence modeling with no memory

» Each unit adapts its specific parameters, i.e. each may adapt its own
time scale and memory size

» Training
» is performed using an adaptation of backpropagation for recurrent nets

» All the functions — unit states and gating functions are learned from the data
using some form of SGD
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Long short term memory - LSTM

» This was initially proposed in 1997 (Hochreiter et al.) and revised
later.

» State of the art on several sequence prediction problems

» Speech, handwriting recognition, translation

» Used in conjontions with other models e.g. HMMs or in standalone recurrent
neural networks

» The presentation here is based on (Graves 2012)
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Long short term memory

» In the LSTM, there are 3 gating functions
» irinput gating
» O:output gating
» f:forget gating

» Difference with the gated recurrent cell
» Similarities
Both use an additive form for computing the hidden cell state (c) here.

00 This additive component reduces the vanishing gradient effect and allows us to keep
in memory past state values.

Both use a reset (called here forget (f)) gate

O The reset permits to start from a new « state » a subsequence prediction
» Differences

No output gating in the GRU

Reset does not play exactly the same role
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Long short term memory

» For the forward pass, the different activations are computed as
follows and the this order

it = o(Wyxt + Wyst™ 1+ Wct™1 + b))

ft= o(Wypxt + Wypest™1 + Weect™1 + by)

ct =f O ct 1 +i, © tanh(W, xt + Wy st +
0ot = o(Wyoxt + Wyost™ 1 + W.,ct™1 + b,)

st = oltanh(c?)

c is a memory of cell i at time t, c;is computed as for the GRU as a sum of c,_; and of
the new memory content ¢{ = tanh(W,..x; + Wy hi_1 + b,)

0 is an output gate
o is a logistic function

Weis Wep, We, are diagonal matrices
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Bidirectional and multilayer RNNs
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RNNs Future

» RNNs variants (GRU, LSTM) became the dominant approach around
2015, for several tasks including speech recognition, translation, text
generation etc

» Since 2019-2020 they have become superseded by other approaches
for many of these tasks

» Transformers are now SOTA for a large variety of tasks dealing with discrete
sequences, in NLP for example

» Note: after the Transformer » revolution » in NLP, they became popular in
domains s.a. vision.
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Language models

» Objective:
» Probability models of sequences (x1,x?, ..., x%)
» Items may be words, characters, character ngrams, word pieces, etc

» Formally: given a sequence of items, what is the probability of the next item?

p(xt|xt~1, ..., xY)

» Example T
W
» « S'il vous plait... dessine-moi ...» what next ? [';;“s"ﬁk'%f’{éé;
yoaxtxfxd i xU o whatis xt?

» Language models in everyday use

natural language processing is|

(=

M tural language processing is - Recherche Google
» Sentence completion -
natural language processing is a type of
Search e ngi ne q u e ries natural language processing is divided into the two subfields of
natural language processing is ai that
S m artp h o n e m essages etc natural language processing is a field of
’

natural language processing is a type of quizlet

natural language processing is ai that quizlet

o P 2 P p P plL P

» Speech recognition, handwriting recognition, etc

natural language processing is part of which field
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Language models

» Language models can be used to compute the probability of a piece
of text

» Let (x1,x2, ...,x") be a sequence of text, its probability according
to a language model is:
r p(etha? o x ) = [l p et o xt)
With p(xt|xt71, ..., x1) computed by the language model
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Language models
How to learn a language model - n-grams

» A simple solution: n-grams

4
>

v

v

211

n-grams are sequences of n consecutive words (or characters, or any items)

Language model is based on n-gram statistics

Markov assumption

x' only depends on

0 p(xt|xtt

Use Bayes formula p(xt|xt71, ..., xt™0+1) =

the n — 1 preceding words

pen X)) =p (et L xR

p(xt,xt_l,...,xt_n"'l)

/

n-gram probability

)

p(xt_l’."’xt—n+1)

n-1-gram probability

Given large text collections, it is possible to compute estimates of the posterior

probabilities

An estimate could be p(xt|xt71, ..., xt70H) =

Where count(x?t, x
the corpus

)

t—1 t-n+1
), X )

Machine Learning & Deep Learning -

count(xtxt=1,. xt-n+1)

count(xt=1,.  xt—n+1)

P. Gallinari

is the number of occurrences of the sequence in




Language models
n-grams

» Sparsity problem

» In order to get good estimates, this requires large text quantities

v

The larger n is, the larger the training corpus should be

v

For a dictionnary of 10 k words, there could be
10%*2 bigrams
10%%3 trigrams, etc

Note: the number of n-grams in a language is smaller than 10**" but still extremely
large and grows exponentially with n

The model size increases exponentially with n
» n-gram counting is limited to relatively short sequences

Only large companies like Google could afford computing/ storing estimates for n >
10
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Language models
n-grams

» Additional problems

» Consider the sentence « Please open your mind » and a 4-gram model

What if « mind » never occured in the corpus?
[0 The probability of the sequence becomes 0, which is not realistic
[0 Solution: every 4-gram is set to a minimum probability value of €
O This is a smoothing operation — there exists different smoothing estimates
What if « Please open your » never occured in the corpus!?
0 The 4-gram probability cannot be computed
[0 Smooth using backoff estimates
0 e.g.p(please open your mind) = p(open your mind)
» More generally, n-gram models are often smoothed with n-| gram, n-2 grams etc

t—1 t—n+i)

p(at|xt~1, ..., x84 =

lap(xtxtL, L x
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Language models
n-grams — text generation
» Any language model can be used for text generation

Probability distribution
of the next word

mind || 0.1 01
please—open your < door 0.03 Sample from >10.03
eyes 0.2 0.2

this distribution

and 0.01 >
_ | . for 0.02 | Samplefrom
please—open your mind < _ 00 this distribution
N .

etc

> One can generate text of any length
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Language models
n-grams — text generation

» Example from https://projects.haykranen.nl/markov/demo/
» 4 gram trained on the Wikipedia article on Calvin and Hobbes

» Generated text

Rosalyn is a standary children used each otherwise as he stereotypically comic stand for
an impulsive real-life Watterson's stuffed tiger, much as "grounded in reality rathmore
spacious circle: because associety The club has said they have the archive shifting into
low art some of the strip was one larger than Calvin articipate indulges in his hands
attribute red-and-black pants, magenta socks and Susie Derkins specifically characters
like school where were printerestrainstory

» Example from https://filiph.github.io/markov/
Automatic Donald Trump

Donald J. Trump Follow
@realDonaldTrump

Outrageous- @BarackObama has increased total federal budget
outlays by over $500 billion. He took a hit to bring the DC Post
Office will be in jeopardy!

18:44 - 16 Oct 2020

13K 37K
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Language models
Neural networks

» Fixed input size NN

The NN could
be typically a
convolutional
NN with all the
input word
representations
sharing the
same weights

It could also be
made fully
convolutional

Less sensitive
than n-grams to
sparsity

216

mind mouth

4 y
kel

1

(N

Please open your

Machine Learning & Deep Learning -

 Posterior estimate of the
next word

» Classification layer, softmax
among all vocabulary words
» Hidden layer(s)

« Word representation, e.g.
w2Vec

* Input sentence, one hot
encoding
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RNNs
Language models

» RNNs offer an alternative approach to non recurrent NNs

» Objective:
» Probability models of sequences (x1,x?, ..., x"%)

» Estimate with RNNs:
t—1 1

p(xt|xt1, ...,

prediction T w vV
yt = g(Vsh) fWst1 4+ Uxt1) e’ w
» g is typically a softmax

» f could be a sigmoid, Relu, ...

» x will usually be a word/ item representation learned from large
corpora
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Recurrent neural networks Language models

» Training
» Use a corpus of text, e.g.a sequence of words (x1,x2, ..., x7)
» Feed the sequence into the RNN, one word at a time
» Compute the output distribution J for each time step
ytis a distribution on the word dictionary

00 This is the estimated posterior probability distribution given past subsequence
0 If the dictionaryisV ={A,B,C,D}:
ris V=t ) AB CD

yt — P(xt+1 |St)

. X
0 Loss function

0 Classically the cross entropy between the predicted distribution y* and the target
distribution y*

0 Loss at time t in the sequence: Ct = C(3%,yt) = — lell vilog 9 = —logdy,,,
With y)ftﬂdenoting the predicted output for the target class y/ (i.e. next word to
predict)

0 Loss over a sequence of length T corpus C = Y.7_, Ct

O In practice, one uses a mini batch of sentences sampled from the corpus and use a
stochastic gradient algorithm

218 Machine Learning & Deep Learning - P. Gallinari



Recurrent neural networks Language models

» Training
yt — P(xt+1lst)

—logp("at"|s")

Begin at the beginning
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Recurrent neural networks Language models

» Training
y'=P(x

Begin at the beginning
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Recurrent neural networks Language models

» Training

—logp("beginning"|s?)

Begin at the beginning
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Recurrent neural networks Language models

» Training
yt — P(xt+1lst)

Begin at the beginning

» Note
»  Weights are shared: only one U, one V, one W for the whole NN
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Recurrent neural networks Language models

» Training algorithm: Back Propagation Through Time - BPTT

» Consider a sequence of words (x1,x2, ..., xT) sampled from the training set
» Loss function for a sequence : C = YI_, C*t

SGD: compute the loss for the sequence (actually a batch of sequences), compute the gradient
and upfate the parameters

Recall, weights are shared: only one U, one I/,one W
» Example: update of the shared W weights

Gradient of the loss for the whole sequence: compute the derivatives w.r.t. each C* and sums
them:

ac
O —— = Nt ..

Gradigat of the loss for the loss at time t, Ct:

act acty . : : ST
. (W)(i) where (W)(i) is the gradient of the loss w.r.t. weight at position [ < ¢

1 Backpropagate over time steps i = 1 ...t, summing the gradient: BPTT
» This training regime is called teacher forcing

Successive sequential inputs correspond to the true sequence
Different during inference (see next slide)
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RNNs
Language models

» Inference
» Suppose the RNN has been trained

» Inference processes by sampling from the predicted distribution

Sampling Sampling Sampling
Vi = P(X¢11lse) I I

\ v
\ \

224 Machine Learning & Deep Learning - P. Gallinari



RNNs
Language models — Word representation

» Words, characters, n-grams, word pieces are all discrete data

» How to represent them

» The usual way is to embed the words, etc in a continuous space of high
dimension e.g. R%%Y,i.e. each word will be a vector in R#%Y
» This could be done
Off line using some embeding technique (e.g.VWWord2Vec, see later)
0 Advantage, this can be done by using very large text collections
00 These representations could then be used for downstream tasks (e.g. classification)
On line while training the language model

O In this case, the xs are initialized at random values in R™ and are learned by
backpropagating the error, together with the other parameters

[0 We usually loose the benefit of training on large corpora
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Language models — examples

» Language models can be used to learn text representations,

Generate text, Translation, Dialogue, etc

. _ Language generation, Training on Tolstoy’s
Inverse Cooking: Recipe War and Peace a character language model,

Generation from Food Images, Stacked RNNs (LSTMS) (karpatny 2015-
Salvador et al CVPR 2019 https://karpathy.github.io/2015/05/21/mneffectiveness/)

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e

o plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng
* Title: Biscuits

Ingredients: train more

Flour, butter, sugar, egg, milk, salt. *Tmont thithey" fomesscerliund

Instructions: Keushey. Thom here
- Preheat oven to 450 degrees. sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
- Cream butter and suga; coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

- Add egg and milk. ]

- Sift flour and salt together. train more

- Add to creamed mixture,

- Roll out on floured board to 1/4
inch thickness.

- Cut with biscuit cutter.

- Place on ungreased cookie sheet.

- Bake for 10 minutes.

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

} train more

. , ] "Why do what that day," replied Natasha, and wishing to himself the fact the
Figure 1: Example of a generated recipe, composed of a princess, Princess Mary was easier, fed in had oftened hin.

title, ingredients and cooking instructions. Pierre aking his soul came to the packs and drove up his father-in-law women.




Learning word vector representations
Word2Vec model (Mikolov et al. 2013a, 2013b)

» Goal

>

227

Learn word representations
Words or language entities belong to a discrete space
They could be described using one hot encoding, but this is meaningless
How to represent these entities with meaningful representations?

Word2Vec model

Learn robust vector representation of words that can be used in different Natural
Language Processing or Information retrieval tasks

Learn word representations in phrase contexts
Learn using very large text corpora

Learn efficient, low complexity transformations

Successful and influential work that gave rise to many developments and
extensions

Still in use, but superseded by Transformer based learned representations
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Semantics: words
How to encode words according to their semantic meaning

» Representing words as discrete symbols

» In traditional NLP, we regard words as discrete symbols:Words can be
represented by one-hot vectors - Each word is a distinct symbol

» Example:in web search, if user searches for “Seattle motel”, we would like to
match documents containing “Seattle hotel”.

motel =[000000000010000]
hotel =[00000001000000 0]

0 These two vectors are orthogonal.
00 There is no natural notion of similarity for one-hot vectors!

» Vector dimension = number of words in vocabulary (e.g., 500,000)

Very large dimensional discrete space - Problem for machine learning - sparsity



Semantics: words

» Instead: learn to encode similarity in the vectors themselves
» GloVe (Pennington et al. 2014)

Nearest words to
frog:

1. frogs

2. toad

3. litoria

4. leptodactylidae
5.rana

6. lizard

7. eleutherodactylus

rana eleutherodactylus



Words in vector space
Representing words by their context

» Distributional semantics: A word’s meaning is given by the words
that frequently appear close-by
»  One of the most successful ideas of modern statistical NLP!

» When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window).

» Use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

\ J
\ J ~

context words will
represent banking



Words in vector space
Representing words by their context

» Word embeddings

» We represent words w by vectors v, so that words with similar contexts share
« close » representations in the vector space

- 0.877
0.45

_1-0.34
Ubanking = —0.63

0.23
» Key idea - 0.16

» These representations are learned from very large corpora for representing a
large variety of situations/ contexts

No need for supervision
» These embeddings will be used for doswnstream tasks, e.g. classification
» This is an example of self-supervised learning



Word embeddings
Word2Vec — Mikolov et al. 2013

4
P(uturnmg |Ubanking) P(uas |Ubanking) .
P(”inro | Fbunking) oh;
. oven (O microwave
problems  turning into crises  as .. Qrefngerstr 0w
i 1 ' A 05 . bulb
outside context words center word outside context words { 0 :
inwindow of size2  atpositiont in window of size 2 @ Ftchen " .ha.n:r:'gﬂ
.Ilght
30 0 T:: y @ table
00 » @RI et o= o
° hathtub f .t 0 it Ll . bosch
@ aucel () shower @il
valve
B exp(Vo. V) 0
p(WO |WC) - .ﬁnish .deck
ZWEVO cabulary exp (vw - Ve ) 05 @ color om @ sardenQ hose (Q sprinkler
.cnncrete . grass
w,: context word (into)
w.. CE ntral word (ban Ki ng) T 06 oy 02 00 02 04 o6 08
v, vector representation of w,
v, vector representation of w, Word embeddings projections on 2D space:

words with similar contexts are close in the
embedding space



Learning word vector representations
(Mikolov et al. 20133, 2013b)

» CBOW model

» Task

Predict the midle word of a sequence of words
» Input and output word representations are learned jointl;
(random initialization)
» The projection layer is linear followed by a sigmoid wit-1]
» Word weight vectors in the projection layer

are shared (all the weight vectors are the same)

» The output layer computes a hierarchical softmax bt
See later
This allows computing the output in wik2)

0 (log,(dictionary size)) instead of O(dictionary size)
» The context is typically 4 words before and 4 after
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Learning word vector representations - Skip Gram model
(Mikolov et al. 2013a, 2013b)

>

Task

» Predict the context words conditionned on the central
word of a sequence

Input and output word representations are
learned jointly

» (random initialization)

The projection layer is linear followed by a
sigmoid

Input and outputs have different representations
for the same word

The output layer computes a hierarchical softmax
» This allows computing the output in

O (log, (dictionary size)) instead of O(dictionary size)
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4

I\

Skip-gram

Wz

wWE-1]
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Learning word vector representations - Skip Gram model
(Mikolov et al. 2013a, 2013b)

» The context is typically 4 words before and 4

after MPUT  FROVECTION  OUTPUT
» Output words are sampled less frequently if they e
are far from the input word B
» i.e.if the contextis C = 5 words each side, one selects w1
R € {1;C} /
and use R words for the output context o™ \
wik=2]

Skip-gram
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Learning word vector representations - Skip gram model
(Mikolov et al. 2013a, 2013b)

» Loss average log probability

» L = %Z{:l Z—csjsc,jio log P(Wt+j wt)
» WhereT is the number of words in the whole sequence used for training
(roughly number of words in the corpus) and c is the context size
eXp(onut'vWin )
1‘//\;:1 eXp(vw-vwin )

» Where v, is the learned representation of the w vector (the hidden layer),
Vy, .. Vw;, 1S 2 dot product andV is the vocabulary size

4 p(Woutlwin) = 5
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Learning word vector representations - Skip gram model
(Mikolov et al. 2013a, 2013b)

eXp(onut'vWin )
Z}//v=1 eXp(vw-vwin )

» Note that computing this softmax function is impractical since it is proportional
to the size of the vocabulary

» D (Wout |Win) =

» In practice, this can be reduced to a complexity proportional to log, V' using a
binary tree structure for computing the softmax
Other alternatives are possible to compute the softmax in a reasonable time
00 In Mikolov 2013: simplified version of negative sampling
0 (Wi, Woye) = log a(vwout.vwin) + Y% . log o (—Vw,; V)

1

0 with O'(X) = m

237 Machine Learning & Deep Learning - P. Gallinari



Learning word vector representations
(Mikolov et al. 2013a, 2013b)

» Properties
» « analogical reasoning »

» This model learns analogical relationships between terms in the representation
space

i.e. term pairs that share similar relations are share a similar geometric transformation
in the representation space

. . Count d Capital Vectors Projected by PCA
Example for the relation « capital of » 2 St e
*Beijing
In the vector space 5t Auscie
Japarn
O Paris — France + Italy = Rome 't oo el
00 At least approximatively osf .
[0 i.e. Rome is the nearest vector to op  Gemany _
0 Paris — France + Italy osp e B
. . . aine Greecer gnorﬁéhens
» Reasoning via more complex inferences N
. . 15 | Portugal et i
» is however difficult: g -
232 e g 05 0 05 " 5

Combination of transformations
to infer more complex facts is not effective

what a capital city means.

Figure from Mikolov 2013

Machine Learning & Deep Learning - P. Gallinari
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2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure 1llustrates abilify of the model to automatically orgamze concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about



Learning word vector representations
(Mikolov et al. 2013a, 2013b)

» Paris — France + Italy = Rome

Tabde 8: Examples of the word pair relagonships, using ihe best word veors from Table 4 (3kip-
pram mode! rramed on T83M words wish 200 dimensionaliy ).

Relationship Exampie 1 Exampile 2 Exampie 3
France - Paris [taty: Rome Japan: Tokyo Florida: Tallshassee
bag - bigger small: larper cold: colder quick: quicker
Miami - Flonida Baltimore: Maryland Diallas: Texas Kona: Hawaii
Einstein - scientist Messi midfekder Mozart: violinist Picasso: painter
sarkary - France Herluscont: 1taly Merkel: Germany Kowumi Japan
copper - Cu zinc: Zn gold: Au uranium: Huicniwm
Berlusconi - Silvio Sarkoary: Nicolas Putin: Madvedey Obama: Barack
Microsofi - Windows Google: Androsd IEM: Linux Appke: iPhone
Microsoft - Ballmer Google: Yahoo IEM: McNealy Apple: Jobs
Japan - sushi CGermany : bratwarst France: tapas USA: pizza
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Word2Vec extensions, example of FastText

» After W2V, several similar ideas and extensions have been published

» Among the more popular are Glove (Pennington 2014) and FastText
(Bojanowski 2017)

» Vector representations learned on large corpora with these methods are made
available

» FastText is a simple extension of the skipgram model in W2V, where n-grams are
used as text units instead of words in W2V
Consider the word « where » and 3-grams. « where » will be represented as:

O <wh, whe, her, ere, re>, with « < » and « > » corresponding to special « begin »
and « end » characters

O A vector representation z; is associated to each n-gram i

00 The word representation is simply the sum of the n-gram representations of the
word description

€Xp (onut'vWin )

SV -1 eXp(Ww, )

» Remember p(Wyy;:|Win) = in W2V

The dot product v, .V, is replaced by}, c noramwy,) Ywoue: Zi

And similarly for the dot product v,,.v,,.
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Language models — Evaluation - Perplexity

» A classical criterion for evaluating language models is perplexity

» It quantifies how well a probability distribution or probability model predicts a
sample.

In the context of language models, perplexity measures how well a model predicts a sequence
of words.

» Perplexity is fundamentally related to the likelihood of a dataset according to the
language model.

» A language model LM assigns a probability to a sequence of words. For a given
sequence of words x = (x1,...,xT), let us denote its probability by the language
model LM as p;, (x%, ..., xT)
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Language models — Evaluation - Perplexity

» A classical criterion for evaluating language models is perplexity
PP
. B 1 1/T B T—1 1 1/T
’ Pp(x’ LM) a (pLM(xl,...,xT)) - (Ht:l pLM(xt+1|xt,...,x1))

» Where p;m() is the probability estimate of the language model

U 1/T
1 1
» PP(x;LM) = ( Z=1w) = (Hg:1_>

T
i=1YiYi Yxtiq

With y! € {0,1} the target code at time t for word i and J! the corresponding
predicted value.j’i,’ét+1is the prediction for input x;,

1 ~
» PP(x; LM) = exp(: 51y —Ing,,.,) = exp(C)

This is the exponential of the cross-entropy loss €

Perplexity for a language model PP(.; LM) is estimated on a test set of sentences
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Language models — Evaluation - Perplexity

» Interpretation

» A lower perplexity indicates that the language model is better at predicting the
sequence and, therefore, it's more certain about the test data.

» Conversely, a higher perplexity suggests that the model has more difficulty
predicting the sequence and is less certain about the test data.

» Language models are often compared based on their perplexity scores, with
lower perplexity indicating a more accurate and reliable model.
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Language models - Evaluation

» Interpretations

»  Weighted average branching factor of a language: average nb of words following
another word

e.g. for random digit sequences, perplexity is 10

» Perplexity estimates on the WSJ corpus (1.5 M words test corpus, dictionnary
size = 20 k words) for n-gram models

Unigram Bigram Trigram

Fig. from XX
962 170 109
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RNNs for translation

» NN have been used for a long time in translation systems (as an
additional component, e.g. for reranking or as language model)

» In the mid 2010, translation systems have been proposed based on
recurrent neural networks with GRU or LSTM units.

» Initial papers: Sutskever et al. 2014, Cho et al. 2014

» General principle

Sentence to sentence translation

Use an encoder-decoder architecture

Encoding is performed using a RNN on the input sentence (e.g. English)

v Vv Vv Vv

This transforms a variable length sequence into a fixed size vector which
encodes the whole sentence

» Starting with this encoding, another RNN generates the translated sentence (e.g.
French)

» Instead of using a fixed length encoding, later systems made use of an attention
mechanism
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Encoder-Decoder paradigm: example of neural translation — (cho
et al. 2014, Sutskever et al. 2014)

» First attempts for DL Machine Translation with RNNs

Recurrent NN Unfolded recurrent NN for translation
|74
bis) ) w
U

» Proof of concept, did not match SOTA, several improvements since
this first attempt

» Now replaced by Attention Models - Transformers
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Translation

» Let

» x1,..,xT be an input sentence

/
» y1,..yT bean output sentence

» Note that T and T’ are most often different and that the word order in the two sentences is also
generally different

» Obijective
» Learn p(¥?, ..yT |1, ..., xT)
» Encoder

Reads each symbol of the input sentence sequentially using a RNN
After each symbol the state of the RNN is changed according to ht = f(x¢, ht™1)
After reading the sentence, the final state is hT =v

» Decoder
Generates the output sequence by predicting the next symbol y¢ given st=1, yt

0 st = f(yt_l,St_l,V)
0 pGiY Tyt v) = gt st )
» Training: cross-entropy loss

1 . : :
> maxﬁZﬁﬂ log pe (¥¥|xs), where xi and y7 are sentences and py is the translation model, N is
the number of sentences

~1 and the vector v
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Translation

» Typical architecture
» RNN with 1000 hidden cells
» Word embeddings of dimension between 100 and 1000
» Softmax at the output for computing the word probabilities
» Of the order of 100 M parameters
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Google Neural Machine Translation System as of 2016
(Wu et al 2016)
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

» General Architecture

Encoder: 8 stacked LSTM
RNN + residual connections

Encoder LSTMs

L - Defoder LSTM3 ~
cPus [i-)_.(i-]_. -[i‘) Attentlon }i~ @l -

mechanlsm

i layers
GPU3

!

GPU2 Geu3 |

GPU2 |

GPU2

Geul | GPUL §

<js> —p Y, — -y,

J .,
g Ty,

lgaure from Wu et al. 2016
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RNNs as neural image caption generator (vinyals et al. 2015)

» Obijective

» Learn a textual description of an image

i.e. using an image as input, generate a sentence that describes the objects and their
relation!

» Model

» Inspired by a translation approach but the input is an image

Use a RNN to generate the textual description, word by word, provided a learned
description of an image via a deep CNN

K

Vision Canguage | |A @roup of people
Deep CNN  Generating shopping at an
RNN outdoor market.

I @ There are many
vegetables at the
fruit stand.

W

Figure 1. NIC, our model, is based end-to-end on a neural net-
work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language

from an input image, as shown on the example above.
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Neural image caption generator (vinyals et al. 2015)

» Loss criterion
> max ), slogp(S|I; 0)

Where (I, S) is an associated couple (Image, Sentence)

Notations correspond to the figure

» logp(S|1;0) = Xi=1logp(Sell, So, ..., Se-1)
» p(S¢|1, Sy, ..., S¢—1) is modeled with a RNN with S, ..., S;_; encoded into the
hidden state h; of the RNN

» Here st*1 = f(st, x;) is modelled using a RNN with LSTM cells
» For encoding the image,a CNN is used

&
¥
S

t t
o r
T b b T b
Bt — N e e L
=578 9
k' ) 1l

% W.S,
t t t t
image SN-1

251 Machine Learning & Deep Learning  pioypr. 3 1.STM model combined with a CNN image embedder

(as defined in [30]) and word embeddings. The unrolled connec-



Neural image caption generator (vinyals et al. 2015)

A person riding a Two dogs play in the grass. A skateboarder does a trick
} ainagle 1o et g y 9 skate o:'a ul'ln1 'sa r A dog Is jumping to catch a

A little g",' in a pink hat is A refrigerator filled with lots of
food and drinks.

A herd of elephants walking

A close up of a cat laying
across a dry grass fiold.

p gl A red motorcycle parked on the A yellow school bus parked

side of the road. 773 T——n a parking lot.
———

S

| Descrbeswithousmors  Descibeswithminoremors  Somewhot rioedtotre mace NN

Figure 5. A selection of evaluation results, grouped by human rating.
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Attention Mechanism

Initial historical developments and examples




Attention mechanism

» Objective: focus on specific parts of the data representation for
taking the current decision

» Implemented as an additional differentiable modules in several architectures

» lllustration: attention on image while generating sentences

| =

over

14x14 Festure Map
b
ody
of

E i “"_I“
1 o g |
a0
' I
R ———
water

Cimese Fesane Emmcnon e wed | Figs. from Xu et al. 2015

genan

.

Figure 4. Examplkes of attending to the correct object (while indicates the attended regions, underlines indicated the corresponding word)

=4

b =
A woman is throwing a frisbee in a park, A dog is standing on a hardwoaod floor. A stop sign is on a road with a
- mountain in the background,

L >
- gﬁ ==
e i —— L=
= Teae== s
A |"-‘|°§"! sitting an a bed with A group of Eengl-:- sitting on a baat A giraffe standing in a forest with
a teday bear, in the water, trees in the background,
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Attention mechanism

Further processing, e.g.
classification of ¢

Objective: learn a combination of input
vectors h' with attention weights
focusing on the most relevant parts of

] the input signal h
n
C = Z aihi
=1 h' € R? : input, e.g. embedding

T

p === a; = softmax(e;) p=-=====-- Uy
A ﬂk a
___________ — Y S
€1 e; = fare(u, h) €n
L 1
h' h' h"
255 Machine Learning & Deep Learning - P. Gallinari

or hidden output (e.g. RNN

hidden layer)

u € R%: additional info.

c € R? : context vector

e; € R : attention factor

a; € R : attention coefficient
exp(e;)

Y= exp(ej)

softmax(e;) =



Attention mechanism

» Different attention functions f :
» Additive
fare(w, bt ) = v tanh(Wyh! + Wou),v € R%, h' € R4, W, : dxd, W, : dxd
» Multiplicative
fare(w h?) = uTWh', u € R4, W : dxd
» All the parameters (W, v, u) are learned

» Many variants of these formulations

256 Machine Learning & Deep Learning - P. Gallinari



Attention mechanism
For document classification (adapted from Yang et al. 2016)

» Objective: classify documents using a sequential model of attention

4
>

257

Document : word sequence wl, ..., wT

Objective: classify the document among predefined classes — learning criterion:
log likelihood

Word sequence encodings (e.g. pretrained via Word2Vec): x1, ..., xT

Corresponding hidden state sequence: hl, ..., hT obtained via a Recurrent NN

Soft Max: classification

Fixed size document
representation

Hidden state representation
(RNN)

Word representation (pre-
trained embeddings)
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Attention mechanism
Example: document classification (adapted from Yang et al. 2016)

_ Parameters to be learned:
» v = tanh(WhJ + b) (vector) - Attention W, b, u

 Others: RNN, Softmax classifier

exp(v;u ) .
y o = ;) : attention weight (real value)
Xt Vel
» €= 3-;1 cxjhj : fixed size document representation (vector)

» U :context vector to be learned (vector)
Soft Max: classification

Context vector
"""""""" Word representation

Vlachine Leamning & Deep Learning - P. Gallinari
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Attention mechanism
Example: document classification (adapted from Yang et al. 2016)

» lllustration (Yang et al. 2016)
» Yelp reviews: ratings from | to 5 (5 is the best)
» Classification = sentiment/ polarity classification
» Hierarchical attention: word and sentence levels
» Blue = word weight in the decision

» Red = sentence weight in the decision (hierarchical attention model — 2 levels:

sentences and words within a sentence)

GT: 0 Prediction: 0
terrible. value .
ordered pasta entree .

GT: 4 Prediction: 4
pork belly = delicious .

scallops ?

i do m't . $ 1695 good tase but size was an
even . - 7

like . appetizer size .

scallops . and these were a-m-a-z-i-n-g .
fun and tasty cocktails .

next time i 'm in phoenix ., i will go
back here .

highly recommend .

no salad , no bread no vegetable .
this was .

our and tasty cocktails .

our second visit .

i will not go back .

Figure 5: Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1.
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Attention mechanism

for translation (adapted from Bahdanau et al. 2015 — initial
introduction of attention in RNNs)

» Classical Encoder — Decoder framework for translation

» Encoder
Input sentence {x, ..., xT} word embeddings
Encoder: ht = f;,(xt, ht™1) implemented viaa RNN / LSTM
0 h! is the hidden state for input x*
c=q(h, .., A7) for the original Encoder-Decoder
framework, typically ¢ = hT the last
hidden state for the input sentence
» Decoder
Output sentence {y1, ..., y%} for simplification input and output
sentences are taken at the same length
p(YElyL, ...,y e) = g(yt1, st 0) implemented via a RNN or LSTM +
softmax

0 st is the hidden state of the decoder for output y*

[0 Decoding is conditionned on a unique vector c¢ for the whole sentence
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Attention mechanism

for translation (adapted from Bahdanau et al. 2015, initial introduction
of attention)

» Classical Encoder — Decoder framework for translation
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Attention mechanism

for translation (adapted from Bahdanau et al. 2015, initial introduction
of attention)

» Attention mechanism

» Instead of conditionning the output y' on the final context ¢ = h”, the attention
mechanism will use as context c; a linear combination of the ht,t = 1...T

One c; is computed for each y! instead of a common context ¢ for all y's
» The encoder is the same as before
» Decoder

p(Y |y ..y x) =gl st €)

st = f(si1,yi71 ¢)
» Context vector

e = a(s‘=1, h)) computed via a simple MLP for example

_ exp(eij)
al-j

= T exp(er weight of h/when decoding y*

ct = Z]T-zl a;; h’ context vector

» The whole system is trained end to end
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Attention mechanism

for translation (adapted from Bahdanau et al. 2015, initial introduction
of attention)

» Attention mechanism
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Transformer Networks

264

Initial paper: Vaswani 2017
Story Telling and lllustrations used in the slides:
J. Alammar 2018 - 2019 - http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-gpt2/
P. Bloem 2019 - http://www.peterbloem.nl/blog/transformers
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

Transformer networks were proposed in 2017
They implement a self attention mechanism
They became SOTA technology for many NLP problems

Transformer blocks are now a basic component of the NN zoo

v v vV VvV v

They are key components for all the recent NLP transformer
architectures

» BERT family (Google), GPT family (OpenAl), T5 family (Google), etc
» After NLP they have been adapted by the Vision community
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018-
2019, P. Bloem 2019)

Self Attention

» Self Attention is the fundamental operation of transformers

» Self attention is a sequence to sequence operation

Input and output sequences have the same length

» Let xq1,X5,...,xr and z4, Z,, ..., Z7 be respectively the input and output vector
sequence

» Self attention computes the output sequence as:
Zi = Z] aijxj
With «;; a normalized attention score

A simple version of the normalized score could be:
O eij = xl-.xj
exp ejj
0 a;; = softmax(e;;) = o————
Yk €Xp ek

a;j measures how x; and x; are important for predicting z;
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.

Bloem 2019)
Self Attention

» Self Attention is the fundamental operation of transformers

Fori ="Self" to "transformer": z; = apjX;

Output
sequence

Learned
embeddings

Input: word
sequence

267

j=self...transformer

Zself ZAttention Zis Zthe Zfundamental Zoperation Zof Ztransformer

I self attention

xself XAttention Xis Xthe xfundamental xoperation xof xtransformer

I embedding

Self Attention is the fundamental operation of transformers
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Self Attention

>

Self attention is the only mechanism in the transformer that propagates
information between vectors

Any other operation is applied to each vector without interaction between
vectors

In the above example Zfy,ngamentalis @ Weighted sum over all embedding vectors
x weighted by their normalized dot product with the embedding Xrynaamentai

The dot product expresses how related two words in the input sequence are,
w.r.t. the learning task

» Note

268

Self Attention sees the input as a set and not as a sequence
Permutation in the inputs simply results in a permutation of the outputs

An additional mechanism should be used in order to consider the sequence
information (more on that later)
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - Self Attention — Queries, keys, values

» Current transformers make use of a more complex self attention

mechanism

» |.For each embedding x; create 3 vectors as a linear transformation

of x;: query, key, value
> query:q; = Wyx;
4 key: ki = kai

» value:w; = W,x;

> With W, Wy, W,
Matrices of the appropriate

dimension

269

Machine Learning & Deep Learning -

Input Thinking Machines

Embedding X4 X2 |

Queries ai ] q2 wa
Keys EEE 10

Values vil I ] vo [ 1] WV

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query”, a "key",

and a "value" projection of each word in the input sentence.
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Self Attention — Queries, keys, values

» Xx; is used for three roles:

» Query q;:  itis compared to every vector x; to establish the weights for its
own output vector z;

» Key k;: it is compared to every vector X; to establish the weights for the
output z;

» Value v;: it is used in the weighted sum to compute each output vector
Z.

J
» Separating the roles in three vectors q;, k;, v;, all linear
transformations of x; gives a more flexible model

» lllustration for computing the output vector z;
» q; and k; will be used for computing the attention score:
e;j = qi-k;
a;; = softmax(e;;)
» v; will be used for computing the output item

z; =2 a;jv; = ); softmax(q;-k;j)v;
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - — Queries, keys, values

» 2. Compute score from query and key

» Dot product of query and key value for each word
Consider the sentence « Thinking Machines »

e;j = q;.kj - here we consider the first word Thinking (i.e.i = 1,j = 1,2 since we
have 2 words in the sentence)

Input Thinking Machines
Embedding xe ol | | |
Queries g1 —|_m qz |_|—m
Keys « [N ¢ [
Values vi DT v.: [BI
Score qie ki= qi* k2 =

271 Machine Learning & Deep Learning - P. Gallinari



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - — Queries, keys, values

» 3.Normalize and softmax

» Divide by the square root of the dimension of the key vectors (8 in the figure)

_ qik;
ij — N7k
» Compute softmax

e with k the dimension of the g, k, v vectors
a;j = softmax(e;;)

» The softmax value indicates the weight of each word in the input sequence for
position 1 in the example

Input Thinking Machines
Embedding x LT
Queries a LI 1] e [
Keys ’—‘ m_
Values vi DL v DL
Score gie ki= Qi e =
Divide by 8 ( v )

Softmax
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - — Queries, keys, values

» 4. Compute the output of the self attention layer at position 1, i.e.

(z1)

» Multiply each value vector v by the softmax score

» Sum up the weighted value vectors |, [ Thinking Machines
r Z; = Zj a;jv;j Embedding x: [ x D
Queries o [T g [
Keys SN < [0
Values vi [ v. LI
Score qi * ki= | qr o ke =
Divide by 8 ( Vdj )
Softmax
Softmax
X vi O[] V2
Value
Sum z [ zz [N
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019) — Queries, keys, values

» In matrix form for our 2 words sentence

X wa Q
X —

x )
X =

X wv Vv
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019) — Queries, keys, values

» Compute the output of the self attention layer at position 1

» Matrix form

Q KT

softmax

The self-attention calculation in matrix form
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)) - — Queries, keys, values

» Multi-head self attention
» Duplicate the self attention mechanism

» Allows us to focus on different parts of the input sequence and to encode
different relations between elements of the input sequence

» Matrices for the different heads are denoted I/, Wy, W, with r the index of

head r
X
ATTENTION HEAD #0 ATTENTION HEAD #1
Qo Q4
- Woo H1 w,a
K K
EE Wk e Wi
Vo Vi
|
l WoV 1 W,V

With multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in different Q/K/V matrices. As we did
before, we multiply X by the WQ/WK/WV matrices to produce Q/K/V matrices
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019) - — Queries, keys, values

» Compute one output for each head

I hinking

Machines

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019))

» Multi-head self attention

» Two usual ways of applying multi-head

» |.Cut the embedding vector x;into chunks and generate g, k, v from each chunk

e.g. if the embedding is size 256 and we have 8 heads, each chunk will be of size 32, the
Wy, Wy, Wy are of size 32x32

» 2.Apply each head to the whole vector
Wy, Wy, Wy are of size 256x256
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)

» Global output
» Concatenate the individual head outputs
» Combine them with an additional matrix W in order to produce an output of

size k , for example the initial size of the embeddings

1) Concatenate all the attention heads 2) Multiply with a weight
matrix V" that was trained
jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN
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|
Transformer networks (Vaswani 2017, illustrations J. Alammar

2018, P. Bloem 2019)

» Summary of multi-head self attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting - matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix " to
R with weight matrices  Q/K/V matrices produce the output of the layer

Qo

[F‘*_—‘:‘i Ko
Vo } Wo

Thinking

Machines

* In all encoders other than #0,

we don’t need embedding.

We start directly with the output

of the encoder right below this one

R
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Transformer module

» A tranformer module combines different operations and is roughly
defined as follows (several variants — here we detail an encoder
module as in Vaswani 2017)

» The example takes two word as input and outputs two transformed

encodings « Normalization layers (layer

4 4 normalization)
»( Add & Normalize ) * Multiple self attention modules
' [} ¥
; per encoder
: Feed Forward Feed Forward . . . .
( ______ — ) _____ ( ______ 1 ) + Residual (skip) connections like
,-b( Add & Normalize ) in ResNet (See dashes --->)
: % t » Positional encoding
( Self-Attention )
s (l) Layer normalization: normalize the
ENCODING

| | activations of a layer for each
I L | 2 - H sample by centering and
S o reduction of the layer activation

values for that sample
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Transformer module

» Add and normalized detailed

» Residual connections are added before normalization
» Helps with the gradient

A A
(,( Add & Normalize ) \
: 4 4
: ( Feed Forward ) ( Feed Forward )
o o e eeemeaa.- 4
z: z; I
4 4
= (T, B
| Mg LayerNorm( Ty + [ )
g - i LL“J_
2| : -
. ( Self-Attention )
s A A
e Xl R snas Y,
POSITIONAL é é
ENCODING
x+ x[ T 111
Thinking Machines
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Transformer architecture

» Stack multiple transformer modules

C,( Add & Normalize )
'
; :‘. .(- Feed Forward ) ( Feed Forward )
3 | Lo Add & Normalize )
| i %
': ( Self-Attention )
Q ........ T 4 j
C;( Add & Normalize . }
o ]
i ': ( Feed Forward ) ( Feed Forward )
N T YT 3
% :,..( i Add & Normalize ' )
i ( Self-Attention ;
b v A
remonL @) ®
X1 i ] X2 ‘ | 7 O
Thinking Machines
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)

Transformer architecture

» Attention: word dependencies

a
; ;
> gE - o g an A
e e E D = = o § = O A AAANNA
= & 0 QY5083 = ® c 8 o 3 3T T T T TDT
2568 ©, Edgesoczcoosed TFooE wdg&ITI8E
= 2 £ gEE o0 EBACDDc ac® 53 EE QL6 35 a8aET V V V V V V V
= 0w c o E = o = c w 0 T ® © O OO C AAANANANNMNA
2 E2EW :E:'hom‘,':‘>m%30c>_g£.g O T T T OO O
S o £ 5 S5 ®me 23 eESE = O 8 @ @ & @ @
) (=] c £ 5 N5 @ QO g0 aao
© o E 4 £ = W v v v v V V
£ E E % v
o
<E> o
o)
(S

Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.

Fig. (Vaswani 2017)
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)

» Positional encoding

» In order to account for the word order, the model makes use of a positional
encoding together with the first word embeddings (first transformer module in
the transformer multilayer architecture)

An information is added to each input embedding which helps determining the position
of the word in the sentence.

This information is added to the input embeddings at the bottom of the transformer
module

The encoding can be learned like word embeddings — this requires learning one
embedding for each position

The encoding can be defined according to some function f: N — R¥
In the original transformer paper, the encoding is defined as follows:
0 Let PE denote the Positional Encoding, PE € R*xR", i.e. vector of length n, size of
the sequence, and each positional encoding is of size d (same size as embeddings v).
2i 2i
0 PE_(pos,2i) = sin(pos / 100004), PE_(pos, 2i + 1) = cos(pos / 100004)

00 With pos the position in the sequence and i € {1, ..., d} the dimension in the
position vector
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

» Positional encoding

( ENCODER #1 I . l DECODER #1

F 3 F 3 F Y

( ENCODER #0 I . l DECODER #0

K 3 3 r

EMBEDDING

WITH TIME . ] . o
siIGNAL i [ [ ] x2[ [ ] ] xa [ [ 1]
POSITIONAL
EncoDING 1 | | t 1] t 1]
+ + +
EMBEDDINGS x4 X2 Xa
INPUT Je suis étudiant
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

» Intuition on the Query/Key/value components (J. Alammar 2019)

» Consider the sentence
» « a robot must obey the orders given it by human beings ... »

» « It » refers to « a robot »

This is what self attention should detect

» Consider self attention in the decoder module when processing the token « it »

A
(" DECODER K
( Feed Forward Neural Network | )
Masked Self-Attention |
30% Y 18%
|
[
| DECODER }
\_ &

<s> a robot must obey the orders given
1 2 a 4 5 6 7 8 9 1024
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)

» Intuition on the Query/Key/value components (J. Alammar 2019)

» The Query is a representation of the current word used to score against all the
other words (using their keys).VWe only care about the query of the token we're
currently processing.

» Key vectors are like labels for all the words in the segment. They’re what we
match against in our search for relevant words.

» Value vectors are actual word representations, once we’ve scored how relevant
each word is, these are the values we add up to represent the current word.

value #4

Analogy: searching through a filing cabinet. The
Query is like a note with the topic you're TT 0% S
researching. The Keys are like the labels of the g
folders inside the cabinet. When you match the tag

with a note, we take out the contents of that folder, /
the Value vector. Except you're not only looking for | ?
one value, but a blend of values from a blend of

folders.

1snwi

300/0 value #1

10q04
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Transformer networks
Example: classifier (Bloem 2019)

» Binary classifier for word sequences

» Targets: positive/ negative

» The output sequence is averaged in order to produce a fixed size vector

» Loss: cross entropy

input word position output sediction
sequence embedding embedding sequence P ‘
s [+ I

320|q JouLIojsSue.]
390]q JouLIojSuB}
390]q J8uLIojSuRL}

target
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Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P.
Bloem 2019)
Example: text generation transformer - autoregressive model

» Character level transformer for predicting next character from an
input sequence
» Input:a sequence
» Output next character for each point in the sequence, i.e. language model

» i.e.the target sequence is the input shifted one character to the left

input word, pos output character target
sequence embedding sequence probabilities  sequence
h [T O TT] e

- .
(] [T ] !
| T e

320|q JeuLIojsueR}
%00|q JeuLIosues}
| 2
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Transformer networks

Example: text generation transformer - autoregressive model (Bloem
2019)

» Because the transformer has access to the whole « h e | | » sequence, prediction
for « e | | » becomes trivial

» If one wants to learn an autoregressive model one should prevent the
transformer to look forward in the sequence

» Character level transformer for predicting next character from an input
sequence

» For that one makes use of a MASK to the matrix of dot products before the
softmax in the self attention module

Ui Yo Us Yy Ys Ys

i

raw attention weights mask X1 X2 X3 X4 X5  Xg

0] SpUaNe

Here x; is the input in position i and y; the output in position |
» Note: multiplication here is the elementwise multiplication
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Transformer networks
Example: text generation transformer - autoregressive model (Bloem
2019)

» Example followed

» Training from sequences of length 256, using 12 transformer blocks and 256
embedding dimensions

» After training, let the model generate characters from a 256 input character
sequence seed

For a sequence of 256 input characters the Transformer generates a distribution for
the new character (257%").

Sample from this distribution and feed back to the input for predicting the next
(258" character, etc

Sample output (training from 108 characters from Wikipedia
including markups):

1228X Human & Rousseau. Because many of his stories were originally
published in long-forgotten magazines and journals, there are a number of
[[anthology|anthologies]] by different collators each containing a different
selection. His original books have been considered an anthologie in the
[[Middle Ages]], and were likely to be one of the most common in the [[Indian
Ocean]] in the [[1st century]]. As a result of his death, the Bible was
recognised as a counter-attack by the [[Gospel of Matthew]] (1177-1133),...
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Cross-attention
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Appendix - Historical side: Transformer networks (Vaswani 2017)

» The first implementation of Transformer was proposed by (Vaswani 2017) as an
encoder-decoder scheme

» Modern implementation make use of transformer blocks, either encoders,
decoders or encoder-decoder schemes

» It is however interesting to look at the initial idea in order to understand the
vocabulary

» General scheme

Stacks of encoder/ decoder modules

Encoders (resp. decoders) have the same structure bu
i

do-not share p@%Wsword
probabilities/ best

[ Encoder > Decoder sequence
H 4
: 1
: 1
1 1
[ Encoder ] Decoder ]
1 R
Input: word [ Encoder ] Decoder ]
embeddings 1
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Appendix - Historical side: Transformer networks (Vaswani 2017,
illustrations J. Alammar 2018)

» Encoder-Decoder modules structure

' Y
Feed Forward

ENCODER ? \_ ‘ J

(a N r N\

Feed Forward Encoder-Decoder Attention
k ) \_ )
4  EE— El

4 B ( 3
Self-Attention Self-Attention

_J

((
AN
(

t t

» Encoder

» Input flows through a self attention layer — encoding of a word in the sequence will depend on the other words
»  Outputs of the self attention layer are fed in a feed-forward NN.The same network is used for each word

position
» Decoder:2 differences with the encoder
» |. The decoder has an additional encoder-decoder attention layer that focuses on relevant parts of the input
provided by the encoder (when the self attention module below it looks at the info from the lower layer of the
decoder).

»  2.For the self attention module, the decoder can only look at past information to predict the next word — this
is similar to the autoregressive example seen before
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Appendix - Historical side: Transformer networks (Vaswani 2017)
illustration: J. Alammar 2018

» Encoder + Decoder modules

------------------------------------------

( Softmax

(,,( Add & Normalize ) - 3

: 4 /) : ( Linear
~ -
il K Feed Forward Feed Forward 4
@ |5 ( ) ( ) Pt > DECODER #2
a Sas :
L_Cj >l Add & Normalize )| t - L
< E ( ry 7y ) . .,*( » Add & Normalize ;
' Self-Attention P o .
] -4 w .
k. ________ W —— r'y ‘/ - ( Feed Forward ) ( Feed Forward )
= | = | 8| e t
-b( Add & Normalize ) i Q0 .*( Add & Normalize
: ‘ . ] 4 4
o & . |
b ' Feed Forward Feed Forward rii Encoder-Decoder Attention
£li C ) G | *
3 --------------------------------------------------------
O
- Add & Normalize > Add & Normalize
g | g . T ) 1 ( : 1
- ( Self-Attention ) - ( Self-Attention
e i i mit i i 3 —/ REDTTTTTT é) ------------------ é
"Caa @
X1 | | | Xa | | | | |
Thinking Machines
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Appendix - Historical side: Transformer networks (Vaswani 2017)
illustration: J. Alammar 2018

» Modern architectures use either encoder (BERT), decoder (GPT) or
encoder-decoder (T5) schemes

» BERT (Google) makes use of masked inputs (more on that later) and looks at
the full input sequence

» GPT (Open Al) is an autoregressive model (like a classical language model) and
looks only at past items for predicting the future

» T5 (Google) is an encoder-decoder model designed for reformulating several
NLP tasks in a text to text framework
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Large size transformers
examples

Contextual encodings:
Large size SOTA Transformer models: GPT — Decoder model

BERT — encoder model
T5 — Encoder Decoder model




Large size transformers
Some resources

» HuggingFace Transformer library

Offers several implementation of recent transformer models in PyTorch and Tensorflow

O https://huggingface.co/

List of transformers from Huggingface
O https://huggingface.co/docs/transformers/index

O https://huggingface.co/models
BERT

Tutorial on BERT word embeddings https://mccormickml.com/2019/05/14/BERT-word-
embeddings-tutorial/

BERT as used in Google search engine as of 2019

O https://searchengineland.com/fag-all-about-the-bert-algorithm-in-google-search-
324193#:~:text=BERT%2C%20which%20stands%20for%20Bidirectional,of%20words
%20in%20search%20queries.

» Demos for different NLP tasks from Allen Al
O https://demo.allennlp.org/

00 For a GPT2 demo see « language modeling »
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Large size transformers
Teaser

» NLP
»  ChatGPT (OpenAl) https://chat.openai.com/chat

»  LaMDA - https://blog.google/technology/ai/lamda/,
https://arxiv.org/abs/2201.08239

»  PALM - https://ai.googleblog.com/2022/04/pathways-language-model-palm-
scaling-to.html

» Text to Image
» Craiyon : public version of Dall-E - https://www.craiyon.com/

» Dall-e https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/

300 Machine Learning & Deep Learning - P. Gallinari



Large size language models based on transformers

» Right after the seminal publication on transformers (Vaswany 2027), several large size
models based on these ideas were developed by different groups

600

LM
| Megatron
-y
Fig: https://arxiv.org/pdf/2310.05694.pdf w0
200 ‘ ..
wse | pEa
» They have in common: e 2 o
» Large size models and large corpora!! | m&EC @ .l ptl el =
} C I‘.edo: 2017 2018 2019 2020 2021 2022 2023 2024

Year

pretrain on large size corpora and fine tune on downstream tasks - Larger is better ®
» Training on very large size corpora

General objective: learn token representations in an unsupervised way from large corpora that could be used with

little adaptation for specific downstream tasks (requiring « small » labeled datasets) w/ or w/o fine tuning of the
whole model

» Easily adaptable for a variety of downstream tasks
Token level e.g. Named Entity Recognition (NER), ...

Sentence level e.g. Query Answering Q/A, text classification, ...
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Large size language models based on transformers
ELMo (Peters et al. 2018. Deep contextualized word representations. NAACL (2018)).

» Contextual word representation
» InWord2Vec, FastText, GloVe, word representations are unique
»  We might want context dependent word representations
» This is what ELMo introduced

4 (slides from https://fr2.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-20 | 8)

e Embeddings from Language Models: ELMo

e Learn word embeddings through building
bidirectional language models (biLMs)

» biLMs consist of forward and backward LMs

N
+ Forward: P i s i) = Hp(fk|t1,t2,...,tk_l)
k=1

N
+ BaCkward: p(rl’ b, ""fN) = Hp(rklrk+l’rk+2’ ""IN)
k=1
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Large size language models based on transformers
GPT family (OpenAl)

» GPT (Radford et al. 2018), GPT 2 (Radford et al. 2019), GPT 3 (Radford et

al. 2020) etc
» GPT means Generative Pre Training
» Language models based on transformer decoder architecture (Liu et al. 2018)
As for the other Transformer models, training proceeds in 2 steps
O Unsupervised language modeling
O Fine tuning on downstream tasks
00 Successive models are larger and larger and trained on larger and larger corpora
» GPT 2 comes in different versions from |17 M parameters (12 transformer decoder
blocks) to 1.542 M parameters (48 transformer decoder blocks)
O It is trained on a corpus of 8 M documents, 40 GB of text (scraped web pages curated by
humans to ensure document quality)
0 Demonstrates the ability of language models to solve tasks they are not trained on
0 Hence proposes an alternative to fine tuning
» GPT 3:96 Transformer decoder modules stacked, |75 Billions parameters (2020)
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100 times bigger than GPT2
Demonstrates that VERY LARGE models perform well on zero shot and few shot learning
Started developments by different companies on LLM (Large Language Models)
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Large size language models based on transformers
GPT family (OpenAl)

» The decoder model
» Basically a masked — autoregressive model
» More details in http://jalammar.github.io/illustrated-gpt2/

» Open Al Blog on GPT?2

» https://openai.com/blog/better-language-models/

» Paper
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

» GPT3

» Paper
https://arxiv.org/pdf/2005.14165.pdf

» API released in 2020
https://openai.com/blog/openai-api/

» Demos
https://beta.openai.com/
https://beta.openai.com/examples/

» GPT3.5, GPT4
» Popularized by chatGPT
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Large size language models based on transformers
GPT family (OpenAl)

. Downstream
» Downstream tasks beyond language modeling | t55ks (fine tuning)

» GPT (Radford et al. 2018) l

Classification, Entailment, Similarity, Q/A with multiple choices

I'I'as_k fier Classification [ Start | Text |Emact |J——{ Transformer |—-| Linear |

Transformer model Entailment | Start | Premise | Delim | Hypothesis | Extract H—-{ Transformer |—-| Linear |
Unsupervised training ——
| Stant | Text 1 | Delim | Text 2 | Extract H——{ Transformer
Similarity Linear
12x = [ Start | Text 2 | Delim | Text 1 | Extract H—-{ Transformer

[ Start | Context | Delim | Answer 1 |Exuact H—.{ Transformer |—-| Linear

Multiple Choice | stat | Context | peim [ Answer2 | exvact |}..| Transformer | +| Linear

|Text&PosilionEmbed [ Start | Context | Delim | Answer N |Extmct H——{ Transformer |—-| Linear

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Context slot for the downstream tasks: for Q/A (multiple choices) contains text +
questions
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Large size language models based on transformers
GPT family (OpenAl) — GPT2

» GPT 2

» Same general architecture than GPT with some modifications

layer normalization changed, initialization, scaling, etc...

v

Training dataset
40 GB of text (scraped web pages curated by humans to ensure document quality)
» Input representation
Modified Byte Pair Encoding (see later)
» Training
Language model only (unsupervised)

» Demonstrates that language models trained in an unsupervised way can achieve good
performance, sometimes SOTA, on diverse tasks in few shot, zero shot learning
schemes

» Generalize the use of prompting for task conditioning and for providing few shots
examples

Language allows to provide in a natural ways task indication and task examples
Translation: (translate to French, English text, French text)
Reading comprehension: (answer the question, document, question, answer)
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Large size language models based on transformers
GPT family (OpenAl) — GPT2

» Test tasks (not trained on)

» Language modeling on test datasets it has not been trained on — possibly
different from the web training dataset

» Predict the final word of sentences

» Reading comprehension

Conditioning: document, associated conversation (sequence of questions and answers
about the text, final question GPT is asked to answer)

» Summarization

» Translation
Conditioning

[0 Sequence of example pairs of the format english sentence = french sentence, and a
final english sentence =

0 Greedy decoding is then used on the output of GPT2, first generated sentence is
used as translation

v

Question answering
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Large size language models based on transformers
GPT family (OpenAl) — GPT3

>

GPT3 is 100 times larger than GPT2 — |75 B parameters for the
larger model @year 2020

Training dataset

» Same as for GPT2 — about 3 B words cleaned and augmented

Model

» Same general architecture as GPT2 — auto-regressive decoder

Demonstrates that VERY LARGE models are able to perform SOTA
on few shot and zero shot learning

» Size change qualitatively the ability of the model

» Starts the exploration of LLM for solving a variety of language tasks

» At the core of later developments like ChatGPT
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Large size language models based on transformers
GPT family (OpenAl) — GPT3

» Importance of size

Zero-shot One-shot Few-shot

175B Params

Natural Language
60 guag

Prompt
50
3
= 40
(S
i
3 30
>4

-~ 13B Params
o

- 1.3B Params

Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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Large size language models based on transformers
GPT family (OpenAl) — GPT3

» Few shot etc

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer examples
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese => prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt

Figure 2.1: Zero-shot, one-
shot and few-shot,
contrasted with traditional
fine-tuning. The panels
above show

four methods for
performing a task with a
language model — fine-
tuning is the traditional
method, whereas zero-,
one-,

and few-shot, which we
study in this work, require
the model to perform the
task with only forward
passes at test

time. We typically present
the model with a few
dozen examples in the few
shot setting.

Gallinari



Large size language models based on transformers
GPT family (OpenAl) — GPT3

» Arithmetic

311

To test GPT-3’s ability to perform simple arithmetic operations without task-specific
training, we developed a small battery of |0 tests that involve asking GPT-3 a simple
arithmetic problem in natural language:

* 2 digit addition (2D+) — The model is asked to add two integers sampled uniformly
from [0; 100), phrased in the form of a question, e.g.“Q:What is 48 plus 762 A: 124”

* 2 digit subtraction (2D-) — The model is asked to subtract two integers sampled
uniformly from [0; 100); the answer may be negative. Example:“Q:What is 34 minus 53?
A:-19”.

* 3 digit addition (3D+) — Same as 2 digit addition, except numbers are uniformly
sampled from [0; 1000).

Context — Q: What is (2 *x 4) * 67
A:

Target Completion — 48

Figure G.42: Formatted dataset example for Arithmetic 1DC

Context — Q: What is 17 minus 147
A:

Target Completion — 3

Figure G.43: Formatted dataset example for Arithmetic 2D-
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Large size language models based on transformers
GPT family (OpenAl) — GPT3

» See prompting and few shot examples starting p 50 on
https://arxiv.org/pdf/2005.14165.pdf

» Few shot translation
» Training dataset contains 93% english words and 7% non english
» Language model trained on this corpus (no translation training)

» Evaluated on aligned datasets not seen during training
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Large size language models based on transformers
GPT family (OpenAl) — GPT3

Context —

Analysis of instar distributions of larval I. verticalis collected from
a series of ponds also indicated that males were in more advanced instars
than females. =

Target Completion —

L’analyse de la distribution de fréquence des stades larvaires d’I.
verticalis dans une série d’étangs a également démontré que les larves

méles étaient & des stades plus avancés que les larves femelles.

Figure G.38: Formatted dataset example for En—Fr

Context —

Adevarul este ca va doriti, cu orice pret si impotriva dorintei
europenilor, sa continuati negocierile de aderare a Turciei la Uniunea
Europeana, in ciuda refuzului continuu al Turciei de a recunoagte Ciprul
$i In ciuda faptului c3d reformele democratice au ajuns Intr-un punct mort.

Target Completion —

The truth is that you want, at any price, and against the wishes of the
peoples of Europe, to continue the negotiations for Turkey’s accession
to the European Union, despite Turkey’s continuing refusal to recognise
Cyprus and despite the fact that the democratic reforms are at a
standstill.
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Figure G.41: Formatted dataset example for Ro—En
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» Choosing an answer

» PIQA

Common sense questions on the physical world

» COPA

A task from the superGLUE dataset

Context

—

How to apply sealant to wood.

Correct Answer — Using a brush, brush on sealant onto wood until it is fully saturated with
the sealant.
Incorrect Answer — Using a brush, drip on sealant onto wood until it is fully saturated with
the sealant.
Figure G.4: Formatted dataset example for PIQA
Context — My body cast a shadow over the grass because
Correct Answer — the sun was rising.
Incorrect Answer — the grass was cut.
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Figure G.5: Formatted dataset example for COPA
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Large size language models based on transformers
BERT family (Google)

» BERT family is a reference transformer model family
» BERT: Bidirectional Encoder Representations from Transformers

» It comes in many variants, see e.g. the available implementations in the Hugging Face
library, https://huggingface.co/

» It is used in many different contexts
e.g. multilingual BERT (about 100 languages)

» As with GPT, BERT proceeds in two steps
» Unsupervised language model training on large corpora
» Supervised fine tuning for a variety of tasks

» Originality
» Two training criteria

Masked Language Model (MLM) + Next Sentence Prediction (NSP)

Remember: downstream tasks may be at the token (MLM criterion) or sequence (NSP
criterion) level

» Bidirectional Encoder: considers a whole sequence at each step and not only past
information like in auto-regressive models (GPT)

» The same architecture is used for unsupervised training and fine tuning (except from
output layers specific to downstream tasks)

315 Machine Learning & Deep Learning - P. Gallinari



Large size language models based on transformers

BERT family (Google)

» General overview

Next Sentence Prediction
(training loss)

T;:final transformation
of input token Tok 1

C: final transformation
of input token CLS

Masked Language
model (training loss)

‘ Output: final token
embeddings

‘ Token embeddings —

BERT
Ees E1 Ehl | E[SE il | EII EM
— T L] ) L1

CLS: start symbol

SEP: sentence
separator symbol

o) (o))

input to the transformer

Masked sentence pair

re-training
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Large size language models based on transformers
BERT family (Google)

» Input representation

(0 () () () () () () ) () () ()

Token

Embeddings E[c|_5] Erny Edog is cute E[SEP] Ehe Elikes Eplav E9#ir1g E[SEP]
+ o+ + + + + + o+ + + +

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + o+ + +

Position

Embeddings ED El E2 E3 E4 ES E6 E? EB EQ E10

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

» The initial token is always the special symbol CLS

The final hidden state corresponding to this token is used as the input sequence agregate
representation for classification tasks

Embeddings: WordPiece Embeddings with a 30k token vocabulary (detailed later)
» Segment embedding indicates |st or 2" sentence (learned)
» Position embeddings

As in the transformer description or relative position depending on the model
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Large size language models based on transformers
BERT family (Google)

» Training criteria
» Masked Language Model - MLM
Mask 15% of the input tokens at random and predict the masked tokens.

The final hidden vector corresponding to the Masked token are fed to a softmax layer
as in classical Language Models

O Note: additional tricks are used in practice for the masking

Use the output of the 0.1% | Aardvark

masked word’s pasition
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

[ FFNN + Softmax ]

BERT

Randomly mask
15% of tokens

[CLS] Let" stic t [MASK]

Input
[CLS] Let's to improvisation in this skit

3 1 8 BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.



Large size language models based on transformers
BERT family (Google)

» Training criteria
» Next Sentence Prediction - NSP
2 classes classification problem:is sentence B following sentence A in the corpus?
O Training on 50% positive/ negative samples

0 15titem output
00 This is supposed to encode whole input sentences
Predict likelihood

that sentence B
belongs after

1%

99% | NotNext
sentence A
[ FFNN + Softmax ]
BERT
Tokenized
Input - (MASK]
I”DUI [CLS; [MASK] to t [MASK]
: entence A x ! Sentence B

The second task BERT is pre-trained on is a two-sentence classification task. The tokenization is oversimplified in this graphic as BERT
actually uses WordPieces as tokens rather than words — so some words are broken down into smaller chunks.
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Large size language models based on transformers
BERT family (Google)

» Pre-training data
» Books Corpus (800 M words)
» English Wikipedia (2500 M words)
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Large size language models based on transformers
BERT family (Google)

» Fine tuning

» Plug the task specific inputs and
outputs into BERT and fine tune

321

end to end.

At the output, the token
representations are fed into an
output layer for token level tasks
(sequence Tagging like NER, Q/A)
and the CLS representation is fed
into an output layer for
classification (e.g. entailment,

sentiment analysis)

Class
Label

BERT

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

BERT

Class
Label
—
BERT
s i

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

W
(=7
Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

BERT
e & [ = ] [=
—
Tok1 | Tok2 - Tok N

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Figure 4: Nlustrations of Fine-tuning BERT on Different Tasks.

Machine Learning & Deep Learning - P. Gallinari




Large size language models based on transformers
BERT family (Google)

» Feature Learning

» Instead of fine tuning, the model could be used to extract token representations
from a pre-trained model. The token are then fed into task specific architectures
without fine tuning of the token representations (as with Word2Vec).

The paper indicates performance not far from fine tuning

Generate Contexualized Embeddings The output of each encoder layer along
et (mm— (— —— — — —— (—— each token's path can be used as a
{ \ feature representing that token.
EEHEE EEEE EEEE
I A A A 'y A I s e [N LN
|12 { ENCODER )| P S [
I H‘Il\j}l,__‘l;\\ . | 50 O 1 T 1
2 o]
IZ( ENCODER ) I 5 0 T )
| e LT | EEE EEEE EEEE
I (T | O] [ ] | I - B ) B
1 ENCODER ) [TTI T T 1T
| 3 _ ‘ I 5 O
oz 3 4 v J12 I i
I [CLS] Help  Pri M I
Help Prince Mayuko
I BERT '
But which one should we use?
N 7/

Nhich vector works best as a contextualized embedding? | would think it depends on the task. The paper examines
s5ix choices (Compared to the fine-tuned model which achieved a score of 96.4):
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Large size language models based on transformers
BERT family (Google)

» Feature Learning

What is the best contextualized embedding for “Help” in that context?

For named-entity recognition task CoNLL-2003 NER
Dev F1 Score

T First Layer 111 91.0
e Last Hidden Layer T 94.9
RN (SRl
I Sum All 12 TTT] 95.5
Layers + ’
[ITTT1 -
[ 11 [ |
[ITTT1
Second-to-Last
CIT T 1] Hidden Layer P 95.6
' ' S Last F +
um Last Four T
Hidden + 95.9
[ITTT] LL1
| ]|
Help
Concat Last e S B o i i I Y

Four Hidden
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Large size language models based on transformers
BERT family (Google)

» RoBERTa (Liu et al 2019)

» Follow up of BERT, analyzes key hyperparameters of BERT and proposes efficient
strategies

» Has became a reference for BERT like architectures
» Main findings
MLM training criterion is enough, no need for NSP
Training with large batches improves performance

More training data improves performance
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Large size language models based on transformers
T5 (Google)

» lllustrations from

» Raffel, C,, et al. 2020. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. JMLR. 21, (2020), 1-67.

» Slides: https://colinraffel.com/talks/mila2020transfer.pdf

» Objective of the paper

» Explore different strategies for large size Tranformers on a variety of NLP tasks

model architectures, pre-training and fine tuning training objectives, transfer learning,
scaling, etc

» Strategy

» Introduce a Text-to-Text framework allowing handling several NLP tasks in a
unified way
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Large size language models based on transformers
T5 (Google)

» Framework: Text-to-Text Transfer Transformer (T5)

» Reformulate NLP tasks used in classical benchmarks (classification,
summarization, translation) in a Text-to-Text framework

» Both input and output are textual strings

Evaluate within this unified framework different model design choices

Task. premise: Input Output
this string sentence sentence
defines the task y
Tran3|ati0|‘ Stranslate English‘ to German:

That 1s good.
Classification [ "cola sentence: The

course 1s jumping well."

as ist gut)/'

"not acceptable" ]

E]

"six people hospitalized after
a storm in attala county."

. "stsb sentencel: The rhino grazed
RegreSSIOn on the grass. sentence2: A rhino

is grazing in a field."

“summarize: state authorities

I 1 ispatched emergency crews tuesday to
Summarlzatl nlsurvr—zy the damage after an onslaught
of severe weather in mississippi.."
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Large size language models based on transformers
T5 (Google)

» Framework:Text-to-Text Transfer Transformer (T5)

» Text-to-Text requires a decoder to generate text

BERT encoders are designed to produce a single output per token, i.e. they are ok for
classification tasks or text span selection, not directly applicable for generation

» This frameworks allows them to use maximum likelihood (typically cross-entropy) as
a training objective for both pretraining and fine tuning

» Note:
at test time, they use greedy decoding
Vocabulary: Sentencepiece with a 32 k vocabulary

» Examples how to reframe NLP tasks in T5

» Translation

Input: « translate English to German:That is good », translate English to German is a premise
(a promt) that defines the task

Output: « das ist gut »
» Text classification

MNLI benchmark: goal is to predict wether a premise implies (« entailment »), contradicts
(« contradiction ») or neither (« neutral ») a hypothesis

Input: « mnli premise: | hate pigeons. Hypothesis: my feeling towards pigeons are filled with
animosity »

Output: target word « entailment »
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Large size language models based on transformers
T5 (Google) - illustration: J. Alammar 2018

» T5 architecture:

» different choices, best one is Encoder + Decoder close to the original
Transformer (Vaswani 2017)

------------------------------------------
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(,,( Add & Normalize ) - 3

N :‘ /) 3 i ( Lin:ar
5 ' ( Feed Forward ) ( Feed Forward ) .......... . R
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Large size language models based on transformers
T5 (Google)

» Pre-training dataset 750 GB of text extracted from the web and
cleaned (below examples of the cleaning process)

» Available at https://www.tensorflow.org/datasets/catalog/c4
Common Crawl Web Extracted Text

The lemon, Citrus Limon (l.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for

culinary and non-culinary purposes Organic dried lemons from our farm in
throughout the world, primarily for its juice, California.

which has both culinary and cleaning uses. Lemons are harvested and sun-dried for
The juice of the lemon is about 5% to 6% maximum flavor.

citric acid, with a ph of around 2.2, giving it Good in soups and on popcorn.

a sour taste.

The origin of the lemon is unknown, though
lemons are thought to have first grown in
Assam (a region in northeast India),
northern Burma or China.

A genomic study of the lemon indicated it
was a hybrid between bitter orange (sour
32¢ orange) and citron.




Large size language models based on transformers
T5 (Google)

» Unsupervised training objective

» Best one is similar to MLM in BERT (other choices discussed later)

Original text Sample tokens in the

Thank you fef inviting, me to your party Jast week. | i1t text

Inputs Replace them with « sentinel » -
Thank you <X> me to your party <Y> week. | special tokens uniques over the
— examples

<X> for inviting <Y> last <7~ Target: sentinel tokens +

missing tokens

Schematic of the objective we use in our baseline model. In this example, we
process the sentence “Thank you for inviting me to your party last week.” The
words “for”, “inviting” and “last” (marked with an x) are randomly chosen for
corruption. Each consecutive span of corrupted tokens is replaced by a sentinel
token (shown as <X> and <Y>) that is unique over the example. Since “for” and
‘inviting” occur consecutively, they are replaced by a single sentinel <X>. The
output sequence then consists of the dropped-out spans, delimited by the sentinel
tokens used to replace them in the input plus a final sentinel token <Z>.



Large size language models based on transformers
T5 (Google)

» Workflow

Finetune
: GLUE
Pretrain /
— CNN/DM
BERT ;. -SiZed /
encoder-decoder - — e
Transformer AN \ - SQUAD —"“é:gi;fj-».,
objective E
—  WMT14 EnDe
C4 dataset \ \L
—~  WMT15 EnFr
2'9 steps
2% or ~34B tokens “~  WMT16 EnRo

Inverse square root learning
rate schedule
2'8 steps
234 or ~17B tokens
Constant learning rate
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validation

step 750000
step 760000
step 770000

step 780000

Evaluate all checkpoints,
choose the best



Large size language models based on transformers
T5 (Google)

» Large scale comparison
» Comparing different hyperparameters, like architecture, training criteria,
multitask versus pretraining + fine tuning, etc.
» Main findings
» Text-to-Text provides a simple way to train a single model on a variety of tasks
» Original encoder-decoder scheme works best in the T2T framework
» Objective: the MLM objective is superior to classical language based prediction

» Transfer training: fine tuning the whole model works better than tuning task
specific modules only

» Scale: larger models, more data increase the performance

332 Machine Learning & Deep Learning - P. Gallinari



Large size language models based on transformers
T5 (Google)

» Large scale comparison, example: Architectures evaluated

» 3 types of architectures involving 3 attention patterns
Fully-visible: similar to BERT
Causal: similar to GPT
Causal with prefix: allows full attention of part of the input

Fully-visible Causal Causal with prefix

g | 1]
g ||| @
)
g | aEe
d Seen

X X X X

2 3

Input

4 5

. Matrices representing different attention mask patterns. The input and output
of the self-attention mechanism are denoted x and y respectively. A dark cell
at row i and column j indicates that the self-attention mechanism is allowed to
attend to input element j at output timestep i. A light cell indicates that the
self-attention mechanism is not allowed to attend to the corresponding i and j
combination. Left: A fully-visible mask allows the self-attention mechanism to
attend to the full input at every output timestep. Middle: A causal mask prevents
the ith output element from depending on any input elements from “the future™
Right: Causal masking with a prefix allows the self-attention mechanism to use
fully-visible masking on a portion of the input sequence.
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» Large scale comparison, example: 3 architectures evaluated
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Schematics of the Transformer architecture variants we consider. In this diagram,
blocks represent elements of a sequence and lines represent attention visibility.
Different colored groups of blocks indicate different Transformer layer stacks. Dark
grey lines correspond to fully-visible masking and light grey lines correspond
to causal masking. We use “” to denote a special end-of-sequence token that
represents the end of a prediction. The input and output sequences are represented
as ¢ and y respectively. Left: A standard encoder-decoder architecture uses fully-
visible masking in the encoder and the encoder-decoder attention, with causal
masking in the decoder. Middle: A language model consists of a single Transformer
layer stack and is fed the concatenation of the input and target, using a causal
mask throughout. Right: Adding a prefix to a language model corresponds to
allowing fully-visible masking over the input.
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» Large scale comparison, example: different objectives for training
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A flow chart of our exploration of unsupervised objectives. We first consider a
few disparate approaches in Section 3.3.1 and find that a BERT-style denoising
objective performs best. Then, we consider various methods for simplitying the
BERT objective so that it produces shorter target sequences in Section 3.3.2.
Given that replacing dropped-out spans with sentinel tokens performs well and
results in short target sequences, in Section 3.3.3 we experiment with different
corruption rates. Finally, we evaluate an objective that intentionally corrupts
contiguous spans of tokens in Section 3.3.4.
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» Summary of experiments

Architecture Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
. % Encoder-decoder 2P M 83.28 19.24 80.88 71.36 2698 3982 2765
E ncoder_decoder arc h |tectu [@  Enodec, shared P M 8281 18.78 80.63  70.73 2672 3903 27.46
Enc-dec, 6 layers P M/2  B80.88 18.97 77.59 68.42 26,38 3840  26.95
Language model P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39
Span length GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
. . . . * Baseline (i.i.d.) 83.28 19.24 80.88 71.36 2698 39.82 27.65
S a n red ICt I O n O b ectlve 2 83.54 19.39 82.09 72.20 26.76 39.99 27.63
p p J 3 83.49 19.62 81.84 72.53 26.86 39.65 27.62
5 83.40 19.24 82.05 72.23 26.88 39.40 27.53
10 82.85 19.33 81.84 70.44 26.79 3949 27.69
Dataset Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB 83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB 81.46 19.14 78.78 68.04 26.55 39.34 27.21
C 4 d at as et RealNews-like 35GB  83.83  19.23 80.39 7238  26.75 39.90 27.48
WebText-like 17GB 84.03 19.31 81.42 71.40 26.80 39.74 27.59
Wikipedia 16GB 81.85 19.31 81.29 68.01 26.94 39.69 27.67

Wikipedia + TBC 20GB 83.65 19.28 82.08 73.24 26.77 39.63 27.57

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 2698 39.82 27.65

M |t 1 _‘t k _t 1 1 Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76
U I a S p re ra I n I n g Multi-task pre-training 4 fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07

Leave-one-out multi-task training 81.98 19.05 79.97 71.68 26.93 39.79 27.87
Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04
Scaling strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Baseline 83.28 19.24 80.88 71.36 26.98 39.82 27.65
1x size, 4% training steps 85.33 19.33 82.45 74.72 27.08 40.66  27.93
B M d | t : d | 1x size, 4x batch size 84.60 19.42 82.52 74.64 27.07  40.60  27.84
I g g er m O e S ra I n e O n g er 2x size, 2X training steps 86.18 19.66 84.18 77.18 27.52 41.03 28.19
4x size, 1 x training steps 85.91 19.73 83.86 78.04 27.47 40.71 28.10
4x ensembled 84.77 20.10 83.09 71.74 28.05 40.53 28.57
4x ensembled, fine-tune only 84.05 19.57 82.36 71.55 27.55 40.22  28.09
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Large size language models based on transformers

» Recap on models architectures

» Different schemes for using Transformers (figure from Lewis, et al. 2019. BART: Denoising

sequence-to-sequence pre-training for natural language generation, translation, and comprehension).

B D
S

Bidirectional
Encoder

TEEfE
A_C_E

(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.

Bidirectional
Encoder

TEEF]
A_B_E

>

ABCDE
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Autoregressive
Decoder
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(b) GPT: Tokens are predicted auto-regressively, meaning
GPT can be used for generation. However words can only
condition on leftward context, so it cannot learn bidirec-
tional interactions.

ABCDE
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E> Autoregressive
Decoder

FFfid
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(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with a mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.
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Tokenization

» A text is a sequence of characters

» An important step is the segmentation of the sequence into
meaningful units — this is calleds tokenization

» All the methods for dealing with NLP (RNNs, Transformers) use some form of
tokenization.

» This means that a pretrained model should be used with the
corresponding tokenization

» Note

» This is not the only one preprocessing step, cleaning, e.g. lowercase, or other
normalization operations might be performed.
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Tokenization

» Example from:
» https://huggingface.co/transformers/tokenizer_summary.html

» Consider the sentence:

"Don't you love Transformers? We sure do."

» Naive tokenization methods
» Split words by spaces

['Don't", "you", "love", "Transformers?", "We", "sure", "do."]
» Split items by spaces and punctuation

} [HDon"’ IHII’ "t"’ "youll’ "Iove", "TranSformerS"’ "?ll, "We , sure"’ Ildoll’ ll.ll]
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Tokenization

» Rule based tokenizers

» spaCy:a free, open-source library for NLP in Python. It offers a rule based
tokenizer. spaCY splits on spaces and then looks individual substrings: looks for
special tokens (may be user defined), and splits off prefixes, suffixes, infixes.

» Results in (too) large vocabulary — not used with transformers

“Let's go to N.Y.I"” m
— | | [
‘ Let's go || to N.Y.I"
1 = T 1
Let 's go to N.Y.I” m
I I N —
“ Let 's go to N.Y.! " [ surFIx |
1 T 1 I l
“|lLet||’s || go || to
T T T 1 I
“ Let 's go to [ poNe |

» For the sentence "Don't you love Transformers? We sure do.” this would give
(https://spacy.io/usage/spacy- |1 0 | #annotations)

["Doll’ "n't"’ "you"’ "Iove"’ "Transformersll’ |I?Il’ "Well’ "Sure"’ |ld0"’ "."]
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Tokenization - Subword tokenization - examples

from import BertTOkenizer

tokenizer — BertTokenizer.from_pretrained  ver base uncased’)

tokenizer.tokenize('l have a new GrPUI")

[||ill’ ll},]ave , a , neW , gF)ll’ II##UII’ ll!ll]

from import XLNetTOkenizer

tokenizer — XLNetTokenizer.from_pretrained et base cased’)

tokenizer.tokenize("Don't you love Transformers? We sure do.")

[ll_DonH’ Illll’ ”t”’ Il_you , _lOVe , _ll’ llTranSform , erS”’ ”?”’ ll_Well’ ”_Sure”’ ”_dO”’ ll.ll]
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Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

» Relies on a pre-tokenizer that splits training data into words
» e.g.space tokenization, spaCy, etc
» Then compute the frequency of each word

» Algorithm
» Split all words into unicode characters — this constitutes the initial vocabulary
»  While the vocabulary limit size is not reached

Find the most frequent symbol bigram in the vocabulary
Merge the symbols to create a new symbol and add this new symbol to the vocabulary

» Size of vocabulary and # merge operations are parameters of the algorithm
» Used in GPT (478 base symbols and 40 k merges)

» GPT?2 uses a variant, replacing unicode characters by Bytes and using 256 bytes as
base symbols (a unigram character may need multiple bytes for its encoding) and 50 k
merges plus an « unk » symbol for symbols not seen during training, i.e.a 50257
dictionary size

With Byte BPE, no need for « unk » symbol, all the Bytes are seen during training
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Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

» Example

344

Dictionary (5 words) | Frequency | | vocabulary (7 symbols)
h u g 10 b,g, h,n,p,s,u
5 . :

P u & Pair (u,g) is the most frequent

P |u |n 12 (20) bigram, add a new symbol,

b u n 4 « ug » in the vocabulary, and

H u N s 5 merge the gorrespondmg
representations

Dictionary Frequency | | Vocabulary

h ug 10 b,g h,n,p,s,u,ug

P ug 5 Pair (u,n) is the most frequent

D y n 12 (16) bigram, add a new symbol,
« un » in the vocabulary, and

b u n 4 merge the corresponding

h ug |s 5 representations
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Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

» Example

Dictionary Frequency Vocabulary

h ug 10 b, g h,n, p, s, u, ug, un

P ug 5 Pair (h, « ug ») is the most

P un 12 frequent (15) bigram, add a
new symbol, « ug » in the

b un 4 vocabulary, and merge the

h ug |s 5 corresponding representations

Dictionary Frequency Vocabulary

hug 10 b, g h, n, p, s, u, ug, un, hug

P ue > At test time, all the new text is

P un 12 decomposed according to the

b un 4 final dictionary, e.g. « bug » is
tokenized as [« b », »ug »] and

hug |s > symbols not seen during training
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Tokenization -Subword tokenization
Byte-pair encoding (Sennrich et al. 2015)

» Merge is performed at the word level and not at the level of whole
sentences or sequences

» This is to save computation cost

If there are N symbols, naive implementation of most frequent bigram requires O(N?)
operations
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Tokenization - Subword tokenization
Wordpiece (Schuster 2012) — BERT uses a variant of Wordpiece

» Similar to BPE, but merge rule changes

» Instead of merging the most frequent bigrams,Wordpiece merges the symbol
pair that maximises the likelihood of a unigram language model trained on the
training data, once added to the vocabulary

» Log likelihood at step t

L(Vocabulary(t)) = inEVocabulary(t) log p(xi)
» If we fusion symbols x; and xy, the new log likelihod is

L(Vocabulary(t + 1)) = L(Vocabulary(t)) + log eI
» Then one merges the couple x; and x;, that maximizes log—p(xj’xk)
! p(x)p (i)

This is the mutual information between the 2 symbols
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Tokenization - Subword tokenization
Sentencepiece (Kudo 2018) — used in XLNet

» Does not use pre-tokenization but considers the text as a raw input
stream then including space and separation characters.

» Makes use of BPE or Unigram (another tokenizer not described
here) for constructing the appropriate vocabulary.
» Makes use of a special data structure (priority queue based algorithm) to reduce
the asymptotic runtime from O(N?) to O(NlogN)
» Properties

» Could be used easily on a variety of languages including languages that do not
use spaces to separate words (e.g. Chinese)

» Does not require any language specific tokenizers
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Dowsnstream tasks used to evaluate large transformers models

» Classification tasks — GLUE and Super Glue Benchmarks

» MNLI Multi-Genre Natural Language Inference

is a large-scale, crowdsourced entailment classification task (Williams et al., 2018).
Given a pair of sentences, the goal is to predict whether the second sentence is an
entailment, contradiction, or neutral with respect to the first one.

» QQP Quora Question Pairs

is a binary classification task where the goal is to determine if two questions asked on
Quora are semantically equivalent (Chen et al., 2018).

» QNLI Question Natural Language Inference

Is a version of the Stanford Question Answering Dataset (Rajpurkar et al., 2016) which
has been converted to a binary classification task (Wang et al.,2018a).The positive
examples are (question, sentence) pairs which do contain the correct answer, and the
negative examples are (question, sentence) from the same paragraph which do not
contain the answer.

» SST-2 The Stanford Sentiment Treebank

is a binary single-sentence classification task consisting of sentences extracted from
movie reviews with human annotations of their sentiment (Socher et al., 2013).
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Dowsnstream tasks used to evaluate large transformers models

» ColLAThe Corpus of Linguistic Acceptability

is a binary single-sentence classification task, where the goal is to predict whether an
English sentence is linguistically “acceptable” or not (Warstadt et al., 2018).

» STS-B The Semantic Textual Similarity Benchmark

is a collection of sentence pairs drawn from news headlines and other sources (Cer et
al., 2017).They were annotated with a score from | to 5 denoting how similar the two
sentences are in terms of semantic meaning.

» MRPC Microsoft Research Paraphrase Corpus

consists of sentence pairs automatically extracted from online news sources, with
human annotations for whether the sentences in the pair are semantically equivalent
(Dolan and Brockett, 2005).

» RTE Recognizing Textual Entailment

is a binary entailment task similar to MNLI, but with much less training data (Bentivogli
et al,, 2009).14
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Dowsnstream tasks used to evaluate large transformers models

» Question Answering

» The Stanford Question Answering Dataset (SQUAD vl.1) is a collection of 100k
crowdsourced question/answer pairs (Rajpurkar et al., 2016). Given a question
and a passage from Wikipedia containing the answer, the task is to predict the
answer text span in the passage.

» The SQUAD 2.0 task extends the SQUAD 1.l problem definition by allowing for
the possibility that no short answer exists in the provided paragraph, making the
problem more realistic.

» Q/A with multiple choices

» The Situations With Adversarial Generations (SWAG) dataset contains | I3k
sentence-pair completion examples that evaluate grounded commonsense
inference (Zellers et al., 2018). Given a sentence, the task is to choose the most
plausible continuation among four choices.
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Multi-layer Perceptron — SGD Training
Summary of the algorithm with MSE loss + sigmoid units

» The algorithm is described for a MSE loss — similar derivations for
other losses

MLP with M + 1 layers of cells numbered O (input layer), ..., M(output layer), M weight
layers numbered W (1), ..., W (M), w;;(m) is the weight from cell j in layer m — 1 to
cell i in layer m (and is one of the components of W™

» Algorithm
» Sample an example (x,y),x € R™, y € RP
» Compute output y = F,(x),y € RP

» Compute difference 6 = (y—y) = (y1 — Y1 Vp — yp)T
» Back propagate this error from the last weight layer to the first weight layer:
0 wij(m) = w;j(m) + Aw;;(m) — update equation for layer m and weight W{]'-l
0 Aw;j(m) = eej(m)z;(m — 1) — gradiant for w;;(m)
O « e » is the quantity that will be back propagated
0 e;(M) = 8;9'(a;(M)) if i is an output cell with 6; = (y; — ¥;)
0 ej(m) = g'(a;(m)) X parents of i €n (M + Dwy; (m + )if i is not an output cell
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