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Course Outline and Organization
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 Introductory ML course with a focus on Neural Networks and Deep Learning
 Organization

 Courses 14 x 2 h – P. Gallinari
 Practice and exercises 14 x 2 h

 Outline
 Introduction

 Basic Concepts of Machine Learning
 Neural Networks and Deep Learning

 Introductory Concepts - Perceptron-Adaline
 Linear Regression and Logistic Regression - Optimization Basics
 Multilayer Perceptrons – Generalization Properties
 Convolutional Neural Networks –Vision applications
 Recurrent Neural Networks – Language applications
 Transformers and attention models – Language applications

 Kernel machines
 Gaussian processes

 Meta-learning
 Neural processes



Ressources

Machine Learning & Deep Learning   - P. Gallinari3

 Books
 The following two books cover the course (more or less)

 Understanding Deep Learning by S. J.D. Prince 2023 is a recent book covering many topics from the course?
 Does not delve into the details but provides a good overview of the domain bases
 Available at http://udlbook.com

 Deep Learning, Foundations and concepts, by C. Bishop
 https://www.bishopbook.com/

 Pattern recognition and Machine Learning, C. Bishop, Springer, 2006
 Chapters3, 4, 5, 6, 7, 9, 

 Many other books can be profitable, e.g.
 Deep Learning,  An MIT Press book, I. Goodfellow, Y. Bengio and A. Courville, 2017

 http://www.deeplearningbook.org/
 The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, T. Hastie, R. Tibshirani, J. 

Friedman, Springer, 2009
 Version pdf accessible : http://statweb.stanford.edu/~tibs/ElemStatLearn/

 Bayesian Reasoning and Machine Learning, D. Barber, Cambridge University Press, 2012
 Version pdf accessible : http://www.cs.ucl.ac.uk/staff/d.barber/brml/

 Courses
 Several on line ressources, covering this topic and others

 Course slides and material: Machine Learning, Deep Learning for Vision, Natural Language Processing, …



Machine Learning General 
Framework

• 4 learning problems

• Risk, Empirical Risk
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4 learning problems

Machine Learning & Deep Learning   - P. Gallinari5

 ML develops generic methods for solving different types of 
problems

 Typical classification of ML problems:
 Supervised
 Unsupervised
 Semi-supervised
 Reinforcement



4 learning problems
Supervised learning
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 Training set: couples (inputs, target)  𝒙 ,𝒚 , … , 𝒙 ,𝒚
 Objective : learn to associate inputs to outputs

 With good generalization properties

 Classical problems: classification, regression, ranking

 Most applications today fall under the supervised learning paradigm

seven



4 learning problems
Unsupervised learning
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 Training set
 Only input data 𝒙 , … ,𝒙 , no target

 Objective
 Extract some regularities from data

 Similarities, relations between items, latent factors explaining data generation

 Use
 Density estimation, clustering, latent factors identification, generative models



4 learning problems
Semi-supervised learning
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 Task
 Similar to supervised learning

 Training set
 Small number of labeled data 𝒙 ,𝒚 , … , 𝒙 ,𝒚
 Large number of unlabeled data 𝒙𝑵 , … ,𝒙

 Objective
 Extract information from unlabeled data useful for labeling examples

 e.g. structure
 Joint learning from the two datasets

 Use
 When large amounts of data are available and labeling is costly



4 learning problems
Reinforcement learning
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 Training set
 Couples (input, qualitative target)
 𝒙𝑖𝑠 may be sequences (temporal credit assignment), 𝑦𝑖 are qualitative targets (e.g. 0,1), deterministic or 

stochastic

 Paradigm
 Learning by exploring the environment, using reinforcement signals (reward)
 Exploration/ exploitation paradigm

 Use
 command, sequential decision, robotis, two players game, dynamic programming, …
 RL for games

 Backgammon (TD Gammon Thesauro 1992)
 Trained on 1.5 M plays
 Plays against itself

 Deep RL
 AlphaGo (2015),  AlphaGo Zero (2017)
 Alphazero (2017)



Risk – Empirical Risk
Probabilistic formalism
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 Data
 Random vectors 𝒛 generated from distribution 𝑝 𝒛

 Learning model 
 𝑭 𝐹 with 𝜃 the model parameters, usually real parameters

 Loss
 𝑐 𝒛 for model 𝐹 and example 𝒛

 Risk

 𝑅 𝐸𝒛 𝑐 𝒛 𝑐 𝒛 𝑝 𝒛 𝑑𝒛

 Optimal solution
 𝐹 ∗ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑅



Risk – Empirical Risk
Learning from examples
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 Data
 𝐷 𝒛 ..   

 Empirical risk
 𝐶 ∑ 𝑐 𝒛

 Empirical risk minimization principle
 𝐹 ∗ minimizing the theoretical risk is approximated by 𝐹  mimizing the empirical risk

 Is that sufficient ?  Answer is No

 Inductive framework
 We will consider the following ML framework

 The model learns on an available training set

 Once trained parameters are fixed and the model can be used for inference and/or 
evaluated on a test set



Example of generic ML problems
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 Classification
 𝒛 𝒙,𝑦 ,𝑦 ∈ 0,1
 𝐹 threshold functions
 R : probability of incorrect classification
 𝐶 : error frequency

 Regression
 𝒛 𝒙,𝑦 , 𝑦 ∈ R
 𝐹  real functions (e.g. linear NNs)
 𝑅 : expectation of quadratic error
 𝐶 : sum of quadratic errors

 Density estimation
 𝒛 𝒙
 𝐹 real functions
 𝑅 : likelihood (expectation)
 𝐶 : empirical estimator of likelihood (sum)

𝑐 𝒛 0 if 𝑦 𝐹 𝒙  
1 otherwise             

𝑐 𝒛 𝑦 𝐹 𝒙

𝑐 𝒛 𝑙𝑛𝑝 𝒙



Neural Networks and Deep Learning



Context
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Context
Deep Learning today
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 Deep Learning is today the most popular paradigm in data science
 Popularized since 2006, first by some academic actors and then by 

big players (GAFAs, BATs, etc)
 It has initiated a « paradigm shift » in the field of data science / AI 

and definitely changed the way one will exploit data
 e.g. key players have made available development platforms (initiated e.g. with

TensorFlow, PyTorch, Jax, …)
 Allowing the development in a « short time » of complex processing chains

 Making complex DL methods available for a large community

 Today DL is developing at a much larger scale, including
 Software development platforms and environments
 Services in multiple domains: biotech, health, weather forecast, finance, etc



Machine Learning successes
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 Initially concerns the numerical world and GAFAs/BATs applications
 Semantic data analysis: vision, speech, language, traces;
 Virtual worlds, e.g. games

Generative models - (Karras et al. 
2019) – Style GAN - NVIDIA

Alphastar, Vinyals et al.  
2019 (Starcraft) -
Deepmind

Generative models 2022 Stable-diffusion
https://stablediffusionweb.com/

ChatGPT 2022 OpenAI-Codex 2021
natural language to code

DALL.E - 2021 https://openai.com/blog/dall-e/
Text: an armchair in the shape of an avocado. . . .



Machine learning successes
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 Progressively targets other domains
 Examples AI4Science

Foundation models
Spatio-temporal
dynamics –
Hao et al. (ICML 2024) 
http://arxiv.org/abs/2403.03542

Weather forecast
GraphCast – Google 
& DeepMind 2022
ECMWF website

Google DeepMind - Alphafold 3
3D protein structure prediction



Introductory NN concepts

Intuitive introduction via 2 simple –historical- models
Perceptrons and Adalines



Neural Networks inspired Machine Learning
Brain metaphor
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 Artificial Network Networks are an important paradigm in Statistical Machine 
learning and Artificial Intelligence

 Human brain is used as a source of inspiration and as a metaphor for 
developing Artificial NN
 Human brain is a dense network 10 of simple computing units, the neurons. Each neuron is

connected – in mean- to 10 neurons.
 Brain as a computation model

 Distributed computations by simple processing units
 Information and control are distributed
 Learning is performed by observing/ analyzing huge quantities of data and also by trials and errors



Formal Model of the Neuron
McCulloch – Pitts 1943
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A synchronous assembly of neurons is capable of universal
computations (aka equivalent to a Turing machine) 

𝑓 𝑥 1 𝑖𝑓 𝑤 𝑥 𝑤 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
𝑤

x2

x1

xn
wn

w2
w1

w0
1

𝑤 𝑥 𝑤 𝑓 𝑤 𝑥 𝑤𝑓

For McCulloch – Pitts
neuron, 𝑓is a threshold (sign) 
function



Perceptron (1958 Rosenblatt)
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 The decision cell is a threshold function (McCulloch – Pitts neuron) 

 𝐹 𝒙 𝑠𝑔𝑛 ∑ 𝑤 𝑥 w   

 This simple perceptron can perform 2 classes classification

Association cells Decision cell (Figure from Perceptrons, Minsky and Papert 1969)



Perceptron Algorithm (2 classes)
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 The learning rule is a stochastic gradient algorithm for minimizing the 
number of wrongly predicted labels

 Multiple (𝑝) classes: 𝑝 perceptrons in parallel, 1 class versus all others!

Data
Labeled Dataset 𝒙 ,𝑦 , 𝑖 1. .𝑁,𝒙 ∈ 𝑅 ,𝑦 ∈ 1,1

Output
classifier 𝒘 ∈ 𝑅 , decision 𝐹 𝒙  𝑠𝑔𝑛 ∑ 𝑤 𝑥  

Initialize w (0)
Repeat (t)

Choose an example 𝒙 𝑡 ,𝑦 𝑡
if 𝑦 𝑡 𝒘 𝑡 .𝒙 𝑡 0 then 𝒘 𝑡 1 𝒘 𝑡 𝜖𝑦 𝑡 𝒙 𝑡

Until convergence 

Stochastic
Algorithm

Training set
Classifier specification



Linear discriminant function
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 Decision surface : hyperplane 𝐹 𝒙 0
 Properties

 𝒘 is a normal vector to the hyperplane, it defines its orientation
 distance from 𝑥 to 𝐻 : 𝑟 𝐹 𝒙 / 𝒘
 if 𝑤 0 𝐻 goes through the origin

𝐹 𝒙 𝒘.𝒙 𝑤 ∑ 𝑤 𝑥 with 𝑥 1



Perceptron algorithm performs a stochastic gradient descent
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 Loss function
 𝐶 ∑ 𝒘.𝒙𝑦𝒙, ∑ c 𝒙, y𝒙,

 Objective : minimize 𝐶

 gradient

 𝑔𝑟𝑎𝑑𝒘𝐶 , … , with  ∑ 𝒙𝑦𝒙,

 Learning rule
 Stochastic gradient descent for minimizing loss 𝐶
 Repeat (t)

 Choose an example (𝒙(𝑡), 𝑦(𝑡))
 𝒘 t 𝒘 t 1 𝜖 𝑔𝑟𝑎𝑑𝒘c 𝒙, y



Multi-class generalization
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 Usual approach: one vs all
 𝑝 classes = 𝑝 " 2 class problems " : class Ci against the others

 Learn 𝑝 discriminant functions 𝐹𝑖 𝒙 , 𝑖  1 …  𝑝
 Decision rule: 𝒙 ∈  𝐶𝑖 if 𝐹𝑖 𝒙    𝐹𝑗 𝒙   for 𝑗 𝑖
 This creates a partition of the input space

 Each class is a polygon with at most 𝑝 1 faces.

 Convex regions: limits the expressive power of linear classifiers



Perceptron properties (1958 Rosenblatt)
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 Convergence theorem (Novikof, 1962)
 Let D 𝒙 ,𝑦 , … , 𝒙 ,𝑦 a data sample. If 

 𝑅 max 𝒙

 sup
𝒘

min𝑦 𝒘.𝒙 𝜌 (𝜌 is called a margin)

 The training sequence is presented a sufficient number of time

 The algorithm will converge after at most corrections

 Generalization bound (Aizerman, 1964)
 If in addition we provide the following stopping rule:

 Perceptron stops if after correction number 𝑘, the next  𝑚 data are correctly
recognized

 Then

 the perceptron will converge in at most l  / 𝑅 /𝜌 steps

 with probability 1 𝜂, test error is less than 𝜖
Link between training and generalization performance



Convergence proof (Novikof)
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 Hyp: lets take 𝑤∗ /  𝑤∗ 1
 𝑤 0,𝑤 is the weight vector before the 𝑡 correction
 𝑤 𝑤 𝜖𝑦 𝑡 𝑥 𝑡
 𝑤 .𝑤∗ 𝑤 .𝑤∗ 𝜖𝑦 𝑡 𝑥 𝑡 .𝑤∗ 𝑤 .𝑤∗ 𝜖𝜌
 By induction 𝑤 .𝑤∗ 𝑡𝜖𝜌

 𝑤 𝑤 2𝜖𝑦 𝑡 𝑤 . 𝑥 𝑡 𝜖 𝑥 𝑡
 𝑤 𝑤 𝜖 𝑥 𝑡 since 𝑦 𝑡 𝑤 . 𝑥 𝑡 0 (remember that 𝑥 𝑡

is incorrectly classified)
 𝑤 𝑤 𝜖 R
 By induction 𝑤 𝑡𝜖 𝑅

 𝑡𝜖𝜌 𝑤 .𝑤∗ 𝑤 𝑤∗ 𝑡𝜖𝑅 𝑤∗

 𝑡 𝑤∗



Adaline – Adaptive Linear Element 
(Widrow - Hoff 1959)
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 « Least Mean Square » LMS algorithm
 Loss:    𝑐 𝒙,𝒚 𝒚 𝐹 𝒙
 Algorithm: Stochastic Gradient Descent (Robbins – Monro (1951))

 Initialize 𝑤 0
 Iterate

 Choose an example 𝒙 𝑡 ,𝑦 𝑡
 𝑤 𝑡 1 𝑤 𝑡 𝜖𝛻  𝑐 𝒙,𝒚

 Workhorse algorithm of adaptive signal processing: filtering, equalization, etc.

Linear unit: 𝐹 𝑥 ∑ 𝑤 𝑥 𝑤

0
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Adaline example motivating the need for adaptivity from an 
engineering perspective
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 Adaptive noise cancelling

Fig. from Adaptive Signal 
Processing, Widrow, Stearn Heartbeat cancelling

Objective: get 𝑧 as close as possible to the 
baby signal 𝑠



Adaline – heartbeat cancelling detailed
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 With the notations of the Figure
 Hyp.:

 𝑠,𝑛 ,𝑛 ,𝑦 are stationary with zero means
 𝑠 is uncorrelated with  𝑛 ,𝑛 and then 𝑦

 Filtering scheme
 output 𝑧 𝑠 𝑛 𝑦
 Loss function to be minimized 𝐸 𝑧

 Then
 𝑧 𝑠 𝑛 𝑦 2𝑠 𝑛 𝑦
 𝐸 𝑧 𝐸 𝑠 𝐸 𝑛 𝑦 2𝐸 𝑠 𝑛 𝑦
 𝐸 𝑧 𝐸 𝑠 𝐸 𝑛 𝑦 since 𝑠 and 𝑛 𝑦 are not correlated

 So that
 𝑀𝑖𝑛 𝐸 𝑧 𝐸 𝑠 𝑀𝑖𝑛 𝐸 𝑛 𝑦

 When the filter is trained to minimize 𝐸 𝑧 , it also minimizes 𝐸 𝑛 𝑦
 Then 𝑦 is the best LMS estimate of 𝑛 , and 𝑧 is the best LMS estimate of signal 𝑠

(since 𝑧 𝑠 𝑛 𝑦



Introductory concepts
Summary of key ideas
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 Learning from examples
 Perceptron and Adaline are supervised learning algorithm
 Training and test set concepts

 Parameters are learned from a training set, performance is evaluated on a test set

 Supervised means each example is a couple 𝒙,𝒚

 Stochastic optimization algorithms
 Training requires exploring the parameter space of the model (the weights)
 For NNs, most optimization methods are based on stochastic gradient descent

 Generalization properties
 Learning Optimization
 One wants to learn functions that generalize well



Optimisation : gradient methods –
introduction



Optimization
Batch gradient algorithms
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 Batch gradient general scheme
 Training Data Set

 𝐷 𝒙 ,𝒚 , … , 𝒙 ,𝒚
 Objective

 Optimize a loss function 𝐶 𝒘 ∑ 𝑐 𝒙 ,𝒚
 Sum of invidual losses 𝑐 . , . on each example 𝒙 ,𝒚

 Principle
 Initialize 𝒘 𝒘 0
 Iterate until convergence

 𝒘 𝑡 1 𝒘 𝑡 𝜖 𝑡 𝚫𝐰 𝑡

 𝚫𝐰 𝑡 is the descent direction, 𝜖 𝑡 is the gradient step

 Both are determined via local information computed from 𝑪 𝒘 , using
approximations of the 1st or 2nd order of 𝑪 𝒘
 e.g. steepest descent, is a 1 order gradient with : 𝚫𝐰 𝑡 𝛻𝒘𝐶 t), 𝜖 𝑡 𝜖
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Optimization
Batch second order gradients
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 Consider a quadratic approximation of the loss function
 𝐶 is approximated via a parabola

 𝐶 𝑤 C w t w w t 𝛻𝐶 𝑤 𝑡 w w t 𝐻 w w t
 where w t is the parameter vector at time 𝑡

 𝐻 is the Hessian of  𝐶 . : 𝐻

 Differentiating w.r.t. 𝑤
 𝛻𝐶 𝑤 𝛻𝐶 𝑤 𝑡 𝐻 𝑤 𝑤 𝑡

 The minimum of 𝐶 is obtained for
 𝛻𝐶 𝑤 0

 Several iterative methods could be used
 E.g. Newton

 𝑤 𝑡 1 𝑤 t H 𝛻𝐶 𝑤 𝑡
 Complexity 𝑂 𝑛 for the inverse + partial derivatives
 In practice on makes use of quasi-Newton methods : 𝐻 is approximated

iteratively



Optimization
Stochastic Gradient algorithms
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 Objectives
 Training NNs involves finding the parameters 𝒘 by optimizing a loss

 Difficulties
 Deep NN have a large number of parameters and meta-parameters, the loss is most often a non 

linear function of these parameters: the optimization problem is non convex
 Optimization for Deep NN is often difficult:

 Multiple local minima with high loss, …. might not be a problem in high dimensional spaces
 Flat regions: plateaus -> 0 gradients, saddle points -> pb for 2nd order methods
 Sharp regions: gradients may explode
 Deep architectures: large number of gradient multiplications may often cause gradient vanishing or 

gradient exploding

 Solutions
 There is no unique answer to all these challenges
 The most common family of optimization methods for Deep NN is based on stochastic

gradient algorithms
 Exploit the redundency in the data, at the cost of high variance in gradient estimates

 Deep Learning has developed several heuristic training  methods
 They are provided in the different toolboxes (Pytorch etc)
 Some examples follow



Optimization
Stochastic gradient algorithms (From Ruder 2016)
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 Data + Loss
 Training Data Set

 𝐷 𝒙 ,𝒚 , … , 𝒙 ,𝒚
 Loss function

 𝐶 𝒘 ∑ 𝑐 𝒙 ,𝒚
 All the algorithms are given in vector form

 Basic Stochastic Gradient Descent
 Initialise 𝒘 0
 Iterate until stop criterion
 sample un exemple 𝒙 𝑡 ,y 𝑡
 𝒘 𝑡 1 𝒘 𝑡 𝜖𝛻𝒘𝑐 𝒙 𝑡 ,𝒚 𝑡
 Rq: might produce a lot of oscillations

 Momentum
 Dampens oscillations

 𝒎 𝒕 𝜸𝒎 𝒕 𝟏 𝜖𝛻𝒘𝑐 𝒙 𝑡 , 𝐲 𝑡
 𝒘 𝑡 1 𝒘 𝑡 𝒎 𝒕

Figures from (Ruder 2016)



Optimization
SGD algorithms with Adaptive learning rate
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 Adagrad
 One learning rate for each parameter 𝑤  at each time step 𝑡
 Iteration 𝑡

 Compute gradient 𝒈 𝑡 𝛻𝒘𝑐 𝒙 𝑡 ,𝒚 𝑡 Vector
 Accumulate squared gradients for each component 𝑟 𝑡 𝑟 𝑡 1 𝑔 𝑡 Scalar

 kind of gradient variance
 Sum of the squared gradients up to step 𝑡

 Componentwise:
 𝑤 𝑡 1 𝑤 𝑡

𝒓𝒊
𝛻 𝒊𝑐 𝒙 𝑡 ,𝒚 𝑡 Scalar

 In vector form
 𝒘 𝑡 1 𝒘 𝑡

𝒓
⊙ 𝛻𝒘𝑐 𝒙 𝑡 ,𝒚 𝑡 Vector

 ⊙ elementwise multiplication, 𝜖  10 avoids dividing by 0, 
𝒓

is a vector with components 
𝒓𝒊

 Default : learning rate shrinks too fast

 RMS prop
 Replace 𝑟 𝑡 in Adagrad by an exponentially decaying average of past gradients

 𝒓 𝑡 𝛾𝑟 𝑡 1 1 𝛾 𝒈 𝑡 ⊙ 𝒈 𝑡 ,       0 𝛾 1 
 𝒘 𝑡 1 𝒘 𝑡

𝒓
⊙ 𝛻𝒘 𝑐 𝒙 𝑡 ,𝒚 𝑡 Vector



Optimization
SGD algorithm with momentum and Adaptive learning rate
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 Adam (adaptive moment estimation)
 Computes

 Adaptive learning rates for each parameter
 An exponentially decaying avarage of past gradients (momentum)
 An exponentially decaying average of past squared gradients (like RMSprop)

 Iteration t
 Momentum term : 𝒎 𝒕 𝛾 𝒎 𝑡 1 𝜖 1 𝛾 𝒈 𝑡
 Gradient variance term: r 𝑡 𝛾 𝒓 𝑡 1 𝜖 1 𝛾 𝒈 𝑡 ⊙ 𝒈 𝑡
 𝒘 𝑡 1 𝒘 𝑡

𝒓
⊙𝒎 𝑡

 Bias correction
 The 2 moments are initialized at 0, they tend to be biased towards 0, the following

correction terms reduce this effect

 Correct bias of 𝒎: 𝒎 𝒕 =𝒎 𝒕

 Correct bias of 𝒓: 𝐫 𝑡 = 𝒓 𝒕



Batch vs stochastic gradient
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𝑥

𝑐𝐶

𝑥

StochasticBatch

𝐶
1
𝑁 𝑐 𝐶: global loss

𝑐 : individual (pattern 𝑘) loss



Gradient methods as numerical integration of ordinary
differential equations (ODE)
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 Let 𝑙:𝑅 → 𝑅 a function we seek to minimize
 We make the assumption that 𝑙 is « well behaved »

 Consider the following gradient flow equation


∇𝑙 𝑤 𝑡  

𝑤 0 𝑤                     
 Taylor expansion around 𝑤 𝑡 is:

 𝑤 𝑡 ℎ 𝑤 𝑡 ℎ 𝑂 ℎ

 Lets take t 𝑘ℎ, by neglegting the second order terms, we get the explicit 
Euler method for integrating ODEs
 𝑤 𝑤 ℎ∇𝑙 𝑤 𝑡
 Which is the steepest descent algorithm

 Message
 This interpretation of Gradient Descent as a numerical integration method for the 

gradient flow equation allows us to use the results from numerical analysis to 
characterize useful properties e. g. stability / consistence of the method

 This is used for analyzing more sophisticated GD algorithms



Optimization
Summary
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 Which method to use?
 No « one solution for all problems »
 For large scale applications, Adam is often used today as a default choice

together with minibatches
 But… simple SGD with heuristic learning rate decay can sometimes be

competitive …

 Batch, mini batch, pure SGD
 Stochastic methods exploit data redundancy
 Mini batch well suited for GPU




Regression and Logistic
Regression
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Regression
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 Linear regression
 Objective : predict real values
 Training set

 𝒙 ,𝑦 , … , 𝒙 ,𝑦
 𝒙 ∈ 𝑅 ,𝑦 ∈ 𝑅 : single output regression

 Linear model
 𝐹 𝑥 𝒘.𝒙 ∑ 𝑤 𝑥 with 𝑥 1

 Loss function
 Mean square error

 𝐶 ∑ 𝑦 𝒘.𝒙

 Steepest descent gradient (batch)

 𝒘 𝒘 𝑡 𝜖𝛻 𝐶 , 𝛻 𝐶 , … ,   

 ∑ 𝑦 𝒘.𝒙 ∑ 𝑦 𝒘.𝒙 𝑥𝒌 for component 𝑤

 𝒘 𝒘 𝑡 𝜖 ∑ 𝑦 𝒘.𝒙 𝒙 in vector form



Regression
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 Geometry of mean squares

 Regression with multiple outputs 𝐲 ∈ 𝑅
 Simple extension: 𝑝 independent linear regressions
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Probabilistic Interpretation
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 Statistical model of linear regression
 𝑦 𝒘.𝒙 𝜖,     where 𝜖 is a random variable (error term)

 Hypothesis 𝜖 is i.i.d. Gaussian
 𝜖~𝑁 0,𝜎 , 𝑝 𝜖 exp 
 The posterior distribution of y is then

 𝑝 𝑦 |𝒙;𝒘 exp 𝒘.𝒙

 Likelihood
 𝐿 𝑤 ∏ 𝑝 𝑦  |𝒙 ;𝒘

 Likelihood is a function of 𝒘, it is computed on the training set
 Maximum likelihood principle

 Choose the parameters 𝒘 maximizing 𝐿 𝒘 or any incresing function of 𝐿 𝒘
 In practice, one optimizes the log likelihood 𝑙 𝒘 𝑙𝑜𝑔𝐿 𝒘

 𝑙 𝒘 𝑁𝑙𝑜𝑔 ∑ 𝑦 𝒘.𝒙  
 This is the MSE criterion

 This provides a probabilistic interpretation of regression
 Under a gaussian hypothesis max likelihood is equivalent to MSE minimization



Logistic regression – 2 classes
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 Linear regression can be used (in practice) for regression or 
classification

 For classification a proper model is logistic regression
 𝐹 𝒙 𝜎 𝒘.𝒙

𝒘.𝒙

 Logistic (or sigmoid) function

 𝜎 𝑧
 

 hint
 𝜎 𝑧 𝜎 𝑧 1 𝜎 𝑧

 Hyp: 𝑦 ∈ 0,1
0
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0,8

1
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sigmoid



Logistic regression – 2 classes
Probabilistic interpretation
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 Since y ∈ 0,1 , we make a Bernoulli hypothesis for the posterior 
distribution

 𝑝 𝑦 1 𝒙;𝒘 𝐹 𝒙 et 𝑝 𝑦 0 𝒙;𝒘 1 𝐹 𝒙
 In compact format

 𝑝 𝑦 𝒙;𝒘 𝐹 𝒙 1 𝐹 𝒙 with y ∈ 0,1

 Likelihood

 𝐿 𝒘 ∏ 𝐹 𝒙 1 𝐹 𝒙

 Log-likelihood
 𝑙 𝒘 ∑ 𝑦 𝑙𝑜𝑔𝐹 𝒙 1 𝑦 log 1 𝐹 𝒙

 This is minus the cross-entropy between the target and the estimated posterior 
distribution

 Steepest descent algorithm (batch) for minimizing cross entropy
 Componentwise: 𝒘 ∑ 𝑦 𝐹 𝒙 𝒙

 Vector form: 𝛻 𝑙 ∑ 𝑦 𝐹 𝒙 𝒙
 Algorithm

 𝒘 𝒘 𝜖𝛻 𝐶 𝒘 𝜖 ∑ 𝑦 𝐹 𝒙 𝒙



Multivariate logistic regression
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 Consider a 𝑝 class classification problem
 Classes are encoded by “one hot” indicator vectors. Each vector is 

of dimension 𝑝
 Class 1: 𝐲 1,0, … , 0
 Class 2 : 𝐲 0,1, … , 0
 …
 Class 𝑝: 𝐲 0,0, … , 1

 𝐹𝑾 𝑥 is a vector valued function with values in 𝑅
 Its component 𝑖 is a softmax function (generalizes the sigmoid)

 𝒚 𝐹𝑾 𝒙 𝒘 .𝒙
∑  𝒘 .𝒙

 Note : here 𝒘 ∈ 𝑅 is a vector, 𝒚 ∈ 𝑅 is the 𝑖 component of 𝒚

 The probabilistic model for the posterior is a multinomial 
distribution

 𝑝 𝐶𝑙𝑎𝑠𝑠 𝑖 𝒙;𝒘 = 𝒘 .𝒙
∑  𝒘 .𝒙

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒘 .𝒙



Multivariate logistic regression
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 Notations
 𝒔𝒊 𝑊𝒙 is the logit for input 𝒙

 𝑊 𝒘 , … ,𝒘 is a 𝑝x𝑛 matrix of weights

 𝒔𝒊 𝑠 , … , 𝑠 ∈ 𝑅

 𝒚 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒔𝒊) is the output for input 𝒙 (here 𝜎 applies component-wise, i.e. 𝒚 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠 )

 𝒚 𝑦 , … ,𝑦 ∈ 𝑅

 Let  𝑦 be a computed output for input 𝑥 (we drop the index 𝑖 for simplicity), then
 𝑦 𝐼 𝑦  with 𝐼 elements of the identity matrix    1

 Likelihood

 𝐿 𝑊 𝑝 𝑌 𝑋;𝑊 ∏ ∏ 𝑦  ,  𝑋 and 𝑌 are the column wise matrices of input and output vector

 Log likelihood
 𝑙 𝑊 ∑ ∑ 𝑦 ln𝑦 again this is minus the cross entropy for the multiclass classification problem

 Gradient of the log likelihood
 ∇ 𝑙 𝑊 ∑ 𝑦 𝑦 𝒙 by using identity 1

 Training algorithm
 As before, one may use a gradient method for maximizing the log likelihood.
 When the number of classes is large, computing the soft max is prohibitive, alternatives are required



Probabilistic interpretation for non linear models
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 These results extend to non linear models, e.g. when 𝐹 𝑥 is a NN
 Non linear regression

 Max likelihood is equivalent to MSE loss optimization under the Gaussian
hypothesis
 For multivariate (𝑦 ∈ 𝑅, 𝑥 ∈ 𝑅 non linear regression we have
 𝑦 𝐹 𝒙 𝜖, 𝜖~𝑁 0,𝜎

 𝑝 𝑦 |𝒙;𝒘 exp 𝑭 𝒙

 log likelihood 𝑙 𝑤
 𝑙 𝒘 𝑁𝑙𝑜𝑔 ∑ 𝑦 𝑭 𝒙  

 Classification
 Max likelihood is equivalent to cross entropy maximization under Bernoulli/ 

multinomial distribution
 2 classes: if 𝑦 is binary and we make the hypothesis that it is conditionnally Bernoulli 

with probability 𝐹 𝑥 𝑝 𝑦 1|𝒙 we get the cross entropy loss
 More than 2 classes: same as logistic regression with multiple outputs



Logistic regression – Computational graph -SGD
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 Forward pass

𝑦

𝒘

𝒄 𝑦,𝑦

𝑦

𝒔

𝒙

Forward propagation: 
𝑠 𝒘.𝒙
𝑦 𝜎 𝑠

𝒄 𝑦,𝑦 : loss

𝑦: target

Notations
𝒙,𝒘 ∈ 𝑅
𝑠, 𝑦 ∈ 𝑅
𝑦 ∈ 0,1



Logistic regression – Computational graph - SGD
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 Forward pass

𝑦

𝒘

𝒄 𝑦,𝑦

𝑦

𝒔

𝒙

Forward propagation: 
𝑠 𝒘.𝒙
𝑦 𝜎 𝑠

𝒄 𝑦,𝑦 : loss

𝑦: target



=𝑥

Logistic regression – Computational graph - SGD
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 Backward pass

𝑦

𝒘

𝒄 𝑦,𝑦

𝑦

𝒔

𝒙

Backward propagation:
𝜕𝑐
𝜕𝑠

𝜕𝑐
𝜕𝑦

𝜕𝑦
𝜕𝑠

𝜕𝑐
𝜕𝑤

𝜕𝑐
𝜕𝑠

𝜕𝑠
𝜕𝑤

𝒄 𝑦,𝑦 : loss

𝑦: target
𝜕𝑐
𝜕𝑦

𝜕𝑦
𝜕𝑠 𝜎′ 𝑠

𝜕𝑐
𝜕𝑤

𝜕𝑐
𝜕𝑦

𝜕𝑦
𝜕𝑠

𝜕𝑠
𝜕𝑤

Chain Rule



=𝑥

Logistic regression – Computational graph - SGD
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 Backward pass

𝑦

𝒘

𝒄 𝑦,𝑦

𝑦

𝒔

𝒙

Backward propagation:
𝜕𝑐
𝜕𝑠

𝜕𝑐
𝜕𝑦 𝜎′ 𝑠

𝜕𝑐
𝜕𝑤

𝜕𝑐
𝜕𝑠 𝑥

𝒄 𝑦,𝑦 : loss

𝑦: target
𝜕𝑐
𝜕𝑦

y
𝑦

1 y
1 𝑦

𝜕𝑦
𝜕𝑠 𝜎′ 𝑠

𝜕𝑐
𝜕𝑤

y
𝑦

1 y
1 𝑦 𝜎′ 𝑠 𝑥

For the cross entropy loss
𝑙 𝒘 ∑ 𝑦 𝑙𝑜𝑔𝑦 1 𝑦 log 1 𝑦 ∑ 𝒄 𝑦𝒊, 𝑦𝒊



Probabilistic interpretation of NN outputs
Mean Square loss
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 Derived here for multivariate regression (1 output), trivial extension to multiple outputs
 Holds for any continuous functional (regression, logistic regression, NNs, etc)

 Risk 𝑅 𝐸 , 𝑦 ℎ 𝒙

 The minimum  of 𝑅, Min 𝑅, is obtained for ℎ∗ 𝒙 𝐸 𝑦|𝒙
 The risk 𝑅 pour the family of functions 𝐹 𝒙 decomposes as follows:

 𝑅 𝐸 , 𝑦 𝐹 𝒙

 𝑅 𝐸 , 𝑦 𝐸 𝑦 𝒙 𝐸 , 𝐸 𝑦 𝒙 𝐹 𝒙

 Let us consider 𝐸 𝑦 𝐸 𝑦 𝒙
 This term is independent of the model 𝐹 . and only depends on the problem characteristics (the 

data distribution).
 It represents the min error that could be obtained for this data distribution
 ℎ∗ 𝑥 𝐸 𝑦|𝒙 is the optimal solution to Min 𝑅

 Minimizing 𝐸 , 𝑦 𝐹 𝒙  is equivalent to minimizing 𝐸 , 𝐸 𝑦 𝒙 𝐹 𝒙  

 The optimal solution 𝐹 ∗ 𝒙 argmin 𝐸 , 𝐸 𝑦 𝒙 𝐹 𝒙 is the best mean square 
approximation of  𝐸 𝑦|𝒙



Probabilistic interpretation of NN outputs
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 Classification
 Let us consider multi-class classification with one hot encoding of the target

outputs
 i.e. 𝒚  0, … , 0, 1, 0, … , 0  with a 1 at position 𝑖 if the target is class 𝑖 and zero

everywhere else

 ℎ∗ 𝐸 𝑦 𝑥 1 ∗ 𝑃 𝐶 𝑥 0 ∗ 1 𝑃 𝐶 𝑥 𝑃 𝐶 |𝑥
 i.e. 𝐹 ∗ is the best LMS approximation of the Bayes discriminant function (which is

the optimal solution for classification with 0/1 loss)
 More generally with binary targets

 ℎ∗ 𝑃 𝑦 1 𝑥

 Note
 Similar results hold for the cross entropy criterion
 Precision on the computed outputs depends on the task

 Classification: precision might not be so important (max decision rule, one wants the 
correct class to be ranked above all others)

 Posterior probability estimation: precision is important



Multi-layer Perceptron
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Multi-layer Perceptron (Hinton – Sejnowski – Williams 1986)

 Neurons arranged into layers
 Each neuron is a non linear unit, e.g.
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𝒚 𝐹 𝒙 𝑓⨀ 𝑊 2 𝑓⨀ 𝑊 1 𝒙

𝑓 𝒘.𝒙
𝒘: 𝐜𝐞𝐥𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐯𝐞𝐜𝐭𝐨𝐫

-1

-0,5

0

0,5

1

𝒙

𝑊 1 𝑊 2

Note: ⨀ 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, if 𝒙 𝑥 , 𝑥 , 𝑓⨀ 𝑥 , 𝑥 𝑓 𝑥 , 𝑓 𝑥

𝑓 𝑥 𝑡ℎ 𝑥

0
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0,8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

𝑓 𝑥 𝜎 𝑥

http://playground.tensorflow.org/



Multi-layer Perceptron - Training

 Stochastic Gradient Descent - The algorithm is called Back-
Propagation
 Pick one example 𝒙,𝒚 or a Mini Batch 𝒙𝒊,𝒚𝒊 sampled from the training 

set
 Here the algorithm is described for 1 example and for the sigmoid 𝑓 𝜎

non linearity

 Forward pass
 𝒚 𝐹 𝒙 𝑓⨀ 𝑊 2 𝑓⨀ 𝑊 1 𝒙

 Compute error
 𝑐 𝒚,𝒚 , e.g. mean square error or cross entropy

 Backward pass
 efficient implementation of chain rule

 𝑤 𝑤 𝜖 𝒚,𝒚 
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Note: ⨀ 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, if 𝒙 𝑥 , 𝑥 , 𝑓⨀ 𝑥 , 𝑥 𝑓 𝑥 , 𝑓 𝑥



Algorithmic differentiation

 Back-Propagation is an instance of automatic differentiation / 
algorithmic differentiation - AD
 A mathematical expression can be written as a computation graph

 i.e. graph decomposition of the expression  into elementary computations

 AD allows to compute efficiently the derivatives of every element in the graph 
w.r.t. any other element.

 AD transforms a programs computing a numerical funtion into the program for 
computing the derivatives

 All modern DL framework implement AD
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Notations – matrix derivatives
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𝑥
𝑥
⋮
𝑥

, y
𝑦
⋮
𝑦

, 𝛼 ∈ 𝑅, 𝑊:   𝑝 𝑞

Vector by scalar

⋮

Scalar by vector

,⋯ ,

Vector by vector
⋯

⋮ ⋱ ⋮
⋯

Matrix by scalar

𝜕𝑊
𝜕𝛼

𝜕𝑤
𝜕𝛼 ⋯

𝜕𝑤
𝜕𝛼

⋮ ⋱ ⋮
𝜕𝑤
𝜕𝛼 ⋯

𝜕𝑤
𝜕𝛼

Scalar by matrix

𝜕𝛼
𝜕𝑊

𝜕𝛼
𝜕𝑤 ⋯

𝜕𝛼
𝜕𝑤

⋮ ⋱ ⋮
𝜕𝛼
𝜕𝑤 ⋯

𝜕𝛼
𝜕𝑤

Matrix cookbooks
http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf –
http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/ imm3274.pdf 



Multi-layer Perceptron - Training
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 Computational graph

Forward propagation: 
𝒔 𝑛 𝑊 𝑛 𝒛 𝑛 1
𝒛 𝑛 𝜎 𝒔 𝑛

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target

𝒚𝒙

𝑊 1 𝑊 2

Here, 𝒛 2 𝒚



Multi-layer Perceptron - Training
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 Forward pass

𝒚: target

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target

Forward propagation: 
𝒔 𝑛 𝑊 𝑛 𝒛 𝑛 1
𝒛 𝑛 𝜎 𝒔 𝑛



Multi-layer Perceptron - Training
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 Forward pass

𝒚: target

Forward propagation: 
𝒔 𝑛 𝑊 𝑛 𝒛 𝑛 1
𝒛 𝑛 𝜎 𝒔 𝑛

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target



Multi-layer Perceptron - Training
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 Forward pass

𝒚: target

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target

Forward propagation: 
𝒔 𝑛 𝑊 𝑛 𝒛 𝑛 1
𝒛 𝑛 𝜎 𝒔 𝑛



Multi-layer Perceptron - Training
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 Forward pass

𝒚: target

Note: 𝒙, 𝒔 𝑛 , 𝒙 𝑛 are vectors

Forward propagation: 
𝒔 𝑛 𝑊 𝑛 𝒛 𝑛 1
𝒛 𝑛 𝜎 𝒔 𝑛

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target



Multi-layer Perceptron - Training
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 Forward pass

𝒚: target

Note: 𝒙, 𝒔 𝑛 , 𝒙 𝑛 are vectors

Forward propagation: 
𝒔 𝑛 𝑊 𝑛 𝒛 𝑛 1
𝒛 𝑛 𝜎 𝒔 𝑛

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target



Multi-layer Perceptron - Training
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 Back Propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊 1

𝜕𝑐
𝜕𝑊 2

𝑊 𝑊 𝜖
𝜕𝑐
𝜕𝑊

Note: notations are in vector form, 

is a matrix, 
𝒛
 and 

𝒔
are row vectors

of the appropriate size

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 𝟏

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target



Multi-layer Perceptron - Training
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 Back propagation: Reverse Mode Differentiation

Backward propagation:
𝜕𝑐

𝜕𝒔 𝑛
𝜕𝑐

𝜕𝒛 𝑛 ⊙ 𝜎 𝒔 𝑛

𝜕𝑐
𝜕𝑊 𝑛 𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛

𝜕𝑐
𝜕𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛 𝑊 𝑛

𝒚: target

𝜕𝑐
𝜕𝑊 1

𝜕𝑐
𝜕𝑊 2

Note: notations are in vector form, 

is a matrix, 
𝒛
 and 

𝒔
are row vectors

of the appropriate size

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target 𝜕𝑐
𝜕𝑧 2



Multi-layer Perceptron - Training
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 Back propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊 1

𝜕𝑐
𝜕𝑊 2

Note: notations are in vector form, 

is a matrix, 
𝒛
 and 

𝒔
are row vectors

of the appropriate size

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target 𝜕𝑐
𝜕𝑧 2 𝜕𝑧 2

𝜕𝑠 2 𝜎 𝑠 2

Backward propagation:
𝜕𝑐

𝜕𝒔 𝑛
𝜕𝑐

𝜕𝒛 𝑛 ⊙ 𝜎 𝒔 𝑛

𝜕𝑐
𝜕𝑊 𝑛 𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛

𝜕𝑐
𝜕𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛 𝑊 𝑛



Multi-layer Perceptron - Training
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 Back propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊 1

𝜕𝑐
𝜕𝑊 2 𝒛 1

𝜕𝑐
𝜕𝒔 2

Note: notations are in vector form, 

is a matrix, 
𝒛
 and 

𝒔
are row vectors

of the appropriate size

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target 𝜕𝑐
𝜕𝑧 2

𝜕𝑐
𝜕𝑠 2

𝜕𝑧 2
𝜕𝑠 2 𝜎 𝑠 2

Backward propagation:
𝜕𝑐

𝜕𝒔 𝑛
𝜕𝑐

𝜕𝒛 𝑛 ⊙ 𝜎 𝒔 𝑛

𝜕𝑐
𝜕𝑊 𝑛 𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛

𝜕𝑐
𝜕𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛 𝑊 𝑛



Multi-layer Perceptron - Training
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 Back propagation: Reverse Mode Differentiation

𝒚: target

𝜕𝑐
𝜕𝑊 1 𝒙

𝜕𝑐
𝜕𝒔 1

𝜕𝑐
𝜕𝑊 2 𝒛 1

𝜕𝑐
𝜕𝒔 2

𝜕𝑐
𝜕𝑧 2

𝜕𝑐
𝜕𝑠 2

𝜕𝑐
𝜕𝑧 1

𝜕𝑐
𝜕𝑠 1

𝜕𝑧 2
𝜕𝑠 2 𝜎 𝑠 2

𝜕𝑧 1
𝜕𝑠 1 𝜎 𝑠 2

𝜕𝑠
𝜕𝑧 1

Note: notations are in vector form, 

is a matrix, 
𝒛
 and 

𝒔
are row vectors

of the appropriate size

𝒙

𝒚

𝑊 2

𝑊 1

𝒄 𝒛 2 ,𝒚

𝒛 2

𝒔 2

𝒛 1

𝒔 1

𝒄 𝒛 2 ,𝒚 : loss

𝒚: target Backward propagation:
𝜕𝑐

𝜕𝒔 𝑛
𝜕𝑐

𝜕𝒛 𝑛 ⊙ 𝜎 𝒔 𝑛

𝜕𝑐
𝜕𝑊 𝑛 𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛

𝜕𝑐
𝜕𝒛 𝑛 1

𝜕𝑐
𝜕𝒔 𝑛 𝑊 𝑛



Multi-layer Perceptron – SGD Training – example - notations
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 Notations
 𝒛 𝑖 activation vector for layer 𝑖
 𝑧 𝑖 activation of neuron 𝑗 in layer 𝑖
 𝑊 𝑖 1 weight matrix from layer 𝑖 to layer 𝑖 1, including bias weights
𝑤 𝑖 weight from cell 𝑘 on layer 𝑖 to cell 𝑗 on layer 𝑖 1

 𝒚   computed output

 𝑦 𝑧 2 𝑔 𝑤 2 𝑤 2 𝑧 𝑤 2 𝑧 1
 𝑧 1 𝑔 𝑤 1 𝑤 1 𝑥 𝑤 1 𝑥 𝑤 1 𝑥

 𝑊 1
𝑤 1 𝑤 1 𝑤 1 𝑤 1
𝑤 1 𝑤 1 𝑤 1 𝑤 1

𝑥

𝑥

𝑥 𝒚 𝐹𝒘 𝒙

1 1

𝑧 1

𝑊 1 𝑊 2
𝑧 1

𝑧 2

𝑧 2



Multi-layer Perceptron – SGD Training –
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units) - forward pass
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 For example 𝑥
 The activations of all the neurons from layer 1 are computed in parallel

 𝒔 1 𝑊 1 𝒙 then    𝒛 1 𝑔 𝒔 1 )

 with 𝑔 𝒔 1 𝑔 𝒔 1 ,𝑔 𝒔 1
 The activations of cells on layer 1 are then used as inputs for layer 2. The activations of 

cells in layer 2 are computed in parallel.

 𝒔 2 𝑊 2 𝒛 1 then 𝒚 𝒛 2 𝑔 𝒔 2 )


𝑥

𝑥

𝑥 𝒚 𝐹𝒘 𝒙

1 1

𝑧 1

𝑊 1 𝑊 2
𝑧 1

𝑧 2

𝑧 2



Multi-layer Perceptron – SGD derivation
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid 
units)
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 Forward pass
 Indices used below for this detailed derivation: 𝑖 output cell layer, 𝑗 hidden cell

layer, 𝑘 input cell layer

 𝑠 1 ∑ 𝑤 1 𝑥  , 𝑧 1  𝑔 𝑠 1

 𝑠 2 ∑ 𝑤 2 𝑧 1 , 𝑧 2 𝑔 𝑠 2
 𝑠 2 ∑ 𝑤 2 𝑔 ∑ 𝑤 1 𝑥  , 𝑧 2 𝑔 ∑ 𝑤 2 𝑔 ∑ 𝑤 1 𝑥  

 Loss

 𝑐 ∑ 𝑦 𝑦 ∑ 𝑦 𝑔 ∑ 𝑤 2 𝑧 1

𝑖 output cell layer

𝑗 hidden cell layer

𝑘 input cell layer 𝑥

𝑥

𝑥 𝒚 𝐹𝒘 𝒙

1 1

𝑧 1

𝑊 1 𝑊 2
𝑧 1

𝑧 2

𝑧 2



Multi-layer Perceptron – SGD derivation
Detailed derivation for a 1 hidden layer network (MSE loss + sigmoid
units)

Machine Learning & Deep Learning   - P. Gallinari76

 Backward (derivative) pass
 Upgrade rule for weight 𝑤 , layer 𝑚: 𝑤 𝑚 𝑤 𝑚 Δ𝑤 𝑚
 2nd weight layer

 Δ𝑤 2 𝜖 𝜖
  

 

 Δ𝑤 2 𝜖 𝑦 𝑦

 Δ𝑤 2 𝜖 𝑦 𝑦 𝑔 𝑠 2 𝑧 1
 Δ𝑤 2 𝜖𝑒 2 𝑧 1 , with 𝑒 2 𝑦 𝑦 𝑔 𝑠 2

 1st weight layer

 Δ𝑤 1 𝜖 𝜖

 ∑    ∑ 𝑦 𝑦

 ∑ 𝑦 𝑦 𝑔 𝑠 2 𝑤 2



Multi-layer Perceptron – SGD derivation
Detailed derivation (MSE loss + sigmoid units)
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 𝑔 𝑠 1 𝑧

 Δ𝑤 1 𝜖 ∑ 𝑦 𝑦 𝑔 𝑠 2 𝑤 2   𝑔 𝑠 1 𝑥

 Δ𝑤 1 𝜖𝑒 1 𝑥 with 𝑒 𝑔 𝑠 1 ∑ 𝑒 𝑤 2   



Back Propagation and Adjoint

 BP is an instance of a more general technique: the Adjoint method
 Adjoint method

 has been designed for computing efficiently the sensitivity of a loss to the 
parameters of a function (e.g. weights, inputs or any cell value in a NN).

 Can be used to solve different constrained optimization problems (including BP)
 Is used in many fields like control, geosciences
 Interesting to consider the link with the adjoint formulation since this opens the 

way to generalization of the BP technique to more general problems
 e.g. continuous NNs (Neural ODE)
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Back Propagation and Adjoint

 Learning problem
 𝑀𝑖𝑛 𝑐 ∑ 𝑐 𝐹 𝑥 , 𝑦
 With 𝐹 𝑥 𝐹 ∘ ⋯∘ 𝐹 𝑥

 Rewritten as a constrained optimisation problem
 𝑀𝑖𝑛 𝑐 ∑ 𝑐 𝑧 𝑙 , 𝑦

 Subject to ∀𝑘 1 …𝑁

𝑧 𝑙 𝐹 𝑧 𝑙 1 ,𝑤 𝑙             
𝑧 𝑙 1 𝐹 𝑧 𝑙 2 ,𝑤 𝑙 1

…
𝑧 1 𝐹 𝑥 ,𝑤 1                    

 Note
 𝑧 and 𝑊 are vectors of the appropriate size
 e.g. 𝑧 𝑖 is 𝑛 𝑖 1 and 𝑤 𝑖 is 𝑛 𝑖 1
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Back Propagation and Adjoint

 For simplifying, one considers pure SGD, i.e. 𝑁 1
 So that we drop the index 𝑘

 The Lagrangian associated to the optimization problem is
 ℒ 𝑥,𝑤 𝑐 𝑧 𝑙 ,𝑦 ∑ 𝜆 𝑧 𝑖 𝐹 𝑧 𝑖 1 ,𝑤 𝑖

 𝜆 is a vector with the same size as 𝑧 𝑖
 Unknowns to be estimated:

 𝑧 𝑖 ,𝑤 𝑖 , 𝜆 , 𝑖 1 … 𝑙, 
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Back Propagation and Adjoint

 We want to solve for the Lagrangian
 ℒ 𝑥,𝑊 𝑐 𝑧 𝑙 , 𝑦 ∑ 𝜆 𝑧 𝑖 𝐹 𝑧 𝑖 1 ,𝑤 𝑖
 with unknowns: 𝑧 𝑖 ,𝑤 𝑖 , 𝜆 , 𝑖 1, … , 𝑙

 The partial derivatives of the Lagrangian are


ℒ 𝜆 ,  for the last layer 𝑙


ℒ 𝜆 𝜆 , , 𝑖 1, … , 𝑙 1 for intermediate layer 𝑖


ℒ 𝜆 , , i 1 … l


ℒ 𝑧 𝑖 𝐹 𝑧 𝑖 1 , 𝑖 , i 1 … l

 Note


ℒ is 1 𝑛 𝑖 , ℒ is 1 𝑛 𝑖 , ℒ is 1 𝑛 𝑖 , 𝜆 is 𝑛 𝑖 1, , is 

𝑛 𝑖 1 𝑛 𝑖 , , is 1 𝑛 𝑙 , , is 𝑛 𝑖 𝑛 𝑖
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Back Propagation and Adjoint
 Forward equation


ℒ 𝑧 𝑖 𝐹 𝑧 𝑖 1 ,𝑤 𝑖 , 𝑖 1 … 𝑙, represent the constraints

 One wants ℒ 0,  𝑖 1 … 𝑙

 Starting from 𝑖 1 up to 𝑖 𝑙, this is exactly the forward pass of BP

 Backward equation
 Remember the Lagrangian

 ℒ 𝑥,𝑊 𝑐 𝑧 𝑙 ,𝑦 ∑ 𝜆 𝑧 𝑖 𝐹 𝑧 𝑖 1 ,𝑤 𝑖
 Since one imposes 𝑧 𝑖 𝐹 𝑧 𝑖 1 ,𝑤 𝑖 0 (forward pass), one can choose

𝜆 as we want

 Let us choose the 𝜆𝑠 such that ℒ 0,∀ 𝑖

 The 𝜆𝑠 can be computed backward Starting at 𝑖 𝑙 down to to 𝑖 1
 𝜆 ,

 …

 𝜆 𝜆 , 𝜆
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Back Propagation and Adjoint

 Derivatives
 All that remains is to compute the derivatives of ℒ wrt the 𝑊


ℒ 𝜆 , , ∀ 𝑖


, easy to compute
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Back Propagation and Adjoint – Algorithm Recap
 Recap, BP algorithm with Adjoint
 Forward

 Solve forward ℒ 0

  𝑧 1 𝐹 𝑧 0 ,𝑤 1
 …

  𝑧 𝑖 𝐹 𝑧 𝑖 1 ,𝑤 𝑖

 Backward
 Solve backward ℒ 0

 𝜆 ,

 …

 𝜆 𝜆 , 𝜆

 Derivatives


ℒ 𝜆 , , ∀ 𝑖
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Adjoint method – Adjoint equation
 Let us consider the Lagrangian written in a simplified form

 ℒ 𝑥,𝑤 𝑐 𝑧 𝑙 , 𝑦 𝜆 𝑔 𝑧,𝑤
 𝑧,𝑤 represent respectively all the variables of the NN and all the weights
 𝑧 is a 1 𝑛 vector, and 𝑤 is a 1 𝑛 vector
 𝑔 𝑧,𝑤 0 represents the constraints written in an implicit form

 here the system 𝑧 𝑖 𝐹 𝑧 𝑖 1 ,𝑤 𝑖 0, 𝑖 1 … 𝑙

The derivative of ℒ 𝑥,𝑤 wrt 𝑤 is


ℒ , 𝜆 (

                𝜆 ) 𝜆

 In order to avoid computing , choose 𝜆 such that

 𝜆 0, rewriten as:

 𝝏𝒈
𝝏𝒛

𝑻
𝝀 𝝏𝒄

𝝏𝒛
<<<<<<<<< Adjoint Equation
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Adjoint method

 𝜆 is determined from the Adjoint equation
 Different options for solving 𝜆, depending on the problem
 For MLPs, the hierarchical structure leads to the backward scheme
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Multi-layer Perceptron – stochastic gradient
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 Note
 The algorithm has been detailed for « pure » SGD, i.e. one datum at a time
 In practical applications, one uses mini-batch implementations
 This accelerates GPU implementations
 The algorithm holds for any differentiable loss/ model
 Deep Learning on large architectures makes use of SGD variants, e.g. Adam



Loss functions
 Depending on the problem, and 

on model, different loss functions 
may be used

 Mean Square Error
 For regression

 Classification, Hinge, logistic, cross 
entropy losses
 Classification loss

 Number of classification errors
 Exemples

 𝒚 ∈ 𝑅 ,𝒚 ∈ 1,1
 Hinge, logistic losses are used as 

proxies for the classification loss
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Figure from 
Bishop 2006

z coordinate: 𝑧 𝒚.𝒚 (margin)

𝐶 𝒚,𝒚 | 𝒚 𝒚 |
𝐶 𝒚,𝒚 1 𝒚.𝒚 max 0,1 𝒚.𝒚
𝐶 𝒚,𝒚 ln 1 exp 𝒚.𝒚



Approximation properties of MLPs
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 Results based on functional analysis
 (Cybenko 1989)

 Theorem 1 (regression): Let 𝑓 be a continuous saturating function, then the space of 
functions 𝑔 𝑥 ∑ 𝜈 𝑓 𝐰 . . 𝐱 is dense in the space of continuous functions on the unit 
cube 𝐶 𝐼 . i.e. ∀ℎ ∈ 𝐶 𝐼 𝑒𝑡 ∀𝜖 0,∃ 𝑔 ∶ 𝑔 𝑥 ℎ 𝑥 𝜖 on 𝐼

 Theorem 2 (classification): Let 𝑓 be a continuous saturating function. Let 𝐹 be a decision
function defining a partition on I.  Then ∀𝜖 0, there exists a function 𝑔 𝑥
∑ 𝜈 𝑓 𝐰 . . 𝐱 and a set 𝐷 ⊂ 𝐼 such that 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐷 1 𝜖 𝐷 and 𝑔 𝑥 𝐹 𝑥 𝜖
on 𝐷

 .
 (Hornik et al., 1989)

 Theorem 3 : For any increasing saturating function 𝑓, and  any probability measure 𝑚 on 𝑅 ,  
the space of functions 𝑔 𝑥 ∑ 𝜈 𝑓 𝐰 . . 𝐱 is uniformely dense on the compact sets 
𝐶 𝑅 - the space of continuous functions on 𝑅

 Notes:
 None of these result is constructive
 Recent review of approximation properties of NN: Guhring et al., 2020, Expressivity of deep

neural networks, arXiv:2007.04759



Complexity control

Bias –Variance

Overtraining and regularization
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Generalization and Model Selection

 Complex models sometimes perform worse than simple linear 
models
 Overfitting/ generalization problem

 Empirical Risk Minimization is not sufficient
 The model complexity should be adjusted both to the task and to the 

information brought by the examples
 Both the model parameters and the model capacity should be learned
 Lots of practical method and of theory has been devoted to this problem
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Complexity control
Overtraining / generalization for regression
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 Example (Bishop 06) fit of a sinusoid with polynomials of varying degrees

 Model complexity shall be controlled (learned) during training
 How?



Complexity control
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 One shall optimize the risk while controling the complexity
 Several methods

 Régularisation (Hadamard …Tikhonov)
 Theory of ill posed problems

 Minimization of the structural risk (Vapnik)
 Algebraic estimators of generalization error (AIC, BIC, LOO, etc)
 Bayesian learning

 Provides a statistical explanation of regularization

 Regularization terms appear as priors on the parameter distribution

 Ensemble methods
 Boosting, bagging, etc

 Many others especially in the Deep NN literature (seen later)



Regularisation
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 Hadamard
 A problem is well posed if

 A solution exists
 It is unique and stable

 Example of ill posed problem (Goutte 1997)

 Tikhonov
 Proposes methods pour transforming a ill posed problem into a “well” posed 

one



Bias-variance decomposition
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 Illustrates the problem of model selection, puts in evidence the 
influence of the complexity of the model
 Remember: MSE risk decomposition

 𝐸 , 𝑦 𝐹 𝒙 𝐸 , 𝑦 𝐸 𝑦 𝒙 𝐸 , 𝐸 𝑦 𝒙 𝐹 𝒙

 Let ℎ∗ 𝑥 𝐸 𝑦|𝒙 be the optimal solution for the minimization of this risk

 In practice, the number of training data for estimating 𝐸 𝑦 𝒙 is limited
 The estimation will depend on the training set 𝐷
 Uncertainty due to the training set choice for this estimator can be measured as 

follows:
 Sample a series of training sets, all of size 𝑁:𝐷 ,𝐷 , …
 Learn 𝐹 𝒙,𝐷 for each of these datasets
 Compute the mean of the empirical errors obtained on these different datasets



Bias-variance decomposition
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 Let us consider the quadratic error 𝐹 𝑥;𝐷 ℎ∗ 𝑥 for a datum 𝑥 and for the 
solution 𝐹 𝑥;𝐷 obtained with the training set 𝐷 (in order to simplify, we consider a 
1 dimensional real output, extension to multidimensional outputs is trivial)
 Let 𝐸 ~ 𝐹 𝑥;𝐷 denote the expectation w.r.t. the distribution of 𝐷,𝑝 𝐷

 𝐹 𝑥;𝐷 ℎ∗ 𝑥 decomposes as:

 𝐹 𝑥;𝐷 ℎ∗ 𝑥 𝐹 𝑥;𝐷 𝐸 𝐹 𝑥;𝐷 𝐸 𝐹 𝑥;𝐷 ℎ∗ 𝑥

 𝐹 𝑥;𝐷 ℎ∗ 𝑥 𝐹 𝑥;𝐷 𝐸 𝐹 𝑥;𝐷 𝐸 𝐹 𝑥;𝐷 ℎ∗ 𝑥
 2 𝐹 𝑥;𝐷 𝐸 𝐹 𝑥;𝐷 𝐸 𝐹 𝑥;𝐷 ℎ∗ 𝑥

 Expectation w.r.t. 𝐷 distribution decomposes as:

 𝐸 𝐹 𝑥;𝐷 ℎ∗ 𝑥 𝐸 𝐹 𝑥;𝐷 ℎ∗ 𝑥 𝐸 𝐹 𝑥;𝐷 𝐸 𝐹 𝑥;𝐷
                                                                   𝑏𝑖𝑎𝑠                                              𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 Intuition
 Choosing the right model requires a compromise between flexibility and simplicity

 Flexible model : low bias – strong variance
 Simple model : strong bias – low variance



The Bias-Variance Decomposition (Bishop PRML 2006)
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 Example: 100 data sets from the sinusoidal, varying the degree of regularization
 Model: gaussian basis function, Learning set size = 25,  𝜆 is the regularization parameter

 High values of 𝜆 correspond to simple models, low values to more complex models

 Left 20 of the 100 models shown

 Right : average of the 100 models (red), true sinusoid (green)

 Figure illustrates high bias and low variance (𝜆 13



The Bias-Variance Decomposition (Bishop PRML 2006)
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 Example: 100 data sets from the sinusoidal, varying the degree of regularization
 Same setting as before

 Figure illustrates low bias and high variance (𝜆 0.09

 Remark
 The mean of several complex models behaves well here (reduced variance)

  leads to ensemble methods



The Bias-Variance Decomposition (Bishop PRML 2006)
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 From these plots, we note that an over-regularized model (large 𝜆) 
will have a high  bias, while an under-regularized model (small 𝜆) will 
have a high variance.



Regularisation
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 Principle: control the solution variance by constraining function 𝐹
 Optimise 𝐶  𝐶1 𝜆 𝐶2
 𝐶 is a compromise between

 𝐶1 : reflects the objective e.g. MSE, Entropie, ...
 𝐶2 : constraints on the solution (e.g. weight distribution)

 𝜆 : constraint weight
 Regularized mean squares

 For the linear multivariate regression

 𝐶 ∑ 𝑦 𝒘. 𝑥 ∑ 𝑤
 𝑞 2 regularization 𝐿 , 𝑞 1 regularization 𝐿 also known as « Lasso »

Fig. from Bishop 2006



Régularisation
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 Solve

 𝑀𝑖𝑛𝒘 𝐶 ∑ 𝑦 𝒘. 𝑥 ∑ 𝑤 , 𝜆 0

 Amounts at solving the following constrained optimization problem
 𝑀𝑖𝑛𝒘 𝐶 ∑ 𝑦 𝒘. 𝑥

 Under constraint ∑ 𝑤 s for a given value of s

 Effect of this constraint



Fig. from Bishop 2006



Regularization
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 Penalization 𝐿
 Loss

 𝐶 𝐶 𝜆∑ 𝑤
 Gradiant

 𝛻𝒘𝐶 𝜆𝒘 𝛻𝒘𝐶
 Update

 𝒘 𝒘 𝜖𝛻𝒘𝐶 1 𝜖𝜆 𝒘 𝜖𝛻𝒘𝐶
 Penalization is proportional to  𝒘

 Penalization 𝐿
 Loss

 𝐶 𝐶 𝜆∑ 𝑤
 Gradiant

 𝛻𝒘𝐶 𝜆𝑠𝑖𝑔𝑛 𝒘 𝛻𝒘𝐶
 𝑠𝑖𝑔𝑛 𝒘 is the sign of 𝒘 applied to each component of 𝒘

 Update
 𝒘 𝒘 𝜖𝛻𝒘𝐶 𝒘 𝜖𝜆𝑠𝑖𝑔𝑛 𝒘 𝜖𝛻𝒘𝐶
 Penalization is constant with sign 𝑠𝑖𝑔𝑛 𝒘



Other ideas for improving generalization in NNs
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 Several heuristics have been developed in order to force inductive biases
for NNs – some
 Gradient descent and stochastic gradient descent perform implicit regularization
 Weights initialization
 Early stopping
 Data  augmentation 

 By adding noise
 with early work from Matsuoka 1992 ; Grandvallet and Canu 1994 ; Bishop 1994
 and many new developments for Deep learning models

 By generating new examples (synthetic, or any other way)
 Note: Bayesian learning and regularization

 Regularization parameters correspond to priors on these model variables
 Ensembling

 Model averaging
 Average models outputs: reduces the variance

 Functional ensembling (recently developed)
 Average the network weights on the training trajectory

 As for 2022: SOTA in classification (e.g. vision tasks)



Generalization in modern Deep Learning
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 Deep Learning models often do not follow the common complexity
/ performance wisdom
 Extremely large models / with no complexity control (like e.g. regularization or 

early stopping), may reach good performance, better than models trained with
the usual complexity control ingredients

 Observed in modern deep learning
 High complexity models with zero train error may not overfit and lead to accurate

predictions on unseen data
 This observation questions the usual claim and the theoretical beliefs such as Bias –

Variance dilemma

 Example
 Double descent phenomenon

 Based on (Belkin 2019) and (Nakkiran 2020)



Generalization in modern Deep Learning - Double Descent
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 Observed by different authors but formalized as a general concept 
in (Belkin 2019)

 General message
 Learning curves as a function of model capacity (complexity) exhibit a two

regimes phenomenon coined as « double descent »
 Classical regime corresponds to under-parameterized models and exhibits the 

classical U shaped curve corresponding to the bias-variance intuition
 Models do not achieve perfect interpolation

 The test risk first decreases and then increases when the model starts interpolating

 Modern interpolation regime corresponds to over-parameterized models
 Models may achieve near zero train error, i.e. near perfect interpolation

 Test risk value may decrease below the level of the best classical regime risk value



Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)
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 All the models to the right of the interpolation threshold have a zero
training error

 Tentative explanation
 The notion of « capacity of the function class » does not fit the inductive bias

appropriate for the problem and cannot explain the observed behavior
 The inductive bias seems to be the smoothness of a function as measured by a 

certain function space norm



Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)
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 Caracterization on classification problems
 Model: Random Fourier Features
 Equivalent to 1 hidden layer NN with fixed weights in the first layer

 i.e. only the last weight layers are learned, i.e. convex problem
 Because of the  linearity of the trainable component,  the complexity can be measured by the 

number of basis functions (nb of hidden cells)
 Or at least this provides a proxy for the complexity

 Random Fourier Features
 Consider a class of function denoted ℋ ∶ ℎ 𝑥 :𝑅 → 𝑅

 With ℎ 𝑥 ∑ 𝑎 𝜙 𝑥; 𝑣 with 𝜙 𝑥; 𝑣 exp 𝑖 𝑣, 𝑥 - (the complex exponential)
 Where the 𝑣 , … , 𝑣 are sampled independently from the standard normal distribution in 𝑅
 The 𝜙 𝑥; 𝑣 are 𝑁 complex basis functions
 This may be implemented as a NN with 2𝑁 basis functions corresponding to the real and 

imaginary parts of 𝜙
 Learning procedure

 Given a training set 𝑥 , 𝑦 … 𝑥 ,𝑦 , train via ERM, i.e. minimize ∑ ℎ 𝑥 𝑦
 When the minimizer is not unique (always the case when 𝑁 𝑛) choose the one with

coefficients 𝑎 , … ,𝑎 of minimum 𝑙 norm, i.e. the smoothest one



Generalization in modern Deep Learning - Double Descent
Intuition (Belkin 2019)
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Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)
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 Characterize the double descent phenomenon for
 A large variety of NN models: CNN, ResNet, Transformers
 Several settings: model-wise, epoch-wise, sample-wise (defined later)

 Propose a measure of complexity called « effective model 
complexity »
 For non linear models, the number of parameters is not a characterization of the 

function class complexity



Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)
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 Effective model complexity (EMC)
 A training procedure 𝒯 is any procedure that takes as input a training set 𝐷

𝑥 ,𝑦 , …, 𝑥 ,𝑦 and outputs a classifier 𝒯 𝐷 mapping data to labels
 The effective model complexity of 𝒯 w.r.t. the distribution 𝒟 of 𝐷 is the maximum 

number of samples 𝑛′ on which 𝒯 achieves on average a zero training error
 The EMC of training procedure 𝒯 w.r.t. distribution 𝒟 and parameter 𝜖

0, is defined as:

 𝐸𝑀𝐶𝒟, 𝒯 max 𝑛 𝐸 ~𝒟 𝐸𝑟𝑟𝑜𝑟 𝒯 𝐷 𝜖
 with 𝐸𝑟𝑟𝑜𝑟 𝒯 𝐷 is the mean error on 𝐷.

 Regimes
 Assumption: the classifier 𝒯 𝐷 is trained on a dataset of size 𝑛
 Under-parameterized: 𝐸𝑀𝐶𝒟, 𝒯 smaller than 𝑛, i.e. 𝒯 achieves 0 error only on 

training sets of size smaller than 𝑛, increasing 𝐸𝑀𝐶 will decrease the test error
 Over-parameterized: 𝐸𝑀𝐶𝒟, 𝒯 larger than 𝑛, increasing EMC will decrease the test

error
 Critical: 𝐸𝑀𝐶𝒟, 𝒯 around 𝑛, increasing EMC may decrease or increase the test

error (see figure)



Generalization in modern Deep Learning - Double Descent
Intuition (Nakkiran 2020)
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 Different settings for characterizing the double-descent
phenomenon
 i.e. the phenomenon appears under each setting and not only under the Model-

wise setting characterized by Belkin et al.
 Model-wise

 Fixed large number of training steps, models of increasing size, 

 Epoch-wise
 Fixed large architecture, increase the number of training epochs

 Sample-wise
 Fixed model and training procedure, change the number of training samples



Summary

 Non linear machines were widely developed in the 90
 Fundations for modern statistical machine learning
 Fundations for statistical learning theory
 Real world applications

 Also during this period
 Recurrent Neural Networks

 Extension of back propagation

 Reinforcement Learning
 Early work mid 80ies

 Sutton – Barto Book 1998, including RL + NN
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Deep learning



Interlude: new actors – new practices

 GAFA (Google, Apple, Facebook, 
Amazon) , BAT (Baidu, Tencent, 
Alibaba), …, Startups, are shaping the 
data world

 Research
 Big Tech. actors are leading the research

in DL
 Large research groups

 Google Brain, Google Deep Mind, Facebook 
FAIR, Baidu AI lab, Baidu Institute of Deep
Learning, etc

 Standard development platforms, 
dedicated hardware, etc

 DL research requires access to ressources

 sophisticated libraries
 large computing power e.g. GPU clusters
 large datasets, …
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Facebook AI 
Research



Interlude – ML conference attendance growth

Machine Learning & Deep Learning   - P. Gallinari115

 ML and AI conference Attendence

 NIPS (Neurips)
 2017 sold out 1 week after registration opening, 7000 participants
 2018, 2k inscriptions sold in 11 mn!



Interlude – Deep Learning platforms
 Deep Learning platforms

offer
 Classical DL models
 Optimization algorithms
 Automatic differentiation
 Popular options/ tricks
 Pretrained models
 CUDA/ GPU/ CLOUD support

 Contributions by large open 
source communities: lots of 
code available

 Easy to build/ train 
sophisticated models

 Among the most populars
platforms:
 TensorFlow - Google Brain -

Python, C/C++ 
 PyTorch – Facebook- Python
 Caffe – UC Berkeley / Caffe2 

Facebook, Python, MATLAB
 Higher level interfaces

 e.g. Keras for TensorFlow

 And also:
 PaddlePaddle (Baidu), MXNet

(Amazon), Mariana (Tencent), PAI 
2.0 (Alibaba), …..
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Interlude - Modular programming: Keras simple example MLP
From https://keras.io/
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import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

# Load and format training and test data
# Not shown - (x_train, y_train), (x_test, y_test)

model = Sequential()
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',

optimizer=sgd,
metrics=['accuracy'])

model.fit(x_train, y_train,
epochs=20,
batch_size=128)

score = model.evaluate(x_test, y_test, batch_size=128)

Load Training – Test data

Specify NN architecture:
• here basic MLP with 3 

weight layers

Optimisation algorithm
• SGD
Loss criterion
• Cross entropy

Train for 20 epochs

Evaluate performance on test set



Interlude – Hardware

 2017 - NVIDIA V100 – optimized for 
Deep Learning

 “With 640 Tensor Cores, Tesla V100 is 
the world’s first GPU to break the 100 
teraflops (TFLOPS) barrier of deep 
learning performance. The next 
generation of NVIDIA NVLink™ connects 
multiple V100 GPUs at up to 300 GB/s to 
create the world’s most powerful 
computing servers.”

 Google Tensor Processor Unit – TPU V3

 Cloud TPU  
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Motivations
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 Learning representations
 Handcrafted versus learned representation

 Often complex to define what are good representations

 General methods that can be used for
 Different application domains

 Multimodal data

 Multi-task learning

 Learning the latent factors behind the data generation
 Unsupervised feature learning

 Useful for learning data/ signal representations

 Deep Neural networks 
 Learn high level/ abstract  representations from raw data

 Key idea: stack layers of neurons to build deep architectures

 Find a way to train them



Useful Deep Learning heuristics

Deep NN make use of several (essential) heuristics for training 
large architecture: type of units, normalization, optimization…

We introduce some of these ideas
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Deep Learning heuristics -Activation functions
Figures from:
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial3/Activation_Functions.html
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 In addition to the logistic or tanh units,, 
other forms are used in deep
architectures – Some of the popular
forms are:
 Let 𝑧 𝑏 𝒘.𝒙
 RELU - Rectified linear units (used for 

internal layers)
 𝑔 𝒛 max 0, 𝐳

 Rectified units allow to draw activations to 0 
(used for sparse representations) + derivative
remain large when unit is active

 Leaky RELU (used for internal layers)

 𝑔 𝒛 𝐳  if𝑏 𝒘.𝒙 0
0.01 𝒛  otherwise

 Introduces a small derivative when 𝑏 𝒘.𝒙
𝟎 

 ELU (used for internal layers)

 𝑔 𝒛 𝐳 if  𝐳 0              
𝛼 exp 𝑏 𝒘.𝒙 1  otherwise

 Swish
 𝑔 𝒛 𝒛

 𝒛

𝑥 axis 𝑏 𝒘.𝒙, 𝑦 axis 𝑔 𝒙



Deep Learning heuristics -Activation functions
Figures from:
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial3/Activation_Functions.html
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 Visualisation of the gradient at different layers of a NN after
initialisation of the weights

 Dataset : FashionMNIST (images) 10 classes, gradient computed on a 
batch of 256 images



Deep Learning heuristics - Activation functions
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 In addition to the logistic or tanh units, other forms are used in 
deep architectures – Some of the popular forms are:
 Maxout

 𝑔 𝒙 max 𝑏 𝒘 .𝒙

 Generalizes the rectified unit
 There are multiple weight vectors for each unit

 Softmax (used for output layer)
 Used for classification with a 1 out of p coding (p classes)

 Ensures that the sum of predicted outputs sums to 1

 𝑔 𝒙 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒃 𝑊𝒙
∑



Deep Learning heuristics
Normalisation
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 Units: Batch Normalization (Ioffe 2015)
 Normalize the activations of the units (hidden units) so as to coordinate the 

gradients accross layers
 Let 𝐵 𝑥 , … , 𝑥 be a mini batch, ℎ 𝑥 the activation of hidden unit 𝑖 for 

input 𝑥 before non linearity
 Training

 Set ℎ 𝑥 where 𝜇 is the mean of the activities of hidden unit 𝑖 on batch 
𝐵, and 𝜎 its standard deviation

 𝜇 and 𝜎 are estimated on batch 𝐵, 𝜖 is a small positive number
 The output of unit 𝑖 is then 𝑧 𝛾 ℎ′ 𝑥 𝛽

 Where 𝛾 and 𝛽 are learned via SGD
 Testing

 𝜇 and 𝜎 for test are estimated as a moving average during training, and need not be
recomputed on the whole training dataset



Deep Learning heuristics
Normalization
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 Note on B.N.
 No clear agreement if BN should be performed before or after non linearity

 𝐿 normalization could be used together with BN but reduced

 One of the most effective tricks for learning with deep NNs

 Other types of normalization have been proposed e.g. Layerwise Normalization similar
to BN, but layerwise and datum wise, etc.

 Gradient/ gradient clipping
 Avoid very large gradient steps when the gradient becomes very large - different

strategies work similarly in practice.

 Let 𝛻𝒘𝑐 be the gradient computed over a minibatch

 A possible clippling strategy is (Pascanu 2013) 

 𝛻𝒘𝑐   𝒘
| 𝒘 |

𝑣, with 𝑣 a norm threshold



Deep Learning heuristics
Dropout
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 Dropout (Srivastava 2014)
 Training

 Randomly drop units at training time
 Parameter: dropout percentage 𝑝
 Each unit is dropped with probability 𝑝

 This means that it is inactive in the forward and backward pass

 Testing
 Initial paper (Srivastava 2014)

 Keep all the units
 Multiply the units activation by 𝑝 during test

 The expected output for a given layer during the test phase should be the 
same as during the training phase

Figure from Srivastava 2014



Deep Learning heuristics
Dropout
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 Inverted Dropout
 Current implementations use « inverted dropout » - easier implementation: the 

network does not change during the test phase (see next slide)
 Units are dropped with probability 𝑝

 Multiplies activations by during training, and keep the network untouched

during testing

 Effects
 Increases independence between units and better distributes the representation

 Interpreted as an ensemble model; reduces model variance



Deep Learning heuristics
Dropout
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 Dropout for a single unit
 Let 𝑝 be the dropout probability
 Consider a neuron 𝑖 with inputs 𝒙 ∈ 𝑅 and weight vector 𝒘 ∈ 𝑅 including the bias term
 The activation of neuron 𝑖 is 𝑧 𝑓 𝒘.𝒙 with 𝑓 a non linear function (e.g. Relu)
 Let 𝑏 a binomial variable of parameter 1 𝑝

 Original dropout
 Training phase

 𝑧 𝑏 𝑓 𝒘.𝒙 , 𝑏 ∈ 0,1
 Test phase

 𝑧 𝑓 𝒘.𝒙

 Inverted dropout
 Training phase

 𝑧 𝑏 𝑓 𝒘.𝒙 , 𝑏 ∈ 0,1

 Test phase

 𝑧 𝑓 𝒘.𝒙
 Note

 The total number of neurons dropped at each step is the sum of Bernoullis 𝑏 , it follows a binomial distribution 
𝐵 𝑚, 𝑝 where 𝑚 is the number of neurons on the layer of neuron 𝑖.

 Its expectation is the E 𝐵 𝑚, 𝑝 𝑚𝑝
 𝐿 normalization could be used together with dropout but reduced



The loss landscape of deep neural networks
from Li et al. 2018, https://arxiv.org/pdf/1712.09913.pdf
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 Developed a method for vizualizing the loss landscape that allows to 
compare different NNs

 Hints
 Given 𝜃∗ a solution learned by a NN and 𝛿 , 𝜂 two random vectors of the same

size as 𝜃∗ , plus normalization heuristics on these vectors, plot the surface 
𝑓 𝛼,𝛽 𝐿 𝜃∗ 𝛼𝛿 𝛽𝜂

 Examples
 Networks trained on CIFAR-10 (image dataset for classification)

 Some messages
 NN depth has a dramatic effect on loss surface when no skip connection is used
 Wide models tend to have smoother surfaces
 Landscape geometry has a dramatic effect on generalization. Flat minimizers tend 

to have  lower test errors



The loss landscape of deep neural networks
from Li et al. 2018, https://arxiv.org/pdf/1712.09913.pdf
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 3-D plots
 ResNet-56 without and with skip connections

 2-D plots
 Resnets of different sizes (20, 56, 110 layers) without and with skip connections

 Centered on the learned min 𝜃∗

No skip connections

Skip connections
Convex landscape for 
small (20 layers) NNs
and for Skip connections

Highly non convex
landscape for noSkip
NNs when size 
increases.



CNN: Convolutional Neural Nets

Introduction
Classification

Object detection
Image segmentation



CNNs
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 CNNs were developped in the late 80ies for image and speech 
applications

 Deep CNNs were successfully used for image applications 
(classification and segmentation) in the 2010s – starting with the 
ImageNet competition, and for speech recognition.
 Their use has been extended to handle several situations
 They come now in many variants
 They can often be used as alternatives to Recurrent NNs



CNNs
principle
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 Exploit local characteristics of the data via local connections
 e.g. images (2 D), speech signal (1 D)

 Local connections are constrained to have shared weight vectors
 This is equivalent to convolve a unique weight vector with the input signal

 Think of a local edge detector for images
 The 3 hidden cells here share the same weight vector

 (blue, red, green weight values)

 Several convolution filters can be learned simultaneously
 This corresponds to applying a set of local filters on the input signal

 e.g edge detectors at different angles for an image
 here colors indicate similar weight vectors, not weight values as above



CNNs
example
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 ConvNet architecture (Y. LeCun since 1988)
 Deployed at Bell Labs in 1989-90 for Zip code recognition
 Character recognition
 Convolution: non linear embedding in high dimension
 Pooling: average, max

# parameters 64x9x9=5184,         256x9x9=20736,       256x101 = 60916



CNNs
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 In Convnet
 The first hidden layer consists in 64 different convolution kernels over the initial 

input, resulting in 64 different mapping of the input
 The second hidden layer is a sub-sampling layer with a pooling tranformation

applied to each matrix representation of the first hidden layer
 etc
 Last layer is a classification layer, fully connected

 More generally
 CNNs alternate convolution, and pooling layers, and a fully connected layer at 

the top.



CNNs
visualization
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 Hand writing recognition  (Y. LeCun Bell labs 1989) 



CNNs
Convolution: filter size and stride

Machine Learning & Deep Learning   - P. Gallinari137

 2D convolution, stride 1, from 3x3 image to 2x2 image, 2x2 filter

 2 D convolution, stride 2, from 4x4 image to 2x2 image, 2x2 filter

𝑥 𝑥 𝑥
𝑥 𝑥 𝑥

𝑥 𝑥 𝑥

𝑦 𝑦
𝑦 𝑦

𝑤 𝑤
𝑤 𝑤

Filter

𝑦 𝑤 𝑥 𝑤 𝑥 𝑤 𝑥 𝑤 𝑥

𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥

𝑦 𝑦
𝑦 𝑦

𝑤 𝑤
𝑤 𝑤

Filter

𝑦 𝑤 𝑥 𝑤 𝑥 𝑤 𝑥 𝑤 𝑥



CNNs
Padding
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 Padding amounts at filling the border of the image, usually with 0
 The width of the padding border depends on the filter characteristics

0 0 0 0 0 0

0 𝑥 𝑥 𝑥 𝑥 0
0 𝑥 𝑥 𝑥 𝑥 0

0 𝑥 𝑥 𝑥 𝑥 0

0 𝑥 𝑥 𝑥 𝑥 0

0 0 0 0 0 0



CNNs
Convolutions arithmetics

Machine Learning & Deep Learning   - P. Gallinari139

 Input image 𝑛x𝑛, filter 𝑓x𝑓, padding 𝑝, stride 𝑠

 Output image is 1 x 1

 Floor function  . 
 in some cases a convolution will produce the same output size for multiple input 

sizes. If 𝑖 2𝑝 𝑘 is a multiple of 𝑠, then any input size 𝑗  𝑖 𝑎, 𝑎 ∈
 0, . . . , 𝑠 1  will produce the same output size. This applies only for 𝑠  1. 

Note: more in (Dumoulin 2016), a guide to convolution arithmetic for Deep Learning



CNNs
on multiple channels, e.g. RGB images
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 Convolution generalizes to multiple channels. For images, the input 
is usually a 3 D tensor, and the output is a 2 D tensor: the filter is
not swipped across channels usually, but only across rows and 
columns of the corresponding channel.

6x6x3 image 3x3 filters – stride 1

*

4x4 image

inputs 1 filter – stride 1 1 output

∑



CNNs
on multiple channels
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 This generalizes to any number of input channels, and filters
 Below C input channels and 2 outputs

𝐶

𝐻

𝑊

𝐶

𝑤

ℎ

𝐶

𝑤

ℎ

inputs d filters – stride 1 d outputs

𝑊 𝑤 1

𝐻
ℎ

1

*



CNNs
1x1 convolutions on multiple channels
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 1x1 convolutions, perform a pixel wise weighted sum on several
channels
 They are used to reduce the size of a volume

 e.g. transforming a 𝐻x𝑊x𝐶 volume to a 𝐻x𝑊x𝐶’ volume with 𝐶’ 𝐶, by using 𝐶’, 1x1
convolutions

*

𝐻x𝑊x11x1x𝐶𝐻x𝑊x𝐶
𝐶 channels

𝐶 1 convolution in 
this example

𝐻

𝑊



CNNs
Pooling
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 Pooling
 Used to aggregate information from a given layer
 Usually Mean or Max operators are used for pooling
 Example: Max pooling, stride 2

 Pooling provides some form of invariance to input deformations
 Pooling arithmetics

5 7

2 4



CNNs
Transposed convolution
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 This is the reverse operation – to a convolution
 Increases the input image size

 Used for auto-encoders, object recognition, segmentation

 Example: from 2x2 image to 3x3 image, 2x2 filter, Stride 1 with Padding

0 0 0 0

0 𝑦 𝑦 0

0 𝑦 𝑦 0

0 0 0 0

𝑥 𝑥 𝑥
𝑥 𝑥 𝑥

𝑥 𝑥 𝑥

𝑤 𝑤
𝑤 𝑤

Filter

Note: more in (Dumoulin 2016), a guide to convolution arithmetic for Deep Learning



Transposed convolutions

 Convolution
 𝑥 ∗ 𝑤 𝑧,  with 𝑥 ∈ 𝑅 , 𝑧 ∈ 𝑅

 𝑥
𝑥 𝑥 𝑥
𝑥 𝑥 𝑥
𝑥 𝑥 𝑥

, w
𝑤 𝑤
𝑤 𝑤 , z

𝑧 𝑧
𝑧 𝑧

 Convolution in matrix form
 Lets flatten the vectors, the CNN convolution can be written in matrix form as:

 W𝑥 𝑧

 𝑥
𝑥
⋮
𝑥

, W

𝑤 𝑤 0 𝑤 𝑤 0 0 0 0
0 𝑤 𝑤 0 𝑤 𝑤 0 0 0
0 0 0 𝑤 𝑤 0 𝑤 𝑤 0
0 0 0 0 𝑤 𝑤 0 𝑤 𝑤

, z

𝑧
𝑧
𝑧
𝑧



 Transposed convolution
 Transposed convolution in matrix form 𝑦 𝑊 𝑧,     𝑧 ∈ 𝑅  𝑎𝑛𝑑 𝑦 ∈ 𝑅

 W

𝑤 0 0 0
𝑤 𝑤 0 0
0 𝑤 0 0
𝑤 0 𝑤 0
𝑤 𝑤 𝑤 𝑤
0 𝑤 0 𝑤
0 0 𝑤 0
0 0 𝑤 𝑤
0 0 0 𝑤



Transposed convoution
 Transposed convolution in convolutional form 𝑦 𝑧 ∗ 𝑤

0 0 0 0

0 𝑧 𝑧 0

0 𝑧 𝑧 0

0 0 0 0

𝑦 𝑦 𝑦
𝑦 𝑦 𝑦

𝑦 𝑦 𝑦

𝑤 𝑤
𝑤 𝑤

Filter



CNNs
Unpooling
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 Reverse pooling operation
 Different solutions, e.g. unpooling a max pooling operation

 Remember the positions of the max and fill the other positions with 0

5 7

2 4

5 7

2 4



CNNs–Classification (Krizhevsky et al. 2012) 

Machine Learning & Deep Learning   - P. Gallinari149

 A landmark in object recognition - AlexNet
 ImageNet competition

 Large ScaleVisual Recognition Challenge (ILSVRC)

 1000 categories, 1.5 Million labeled training samples

 Method: large convolutional net

 650K neurons, 630M synapses, 60M parameters

 Trained with SGD on GPU



CNNs
Very Deep Nets trained with GPUs
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MSRA, [He et al. 2016] , Parameters 60 M

Oxford, [Simonyan 2014], Parameters 138 M

Google, [Szegedy et al. 2015], Parameters 24 M

Deeper Nets with small filters – training time several days up to  1 or 2 
weeks on ImageNet



CNNs
ResNet [He et al. 2016]
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 152 ResNet 1st place ILSVRC classification competition
 Other ResNets 1st place ImageNet detection, 1st place ImageNet localization, MS-COCO detection

and segmentation
 Main characteristics

 Building block
 Identity helps propagating gradients
 Reduces the vanishing effect
 𝐹 𝑥 is called the residual
 Similar ideas used in other models

 Deep network with small convolution filters
 Mainly 3x3 convolutional filters



CNNs
ResNet [He et al. 2016b]
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 ResNet block
 𝑥 𝑥 𝐹 𝑥 ,𝑊
 𝑥 𝑥 ∑ 𝐹 𝑥 ,𝑊

 The feature 𝑥 on the last layer can be represented as the feature 𝑥 of layer 𝑡 plus a 
residual ∑ 𝐹 𝑥 ,𝑊

 ResNet Backward equation


 

1
 
∑ 𝐹 𝑥 ,𝑊  

 Gradient can be decomposed in two additive term


 
propagates this gradient to any unit


 
∑ 𝐹 𝑥 ,𝑊  propagates through the weight layers

Fig. He 2016, original ResNet block



CNNs
ResNet as a discretization scheme for ODEs (Optional)
 Ordinary Differential Equation

 𝐹 𝑋 𝑡 ,𝜃 𝑡 , 𝑋 0 𝑋 (1)

 Resnet module can be interpreted as a numerical discretization scheme for the 
ODE:
 𝑋 𝑋 𝐺 𝑋 ,𝜃 - ResNet module (2)
 𝑋 𝑋 ℎ𝐹 𝑋 , 𝜃 , ℎ ∈ 0,1 (simple rewriting of (2) replacing 𝐺 with ℎ𝐹

 𝐹 𝑋 , 𝜃
 Forward Euler Scheme for the ODE (1)
 ℎ time step

 Note: this type of additive structure (2) is also present in LSTM and GRU units (see RNN 
section)

 Resnet
 Input 𝑋 , output 𝑋
 Multiple Resnet modules implement a discretization scheme for the ODE 𝐹 𝑋 𝑡 ,𝜃 𝑡

 𝑋 𝑡 𝑋 𝑡 ℎ𝐹 𝑋 𝑡 ,𝜃
 𝑋 𝑡 𝑋 𝑡 ℎ𝐹 𝑋 𝑡 ,𝜃 , …
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CNNs
Resnet as a discretization scheme for ODEs

 This suggests that alternative discretization schemes will correspond 
to alternative Resnet like NN models
 Backward Euler, Runge-Kutta, linear multi-step …

 Example (Lu 2018) linear multi-step discretization scheme
 𝑋 1 𝑘 𝑋 𝑘 𝑋  𝐹 𝑋 ,𝜃

 Applications
 Classification (a la ResNet)
 Modeling dynamical systems
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Fig. (Lu 2018) 



Convolutional Nets
ILSVRC performance over the years
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• Imagenet 2012 classification 
challenge 

CNN examples



Convolutional Nets
ILSVRC performance over the years
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Classification
CNNs and Transfer Learning
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 Training large NN requires
 large amount of labeled data
 Large GPU clusters

 Large labeled datasets are not available for all applications
 Deep Networks pretrained with large datasets like ImageNet are 

used for other applications after some retraining/ fine tuning:
 Classification of images from different nature
 Classification of objects in large size images
 Object detection, Segmentation
 Learning latent representations of images

 Remark
 CNN trained on ImageNet have specific characteristics

 e.g. input: 224x224 images, centered on the objects to be classified
 How to adapt them to other collections?



Classification - Transfer learning - CNNs - Images from different
nature,M2CAI Challenge (Cadene 2016)
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 Endoscopic videos (large intestine)
 resolution of 1920 x 1080, shot at 25 frame per second at the IRCAD research center in Strasbourg, France.  

27 training videos ranging from 15mn to 1hour, 15 testing videos
 Used for: monitor surgeons, Trigger automatic actions
 Objective: classification, 1 of 8 classes for each frame

 TrocarPlacement, Preparation, CalotTriangleDissection, ClippingCutting, GallbladderDissection, GallbladderPackaging, 
CleaningCoagulation, GallbladderRetraction

 Resnet 200 pretrained with ImageNet -> reaches 80% correct classification





Classification - Transfer learning - CNNs - Images from different
nature, Plant classification (Wu 2017)
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 Digitized plant collection from Museum of Natural History – Paris
 Largest digitized world collection (8 millions specimens)
 Goal

 Identify plants characteristics for automatic labeling of worlwide plant collections
 O(1000) classes, e.g. opposed/alternate leaves; simple/composed leaves; smooth/with teeth leaves, 

….

 Pretrained ResNet





Classification - Fully convolutional nets
CNNs – Classification of large images (Fig. Durand 2016)
How to deal with complex scenes?
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ImageNet style

Pascal VOC style

VOC07/ 12 MIT67 15 Scene COCO VOC12 Action

• Working on datasets with complex scenes (large and cluttered
background), not centered objects, variable size, ...



Classification - CNNs – Classification of large images (Durand 2016)
Sliding window => Convolutional Layers
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 Sliding window:
 Use the ImageNet trained CNN as a sliding window (a convolution filter) on the large image 
 In order to do that, one must convert the fully connected layer

7x7x512 cells → 4096 cells
into a convolutional layer

Fully connected layer 7x7x512 cells -> 4096

ImageNet trained CNN



Converting Fully Convolutional Nets (FCN) to CNN
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 Fully connected layers can be converted to convolutional nets
 The following scheme is equivalent to 3 output cells fully connected to the input 

cells, but is expressed as a convolution
 Colors correspondance below

Outputs
3 cells

Weight layer 
each is  𝑛x𝑛x𝐶

Cell layer
𝑛x𝑛x𝐶

*

Each weight
vector is
𝑛x𝑛x𝐶

FCN classical view FCN convolutional view

Cell layer
𝑛x𝑛x𝐶

Outputs
3 cells



Converting Fully Convolutional Nets (FCN) to CNN
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 Fully connected layers can be converted to convolutional nets
 This does not change anything if the input size is the size of the weight layer
 It can be used as a convolution for larger input sizes, and then produces larger

outputs
 In this way, pre-trained networks can be used without retraining for larger

images

Outputs
(𝑁 𝑛 1)x(𝑁 𝑛 1)x1 each

Weight layer
𝑛x𝑛x𝐶 each

Cell layer
𝑁x𝑁x𝐶

*



CNNs – Classification of large images (Durand 2016)
Sliding window => Convolutional Layers
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Dotted lines: initial 
Imagenet trained
network



CNNs – Classification of large images (Sermanet et al. 2014)
Sliding window => Convolutional Layers
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Fig: Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun, OverFeat: Integrated 
Recognition, Localization and Detection using Convolutional Networks, 2014

Nice video by A. Ng (CAW3L04 Convolutional implementation of sliding windows) at 
https://www.youtube.com/watch?v=XdsmlBGOK-k&list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF&index=26



CNNs – Classification of large images (Durand 2016)
Sliding window => Convolutional Layers
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CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)

Generate images by combining
content and style
Makes use of a discriminatively
trained CNN
Image generation

 inverse problem on the CNN    
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https://deepart.io



CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)
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 Idea (simplified)
 Use a pre-trained ImageNet NN
 𝒄 input content image, 𝐹 a filter

representation of 𝒄
 𝒂 input art image, 𝐺 a filter

correlation representation of 𝒂
 𝒙 a white noise image, 𝐹 and 𝐺

the corresponding filter and filter
correlation representations

 loss:
 𝐿 𝐹 𝐹 𝛼 𝐺 𝐺

 Generated image
 Solve an inverse problem

 𝒙 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿
 Solved by gradient



CNN : A neural algorithm of Artistic Style (Gatys et al. 2016)
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Object detection
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 Objective: predicting classes and location of objects in an image
 Usually the output of the predictor is a series of bounding boxes with an object

class label

 Performance measure
 Let 𝐵 a target bounding box and 𝐵 the predicted one

 Intersection over Union: 𝐼𝑜𝑈 ∩

 Training
 Supervised training, e.g. Pascal Voc Dataset

# PASCAL Annotation Version 1.00 Image filename : 
"TUDarmstadt/PNGImages/motorbike-testset/motorbikes040-rt.png" 
Image size (X x Y x C) : 400 x 275 x 3
Database : "The TU Darmstadt Database«
Objects with ground truth : 2 { "PASmotorbikeSide" "PASmotorbikeSide" }
# Note that there might be other objects in the image # for which ground truth data has 
not been provided.
# Top left pixel co-ordinates : (1, 1)
# Details for object 1 ("PASmotorbikeSide")
Original label for object 1 "PASmotorbikeSide" : "motorbikeSide«
Bounding box for object 1 "PASmotorbikeSide" (Xmin, Ymin) - (Xmax, Ymax) : (57, 133) 
- (329, 265)
# Details for object 2 ("PASmotorbikeSide")
Original label for object 2 "PASmotorbikeSide" : "motorbikeSide«
Bounding box for object 2 "PASmotorbikeSide" (Xmin, Ymin) - (Xmax, Ymax) : (153, 95) 
- (396, 218)
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 Teaser YOLO démos
 First paper 2015 (J.Redmon who developedV1 to V3)
 YOLOV2 -

https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg?app=deskto
p&cbrd=1&ucbcb=1

 YOLOV3 - https://www.youtube.com/watch?v=MPU2HistivI
 Other actors developed further versions, YOLOV5, V6



CNNs for Object detection
Case study: YOLO (Redmon 2015), https://goo.gl/bEs6Cj
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 Classical CNN architecture
 Divides the input image into a 𝑆x𝑆 grid

 Each grid cell predicts
 𝐵 bounding boxes and confidence for these boxes

 5 numbers per box: 𝑥,𝑦 : 𝑏𝑜𝑥 𝑐𝑒𝑛𝑡𝑒𝑟, 𝑤,ℎ : 𝑏𝑜𝑥 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑃 𝑂𝑏𝑗𝑒𝑐𝑡 . 𝐼𝑜𝑈 𝑡𝑎𝑟𝑔𝑒𝑡,𝑝𝑟𝑒𝑑

 𝑃 𝑂𝑏𝑗𝑒𝑐𝑡 is the probability that an object appears in a grid cell

 The class probability for the object if any (only one object/ cell grid), i.e. 1 prediction / 
cell
 𝑃 𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡
 Note: at inference time they use the following score

 𝑃 𝐶𝑙𝑎𝑠𝑠 𝑜𝑏𝑗𝑒𝑐𝑡 .𝑃 𝑂𝑏𝑗𝑒𝑐𝑡 . 𝐼𝑜𝑈 𝑡𝑎𝑟𝑔𝑒𝑡,𝑝𝑟𝑒𝑑 instead of 𝑃 𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡
 This includes confidence

 Only the boxes/classes with the higher score are kept



CNNs for Object detection
Case study: YOLO (Redmon 2015)
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Fig. Redmon 2015

Boxes

Classes



CNNs for Object detection
Case study: YOLO (Redmon 2015) - Network Design
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Output : 𝑆x𝑆x 𝐵x5  𝐶  tensor
for Pascal Voc dataset: 𝑆x𝑆x 𝐵x5  𝐶 7x7x 2x5 20
With 𝐵: # boxes and 𝐶: # classes 

Several 1x1xn convolutional structures to reduce the feature
space from preceeding layers



CNNs for Object detection
Case study: YOLO (Redmon 2015) - Design and Training
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 Pretrained on ImageNet 1000  class
 Remove classification layer and replace it with 4 convolutional layers + 2 Fully

Connected layers
 Activations: Linear for the last layer, leaky reLu for the others
 Requires a lot of know-how (design, training strategy, tricks, etc)

 Not described here – see paper…

 Improved versions followed the initial paper
 Generalizes to other types of images:



Image Semantic Segmentation
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 Objective
 Identify the different objects in an image

 Microsoft demo 2015 https://www.youtube.com/watch?v=FroRjEejA30
 Deep learning

 handles segmentation as pixel classification
 re-uses network trained for image classification by making them fully convolutional
 Currently, SOTA is Deep Learning

 Main datasets
 Voc2012, http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
 MSCOCO, http://mscoco.org/explore/



CNNs for Image Semantic Segmentation
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 DL for segmentation massively re-uses CNN architectures 
pretrained for classification
 This is another example of transfer learning
 Here the goal is to generate classification at the pixel level and not at the 

global image level
 Means that the output should be the same size (more or less) as the original image, 

with each pixel labeled by an object Id.

 Full connections: too many parameters
 How to keep a pixelwise precision with a low number of parameters

 Two solutions have been developped
 Encoder – Decoder architectures with skip connections

 Encoder are similar to the ones used for classification and decoders use Transpose 
Convolutions and Unpooling

 Dilated or a Trous convolutions : remove the Pooling/Unpooling operation



CNNs for Image Semantic Segmentation
Encoder-Decoder - Fully Convolutional Nets (Shelhamer 2016)
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 One of the first contribution to DL semantic segmentation, 
introduces several ideas

 Auto-encoder with skip connections

 Fully connected -> convolutional trick

 End to end training for segmentation



CNNs for Image Semantic Segmentation
Encoder-Decoder - Fully Convolutional Nets (Shelhamer 2016)
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 FCN architecture: upsampling and skip connections
 Training loss = per pixel cross entropy
 Their initial pipeline (red rectangle) requires x 32 upsampling
 Improved results where obtained by combining several resolutions in the DNN 

Resolution 

Upsampling x 32

+ Upsampling x 16

Upsampling x 8
+

Resolution 

Resolution 



Segmentation
Encoder-Decoder - Other models based on the same ideas
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SegNet – (Badrinarayanan 2017)

Popular U-Net, (Ronneberger 2015)



Segmentation 
Dilated convolutions (Yu 2016)
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 Pooling used for classification is not adapted to segmentation
 The link with individual pixels is lost

 Proposed method
 Start from a Deep CNN trained from classification.
 Remove the last Fully Connected and Pooling layers
 Replace them with Dilated Convolution layers

 Dilated convolution layers organized hierarchically allow to keep large feature maps for 
individual neurons with a « small » number of connections

 Size of the input is the same as the size of the output
 No downsampling as with pooling, i.e. keep the resolution



Segmentation 
Dilated convolutions (Yu 2016)
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 1 D example

Dilatation 1

Dilatation 2

Dilatation 4

Receptive field 3

Receptive field 7

Receptive field 15



Segmentation 
Dilated convolutions (Yu 2016)
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 1 D example

Dilatation 1

Dilatation 2

Dilatation 4

Receptive field 3

Receptive field 7

Receptive field 15



Segmentation 
Dilated convolutions (Yu 2016)
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 1 D example

Dilatation 1

Dilatation 2

Dilatation 4

Receptive field 3

Receptive field 7

Receptive field 15



Segmentation 
Dilated convolutions (Yu 2016)
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 In 2 D

 More recent architectures use improved versions of these two ideas

Fig from (Yu 2016)
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 Noisy data for vision
 Random rotations
 Random flips
 Random shifts
 Random “zooms”
 Recolorings



Recurrent networks



RNNs
Examples of tasks and sequence types
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 Sequence classification
 Input: sequence, output: class

 Time series classification

 Sentence classification (topic, polarity, sentiment, etc.)

 Sequence generation
 Input: initial state (fixed vector), output: sequence

 Text Generation

 Music

 Sequence to sequence transduction
 Input: sequence, output: sequence

 Natural language processing: Named Entity recognition

 Speech recognition: speech signal to word sequence

 Translation 



RNNs
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 Several formulations of RNN where proposed in the late 80s, early 90s
 They faced several limitations and were not successful for applications

 Recurrent NN are difficult to train
 They have a limited memory capacity

 Mid 2000s successful attempts to implement RNN
 e.g.  A. Graves for speech and handwriting recognition
 new models where proposed which alleviate some of these limitations

 Today
 RNNs are used for a variety of applications e.g., speech decoding, translation, 

language generation, etc
 They became SOTA for sequence processing tasks around 2015. In 2020 alternative 

NN ideas (Transformers) have replaced RNNs for most discrete sequence modeling 
tasks. Initially developped as language models, they are used today in vision and 
multimodal (e.g. text-image) tasks.

 In this course
 We briefly survey some of the developments from the 90s
 We introduce recent developments on RNNs



RNNs
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 Imagine a NN with feedback loops, i.e. no more a DAG
 This transforms the NN into a dynamical/ state-space system

 Information can circulate according to different dynamics
 Convergence, stable state?

 Supervision can occur at different times
 Inputs: fixed, sequences, etc….

 Two main families
 Global connections
 Local connections

 In practice, only a limited class of RNNs is used for applications

𝒙

Target 𝒚



RNNs local connections (90s)

Machine Learning & Deep Learning   - P. Gallinari191

 Several local connection architectures proposed in the 90s

Fixed weights
Only the forward weights are learned: 
SGD

All weights learned
𝒔 𝑓 𝑊𝒔 𝑈𝒙𝒔 𝑓 𝑊𝒄 𝑈𝒙

𝒙

Target 𝒚

𝒙

Target 𝒚

copy

𝑡

𝑡

𝒔𝒔

𝑈

𝑉

𝑊
𝑊

𝑈

𝑉

𝒄



RNNs global recurrences (90s)
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 Algorithm
 Back Propagation Through Time (BPTT)

 For general sequences: 𝑂 𝑛 𝑖𝑓 𝑛 units

𝑥𝑥

𝑥𝑥

𝑥𝑥

𝑥𝑥

Network unfolding

Fig. (Pearlmutter, 1995, IEEE Trans. on Neural Networks 
– nice review paper on RNN form the 90s)



Dynamics of RNN
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 We consider different tasks corresponding to different dynamics
 They are illustrated for a simple RNN with loops on the hidden units
 This can be extended to more complex architectures
 However, RNNs used today all make use of local connections similar to this

simple RNN

 Basic architecture

x

s

𝒚

U

V

W



RNNs
Dynamics of RNN – unfolding the RNN
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𝒙𝒕

𝒔𝒕

𝒚𝒕

𝑼

𝑽
𝑾

𝒙𝒕 𝟏

𝒔𝒕 𝟏

𝒚𝒕 𝟏

𝑼

𝑽
𝑾

𝒙𝒕 𝟏

𝒔𝒕 𝟏

𝒚𝒕 𝟏

𝑼

𝑽
𝑾

𝒙

𝒔

𝒚

𝑼

𝑽

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚𝑻

𝑼

𝑽

𝒙𝒕 𝟏

𝒔𝒕 𝟏

𝑼

𝑾

𝒙

𝒔𝒕

𝒚𝒕

𝑼

𝑽
𝑾 𝒔𝒕 𝟏

𝒚𝒕 𝟏

𝑼

𝑽
𝑾𝒔𝒕 𝟏

𝒚𝒕 𝟏

𝑽
𝑾

𝑼

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚𝑻

𝑼

𝑽

𝒙𝒕 𝟏

𝒔𝒕 𝟏

𝑼

𝑾 𝒔𝑻 𝑹𝒔𝑻 𝟏 𝑾′

𝒚𝑻 𝟏

𝑽

𝒚𝑻 𝑹

𝑽
𝑾′

Many to many, e.g. speech 
or handwriting decoding, 
Part of Speech Tagging

Many to one, e.g. 
sequence classification

One to many, e.g. image 
annotation

Many to many, e.g. 
translation 



RNNs
Dynamics of RNN – unfolding the RNN
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 Different ways to compute sequence encodings

𝒙

𝒔

𝒚

𝑼

𝑽

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚𝑻

𝑼

𝑽

𝒙𝒕 𝟏

𝒔𝒕 𝟏

𝑼

𝑾

𝒙𝒕

𝒔𝒕

𝑼

𝑾

𝒙𝑻

𝒔𝑻

𝒚𝑻

𝑼

𝒙𝒕 𝟏

𝒔𝒕 𝟏

𝑼

𝑾

• The final state 𝒔𝑻 encodes 
the sentence 

• The whole state sequence
encodes the input sequence
– usually better:  take
elementwise max or mean
of the hidden states.

• More on that on Attention 
and Transformers
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Back Propagation Through Time
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 By unfolding the RNN, one can see that one builds a Deep NN

 Training can be performed via SGD like algorithms
 This is called Back Propagation Through Time

 Automatic Differentiation is used for training the RNNs

 RNNs suffer from the same problems as the other Deep NNs
 Gradient exploding

 Solution: gradient clipping

 Gradient vanishing
 In a vanilla RNN, gradient information decreases exponentially with the size of the sequence

 Plus limited memory
 Again exponential decay of the memory w.r.t. size of the sequence

 Several attempts to solve these problems
 We introduce a popular family of recurrent units that became SOTA around 2015:

 Gated units (GRU, LSTMs)



RNNs
Recurrent units: Long Short Term memory (LSTM – Hochreiter 1997), 
Gated Recurrent Units (GRU – Cho 2014)
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 Vanishing gradient problem
 Consider a many to many mapping problem such as decoding or building a 

language model (more on that later)

𝑠 𝑓 𝑊𝑠 𝑈𝑥  

x

s

𝒚

U

V

W 𝒔𝟐 W 𝒔𝒕 𝟐𝒔𝟏 W 𝒔𝒕𝒔𝒕 𝟏 W

𝜕𝑠
𝜕𝑠

𝜕𝑠
𝜕𝑠

𝜕𝑠
𝜕𝑠

Unfolded recurrent cell

Gradient flow: vanishing
gradient

𝐶

𝜕𝐶
𝜕𝑠

𝜕𝑠
𝜕𝑠 x … x

𝜕𝑠
𝜕𝑠

𝜕𝐶
𝜕𝑠

If any of these
quantities is small, the 
gradient from 𝐶 gets 
smaller and smaller
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Recurrent units: Long Short Term memory (LSTM – Hochreiter 1997), 
Gated Recurrent Units (GRU – Cho 2014)

Machine Learning & Deep Learning   - P. Gallinari198

 Vanishing gradient problem

𝒔𝟐 W 𝒔𝒕 𝟐𝒔𝟏 W 𝒔𝒕𝒔𝒕 𝟏 W

𝜕𝑠
𝜕𝑠

𝜕𝑠
𝜕𝑠

𝜕𝑠
𝜕𝑠

𝐶

𝜕𝐶
𝜕𝑠

𝜕𝑠
𝜕𝑠 x … x

𝜕𝑠
𝜕𝑠

𝜕𝐶
𝜕𝑠

𝜕𝐶
𝜕𝑠

𝜕𝑠
𝜕𝑠

𝜕𝐶
𝜕𝑠

𝐶

• In this example, the gradient 
from 𝐶 is much stronger
than the gradient from 𝐶

• This means that « long » 
term dependencies are 
difficult to capture with
RNNs



RNNs - Gated Units
Long Short Term memory (LSTM – Hochreiter 1997)
Gated Recurrent Units (GRU – Cho 2014)
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 Introducing « skip connections » - similar to ResNet

𝒔 1 𝒛 ⨀𝒔 𝒛 ⨀𝒔′

Past value New candidate value:

Gating mechanism
⨀ is the Hadamard product
𝑈 and 𝑊 learned by SGD 

𝒔′ tanh 𝑈𝒙 𝑊𝑠  )
𝒛 𝜎 𝑈 𝒙 𝑊 𝒔

Skip connections: copy previous state

Gradient along skip connections: helps
gradient flowx

s

𝒚

U

V
W 𝒔𝟐 𝒔𝑻 𝟐𝒔𝟏 𝒔𝑻𝒔𝑻 𝟏

𝑊 𝑊 𝑊 𝑊



RNNs
Gated Recurrent Units (GRU – Cho 2014)
Skip connections
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 The output 𝑠 of cell 𝑗 is a weighted sum of the 
cell output at time 𝑡 1, 𝑠 and a new value 
of the cell 𝑠′
 𝒔 1 𝒛 ⨀𝒔 𝒛 ⨀𝒔′
 𝑧 is a gating function

 Extreme cases

 If 𝑧 0 , 𝑠 is a simple copy of 𝑠
 If 𝑧 1 it takes the new value 𝑠′

 w.r.t the classical recurrent unit formulation, this new form
allows us to remember the value of the hidden cell at a 
given time in the past and reduces the vanishing gradient 
phenomenon



RNNs
Gated Recurrent Units (GRU – Cho 2014)
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 Skip connection with Forget Gate + Reset Gate

𝒔 1 𝒛 ⨀𝒔 𝒛 ⨀𝒔′

Past value New candidate value:

Gating mechanism

𝒔′ tanh 𝑈𝒙 𝑊 𝑟 ⨀𝑠  ))
Forget gate 𝒛 𝜎 𝑈 𝒙 𝑊 𝒔
Reset Gate 𝒓 𝜎 𝑈 𝒙 𝑊 𝒔  

⨀ is the Hadamard product

x

s

𝒚

U

V

W



RNNs
Gated Recurrent Units (GRU – Cho 2014) - followed
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 The gating function is a function of the current input at time t and 
the past value of the hidden cell 𝒔
 𝒛 𝜎 𝑈 𝒙 𝑊 𝒔

 The new value 𝒔 is a classical recurrent unit where the values at 
time 𝑡 1 are gated by a reset unit 𝒓
 𝒔′ tanh 𝑈𝒙 𝑊 𝑟 ⨀𝑠  ))

 The reset unit 𝒓 allows us to forget the previous hidden state and 
to start again a new modeling of the sequence
 This is similar to a new state in a Hidden Markov Model (but it is soft)

 𝒓 𝜎 𝑈 𝒙 𝑊 𝒔  



RNNs
Gated Recurrent Units (GRU – Cho 2014)
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 There are two main novelties in this GRU
 The 𝑧 gating function which implements skip connections and acts for reducing

the vanishing gradient effect
 The 𝑟 gating function which acts for forgeting the previous state and starting

again a new subsequence modeling with no memory

 Each unit adapts its specific parameters, i.e. each may adapt its own
time scale and memory size

 Training
 is performed using an adaptation of backpropagation for recurrent nets
 All the functions – unit states and gating functions are learned from the data 

using some form of SGD



Long short term memory - LSTM
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 This was initially proposed in 1997 (Hochreiter et al.) and revised
later.

 State of the art on several sequence prediction problems
 Speech, handwriting recognition, translation
 Used in conjontions with other models e.g. HMMs or in standalone recurrent

neural networks
 The presentation here is based on (Graves 2012)



Long short term memory
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 In the LSTM, there are 3 gating functions
 i: input gating
 o: output gating
 f: forget gating

 Difference with the gated recurrent cell
 Similarities

 Both use an additive form for computing the hidden cell state (c) here.
 This additive component reduces the vanishing gradient effect and allows us to keep

in memory past state values.

 Both use a reset (called here forget (f)) gate
 The reset permits to start from a new « state » a subsequence prediction

 Differences
 No output gating in the GRU

 Reset does not play exactly the same role

c c’

o

𝒙𝒕

if

⊕

⨂

⨂ ⨂

s

⨂



Long short term memory
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 For the forward pass, the different activations are computed as 
follows and the this order

 𝑖 𝜎 𝑊 𝑥 𝑊 𝑠 𝑊 𝑐 𝑏
 𝑓  𝜎 𝑊 𝑥 𝑊 𝑠 𝑊 𝑐 𝑏
 𝑐 𝑓 ⊙ 𝑐 𝑖 ⊙ tanh 𝑊 𝑥 𝑊 𝑠 𝑏
 𝑜  𝜎 𝑊 𝑥 𝑊 𝑠 𝑊 𝑐 𝑏
 𝑠 𝑜 tanh 𝑐

 𝑐 is a memory of cell i at time t, 𝑐 is computed as for the GRU as a sum of 𝑐 and of 
the new memory content c tanh 𝑊 𝑥 𝑊 ℎ 𝑏

 𝑜 is an output gate

 𝜎 is a logistic function

 𝑊 , 𝑊 , 𝑊 are diagonal matrices

c c’

o

𝒙𝒕

if

⊕

⨂

⨂ ⨂

s

⨂



Bidirectional and multilayer RNNs
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RNNs Future
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 RNNs variants (GRU, LSTM) became the dominant approach around
2015, for several tasks including speech recognition, translation, text
generation etc

 Since 2019-2020 they have become superseded by other approaches
for many of these tasks
 Transformers are now SOTA for a large variety of tasks dealing with discrete

sequences, in NLP for example
 Note: after the Transformer » revolution » in NLP, they became popular in 

domains s.a. vision.



Language models
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 Objective:
 Probability models of sequences 𝑥 , 𝑥 , … , 𝑥
 Items may be words, characters, character ngrams, word pieces, etc
 Formally: given a sequence of items, what is the probability of the next item?

 𝑝 𝑥 |𝑥 , … , 𝑥
 Example

 « S’il vous plaît… dessine-moi …»         what next ? 
 « 𝑥 𝑥 𝑥 … … … … … . … . . 𝑥 … »       what is 𝑥 ?

 Language models in everyday use
 Sentence completion

 Search engine queries

 Smartphone messages, etc

 Speech recognition, handwriting recognition, etc



Language models
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 Language models can be used to compute the probability of a piece
of text

 Let 𝑥 , 𝑥 , … , 𝑥 be a sequence of text, its probability according
to a language model is:
 𝑝 𝑥 , 𝑥 , … , 𝑥 ∏ 𝑝 𝑥 |𝑥 , … , 𝑥  

 With 𝑝 𝑥 |𝑥 , … , 𝑥  computed by the language model



Language models
How to learn a language model - n-grams
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 A simple solution: n-grams
 n-grams are sequences of n consecutive words (or characters, or any items)
 Language model is based on n-gram statistics
 Markov assumption

 𝑥 only depends on the 𝑛 1 preceding words
 𝑝 𝑥 𝑥 , … , 𝑥 =𝑝 𝑥 𝑥 , … , 𝑥

 Use Bayes formula 𝑝 𝑥 𝑥 , … , 𝑥 , ,…,
,…,

 Given large text collections, it is possible to compute estimates of the posterior
probabilities

 An estimate could be 𝑝 𝑥 𝑥 , … , 𝑥 , ,…,
,…,

 Where 𝑐𝑜𝑢𝑛𝑡 𝑥 , 𝑥 , … , 𝑥 is the number of occurrences of the sequence in 
the corpus 

n-gram probability

n-1-gram probability



Language models
n-grams
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 Sparsity problem
 In order to get good estimates, this requires large text quantities
 The larger 𝑛 is, the larger the training corpus should be
 For a dictionnary of 10 k words, there could be

 10 bigrams

 10 trigrams, etc

 Note: the number of n-grams in a language is smaller than 10 but still extremely
large and grows exponentially with n

 The model size increases exponentially with 𝑛
 n-gram  counting is limited to relatively short sequences

 Only large companies like Google could afford computing/ storing estimates for 𝑛
10



Language models
n-grams
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 Additional problems
 Consider the sentence « Please open your mind » and a 4-gram model

 What if « mind » never occured in the corpus?
 The probability of the sequence becomes 0, which is not realistic
 Solution: every 4-gram is set to a minimum probability value of 𝜖
 This is a smoothing operation – there exists different smoothing estimates

 What if « Please open your » never occured in the corpus?
 The 4-gram probability cannot be computed
 Smooth using backoff estimates
 e.g. 𝑝 𝑝𝑙𝑒𝑎𝑠𝑒 𝑜𝑝𝑒𝑛 𝑦𝑜𝑢𝑟 𝑚𝑖𝑛𝑑 𝑝 𝑜𝑝𝑒𝑛 𝑦𝑜𝑢𝑟 𝑚𝑖𝑛𝑑

 More generally, n-gram models are often smoothed with n-1 gram, n-2 grams etc
 𝑝 𝑥 𝑥 , … , 𝑥 ⋍ ∑ 𝛼 𝑝 𝑥 𝑥 , … , 𝑥



Language models
n-grams – text generation
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 Any language model can be used for text generation

 One can generate text of any length

mind
door
eyes

please—open your

0.1
0.03
0.2

Probability distribution 
of the next word

0.1
0.03
0.2

Sample from
this distribution

and
for
in

please—open your mind

0.01
0.02
0.07

Sample from
this distribution

etc



Language models
n-grams – text generation
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 Example from https://projects.haykranen.nl/markov/demo/
 4 gram trained on the Wikipedia article on Calvin and Hobbes
 Generated text

 Example from https://filiph.github.io/markov/

Rosalyn is a standary children used each otherwise as he stereotypically comic stand for 
an impulsive real-life Watterson's stuffed tiger, much as "grounded in reality rathmore
spacious circle: because associety The club has said they have the archive shifting into 
low art some of the strip was one larger than Calvin articipate indulges in his hands 
attribute red-and-black pants, magenta socks and Susie Derkins specifically characters 
like school where were printerestrainstory



Language models
Neural networks
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 Fixed input size NN  

Please open  your • Input sentence, one hot 
encoding

• Word representation, e.g. 
w2Vec

• Hidden layer(s)

• Classification layer, softmax
among all vocabulary words

mind mouth
• The NN could

be typically a 
convolutional
NN with all the 
input word
representations
sharing the 
same weights

• It could also be
made fully
convolutional

• Less sensitive 
than n-grams to 
sparsity

• Posterior estimate of the 
next word



RNNs
Language models
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 RNNs offer an alternative approach to non recurrent NNs
 Objective:

 Probability models of sequences 𝑥 , 𝑥 , … , 𝑥
 Estimate with RNNs:

 𝑝 𝑥 |𝑥 , … , 𝑥

 𝑔 is typically a softmax
 𝑓 could be a sigmoid, Relu, …
 𝑥 will usually be a word/ item representation learned from large 

corpora

𝑠 𝑓 𝑊𝑠 𝑈𝑥  𝒚 𝑔 𝑉𝒔

memoryprediction

𝒙

𝒔

𝒚

𝑼

𝑽

𝑾



Recurrent neural networks Language models
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 Training
 Use a corpus of text, e.g. a sequence of words 𝑥 , 𝑥 , … , 𝑥
 Feed the sequence into the RNN, one word at a time
 Compute the output distribution 𝒚 for each time step

 𝒚 is a distribution on the word dictionary
 This is the estimated posterior probability distribution given past subsequence
 If the dictionary is V 𝐴,𝐵,𝐶,𝐷 :

 Loss function
 Classically the cross entropy between the predicted distribution 𝒚 and the target

distribution 𝒚
 Loss at time 𝑡 in the sequence: 𝐶 𝐶 𝒚 ,𝒚 ∑ 𝑦 𝑙𝑜𝑔 𝑦 𝑙𝑜𝑔𝑦

 With 𝑦 denoting the predicted output for the target class 𝑦 (i.e. next word to 
predict)

 Loss over a sequence of length 𝑇 corpus 𝐶 ∑ 𝐶
 In practice, one uses a mini batch of sentences sampled from the corpus and use a 

stochastic gradient algorithm

𝐴𝐵 𝐶𝐷
𝒚𝒕 𝑷 𝒙𝒕 𝟏|𝒔𝒕
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 Training

x

s

𝒚

U

V
W

𝒚𝒕 𝑷 𝒙𝒕 𝟏|𝒔𝒕

𝒙𝟐

𝒔𝟐

𝒚𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚𝟏

𝑼

𝑽
𝑾

𝐶 𝐶 𝐶

Begin       at         the       beginning

𝒔𝟎 𝑾

log 𝑝 "𝑎𝑡"|𝑠
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 Training

x

s

𝒚

U

V
W

𝒚𝒕 𝑷 𝒙𝒕 𝟏|𝒔𝒕

𝒙𝟐

𝒔𝟐

𝒚𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚𝟏

𝑼

𝑽
𝑾

𝐶 𝐶 𝐶

Begin       at         the       beginning

𝒔𝟎 𝑾

log 𝑝 "𝑡ℎ𝑒"|𝑠
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 Training

x

s

𝒚

U

V
W

𝒚𝒕 𝑷 𝒙𝒕 𝟏|𝒔𝒕

𝒙𝟐

𝒔𝟐

𝒚𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚𝟏

𝑼

𝑽
𝑾

𝐶 𝐶 𝐶

Begin       at         the       beginning

𝒔𝟎 𝑾

log 𝑝 "𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔"|𝑠
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 Training

 Note
 Weights are shared: only one 𝑈, one 𝑉, one 𝑊 for the whole NN

x

s

𝒚

U

V
W

𝒚𝒕 𝑷 𝒙𝒕 𝟏|𝒔𝒕

𝒙𝟐

𝒔𝟐

𝒚𝟐

𝑼

𝑽
𝑾

𝒙𝟑

𝒔𝟑

𝒚𝟑

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚𝟏

𝑼

𝑽
𝑾

𝐶 𝐶 𝐶

Begin       at         the       beginning

𝒔𝟎 𝑾

𝐶 𝐶
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 Training algorithm: Back Propagation Through Time - BPTT
 Consider a sequence of words 𝑥 , 𝑥 , … , 𝑥 sampled from the training set
 Loss function for a sequence : 𝐶 ∑ 𝐶

 SGD: compute the loss for the sequence (actually a batch of sequences), compute the gradient 
and upfate the parameters

 Recall, weights are shared: only one 𝑈, one 𝑉, one 𝑊
 Example: update of the shared 𝑊 weights

 Gradient of the loss for the whole sequence: compute the derivatives w.r.t. each 𝐶 and sums
them:

 ∑ ...

 Gradient of the loss for the loss at time 𝑡, 𝐶 :

 ∑ where is the gradient of the loss w.r.t. weight at position 𝑖 𝑡

 Backpropagate over time steps 𝑖 1 … 𝑡, summing the gradient: BPTT

 This training regime is called teacher forcing
 Successive sequential inputs correspond to the true sequence
 Different during inference (see next slide)



x

RNNs
Language models
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 Inference
 Suppose the RNN has been trained
 Inference processes by sampling from the predicted distribution

x

s

𝒚

U

V
W

𝒚𝒕 𝑷 𝒙𝒕 𝟏|𝒔𝒕

𝒙𝟐

𝒔𝟐

𝒚𝟐

𝑼

𝑽
𝑾

𝒙𝒕

𝒔𝒕

𝒚𝒕

𝑼

𝑽
𝑾

𝒙𝟏

𝒔𝟏

𝒚𝟏

𝑼

𝑽
𝑾𝒔𝟎 𝑾

SamplingSamplingSampling
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Language models – Word representation
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 Words, characters, n-grams, word pieces are all discrete data
 How to represent them

 The usual way is to embed the words, etc in a continuous space of high 
dimension e.g. 𝑅 , i.e. each word will be a vector in 𝑅

 This could be done
 Off line using some embeding technique (e.g. Word2Vec, see later)

 Advantage, this can be done by using very large text collections
 These representations could then be used for downstream tasks (e.g. classification)

 On line while training the language model
 In this case, the 𝑥s are initialized at random values in 𝑅 and are learned by 

backpropagating the error, together with the other parameters
 We usually loose the benefit of training on large corpora



Language models – examples

 Language models can be used to learn text representations, 
Generate text, Translation, Dialogue, etc

Language generation, Training on Tolstoy’s
War and Peace a character language model, 
Stacked RNNs (LSTMs) (Karpathy 2015-
https://karpathy.github.io/2015/05/21/rnneffectiveness/)

Inverse Cooking: Recipe 
Generation from Food Images, 
Salvador et al CVPR 2019



Learning word vector representations
Word2Vec model (Mikolov et al. 2013a, 2013b)
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 Goal
 Learn word representations

 Words or language entities belong to a discrete space

 They could be described using one hot encoding, but this is meaningless

 How to represent these entities with meaningful representations?

 Word2Vec model
 Learn robust vector representation of words that can be used in different Natural 

Language Processing or Information retrieval tasks

 Learn word representations in phrase contexts

 Learn using very large text corpora

 Learn efficient, low complexity transformations

 Successful and influential work that gave rise to many developments and 
extensions

 Still in use, but superseded by Transformer based learned representations



Semantics: words
How to encode words according to their semantic meaning

 Representing words as discrete symbols
 In traditional NLP, we regard words as discrete symbols: Words can be 

represented by one-hot vectors - Each word is a distinct symbol
 Example: in web search, if user searches for “Seattle motel”, we would like to 

match documents containing “Seattle hotel”.

 motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 
 hotel  = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

 These two vectors are orthogonal.
 There is no natural notion of similarity for one-hot vectors!

 Vector dimension = number of words in vocabulary (e.g., 500,000)
 Very large dimensional discrete space - Problem for machine learning - sparsity



Semantics: words

 Instead: learn to encode similarity in the vectors themselves
 GloVe (Pennington et al. 2014)



Words in vector space
Representing words by their context

 Distributional semantics:  A word’s meaning is given by the words 
that frequently appear close-by
 One of the most successful ideas of modern statistical NLP!

 When a word w appears in a text, its context is the set of words 
that appear nearby (within a fixed-size window).
 Use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…
…saying that Europe needs unified  banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

context words will 
represent banking



Words in vector space
Representing words by their context

 Word embeddings
 We represent words 𝑤 by vectors 𝑣 so that words with similar contexts share

« close » representations in the vector space

 Key idea
 These representations are learned from very large corpora for representing a 

large variety of situations/ contexts
 No need for supervision

 These embeddings will be used for doswnstream tasks, e.g. classification
 This is an example of self-supervised learning

𝒗𝒃𝒂𝒏𝒌𝒊𝒏𝒈

    0.87
    0.45

0.34
0.63

    0.23
    0.16



Word embeddings
Word2Vec – Mikolov et al. 2013



𝑝 𝑤 𝑤
exp 𝑣 .𝑣

∑ exp 𝑣 .𝑣∈

Word embeddings projections on 2D space:
words with similar contexts are close in the 
embedding space

𝑤 : context word (into)
𝑤 : central word (banking)
𝑣 vector representation of 𝑤
𝑣 vector representation of 𝑤



Learning word vector representations
(Mikolov et al. 2013a, 2013b)
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 CBOW model
 Task

 Predict the midle word of a sequence of words

 Input and output word representations are learned jointly
 (random initialization)

 The projection layer is linear followed by a sigmoid
 Word weight vectors in the projection layer
are shared (all the weight vectors are the same)
 The output layer computes a hierarchical softmax

 See later

 This allows computing the output in 

𝑂 log 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 instead of 𝑂 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒
 The context is typically 4 words before and 4 after



Learning word vector representations - Skip Gram model
(Mikolov et al. 2013a, 2013b)
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 Task
 Predict the context words conditionned on the central 

word of a sequence

 Input and output word representations are 
learned jointly
 (random initialization)

 The projection layer is linear followed by a 
sigmoid

 Input and outputs have different representations
for the same word

 The output layer computes a hierarchical softmax
 This allows computing the output in 
𝑂 log 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 instead of 𝑂 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒



Learning word vector representations - Skip Gram model
(Mikolov et al. 2013a, 2013b)
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 The context is typically 4 words before and 4 
after

 Output words are sampled less frequently if they
are far from the input word
 i.e. if the context is 𝐶  5 words each side, one selects 
𝑅 ∈ 1;𝐶

and use R words for the output context



Learning word vector representations - Skip gram model
(Mikolov et al. 2013a, 2013b)
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 Loss average log probability

 𝐿 ∑ ∑ log𝑝 𝑤 |𝑤,

 Where T is the number of words in the whole sequence used for training 
(roughly number of words in the corpus) and 𝑐 is the context size

 𝑝 𝑤 𝑤
 𝒗 .𝒗  

∑  𝒗 .𝒗  

 Where 𝒗 is the learned representation of the 𝑤 vector (the hidden layer), 
𝒗 .𝒗 is a dot product and V is the vocabulary size



Learning word vector representations - Skip gram model 
(Mikolov et al. 2013a, 2013b)
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 𝑝 𝑤 𝑤
 𝒗 .𝒗  

∑  𝒗 .𝒗  

 Note that computing this softmax function is impractical since it is proportional
to the size of the vocabulary

 In practice, this can be reduced to a complexity proportional to log 𝑉 using a 
binary tree structure for computing the softmax
 Other alternatives are possible to compute the softmax in a reasonable time

 In Mikolov 2013: simplified version of negative sampling

 𝑙 𝑤 ,𝑤 log𝜎 𝑣 .𝑣  ∑ log𝜎 𝑣 .𝑣

 with 𝜎 𝑥
 



Learning word vector representations 
(Mikolov et al. 2013a, 2013b)
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 Properties
 « analogical reasoning »
 This model learns analogical relationships between terms in the representation 

space
 i.e. term pairs that share similar relations are share a similar geometric transformation 

in the representation space
 Example for the relation « capital of »
 In the vector space

 Paris – France + Italy = Rome
 At least approximatively
 i.e. Rome is the nearest vector to
 Paris – France + Italy 

 Reasoning via more complex inferences
 is however difficult:

 Combination of transformations
 to infer more complex facts is not effective

Figure from Mikolov 2013



Learning word vector representations
(Mikolov et al. 2013a, 2013b)
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 Paris – France + Italy = Rome



Word2Vec extensions, example of FastText
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 After W2V, several similar ideas and extensions have been published
 Among the more popular are Glove (Pennington 2014) and FastText

(Bojanowski 2017)
 Vector representations learned on large corpora with these methods are made 

available
 FastText is a simple extension of the skipgram model in W2V, where n-grams are 

used as text units instead of words in W2V
 Consider the word « where » and 3-grams.  « where » will be represented as:

 <wh, whe, her, ere, re>, with « < » and « > » corresponding to special « begin » 
and « end » characters

 A vector representation 𝑧 is associated to each n-gram 𝑖
 The word representation is simply the sum of the n-gram representations of the 

word description

 Remember 𝑝 𝑤 𝑤
 𝒗 .𝒗  

∑  𝒗 .𝒗  
in W2V

 The dot product 𝒗 .𝒗 is replaced by∑ 𝒗 . ∈  𝑧
 And similarly for the dot product 𝒗 .𝒗



Language models – Evaluation - Perplexity
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 A classical criterion for evaluating language models is perplexity
 It quantifies how well a probability distribution or probability model predicts a 

sample.
 In the context of language models, perplexity measures how well a model predicts a sequence 

of words.

 Perplexity is fundamentally related to the likelihood of a dataset according to the 
language model. 

 A language model 𝐿𝑀 assigns a probability to a sequence of words. For a given 
sequence of words 𝒙 𝑥 , … , 𝑥 , let us denote its probability by the language 
model 𝐿𝑀 as 𝑝 𝑥 , … , 𝑥



Language models – Evaluation - Perplexity
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 A classical criterion for evaluating language models is perplexity
𝑃𝑃

 𝑃𝑃 𝒙; 𝐿𝑀
,…,

/
∏

| ,…,

/

 Where 𝑝 is the probability estimate of the language model

 𝑃𝑃 𝒙; 𝐿𝑀  ∏
∑

/
∏

/

 With 𝑦 ∈ 0,1 the target code at time 𝑡 for word 𝑖 and 𝑦 the corresponding
predicted value. 𝑦 is the prediction for input 𝑥

 𝑃𝑃 𝒙; 𝐿𝑀 exp ∑ 𝑙𝑛𝑦 exp 𝐶
 This is the exponential of the cross-entropy loss 𝐶
 Perplexity for a language model 𝑃𝑃 . ; 𝐿𝑀  is estimated on a test set of sentences



Language models – Evaluation - Perplexity
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 Interpretation
 A lower perplexity indicates that the language model is better at predicting the 

sequence and, therefore, it's more certain about the test data.
 Conversely, a higher perplexity suggests that the model has more difficulty 

predicting the sequence and is less certain about the test data.
 Language models are often compared based on their perplexity scores, with 

lower perplexity indicating a more accurate and reliable model.



Language models - Evaluation
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 Interpretations
 Weighted average branching factor of a language:  average nb of words following

another word
 e.g.  for random digit sequences, perplexity is 10

 Perplexity estimates on the WSJ corpus (1.5 M  words test corpus, dictionnary 
size = 20 𝑘 words)  for n-gram models

Unigram Bigram Trigram

962 170 109
Fig. from XX



RNNs for translation
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 NN have been used for a long time in translation systems (as an 
additional component, e.g. for reranking or as language model)

 In the mid 2010, translation systems have been proposed based on 
recurrent neural networks with GRU or LSTM units.
 Initial papers: Sutskever et al. 2014, Cho et al. 2014

 General principle
 Sentence to sentence translation
 Use an encoder-decoder architecture
 Encoding is performed using a RNN on the input sentence (e.g. English)
 This transforms a variable length sequence into a fixed size vector which

encodes the whole sentence
 Starting with this encoding, another RNN generates the translated sentence (e.g. 

French)
 Instead of using a fixed length encoding, later systems made use of an attention 

mechanism



Encoder-Decoder paradigm: example of neural translation – (Cho 
et al. 2014, Sutskever et al. 2014)
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 First attempts for DL Machine Translation with RNNs

 Proof of concept, did not match SOTA, several improvements since
this first attempt

 Now replaced by Attention Models - Transformers

Recurrent NN Unfolded recurrent NN for translation

x

h/s

𝒚

U

V
W

𝒙𝒕

𝒉𝟐

𝑼

𝑾

𝒙𝑻

𝒉𝑻

𝒚𝟏

𝑼

𝑽

𝒙𝒕 𝟏

𝒉𝟏

𝑼

𝑾 𝒔𝑹𝒔𝟏 𝑾′

𝒚𝟐

𝑽

𝒚𝑹

𝑽
𝑾′



Translation
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 Let
 𝑥 , … , 𝑥 be an input sentence
 𝑦 , …𝑦 be an output sentence
 Note that 𝑇 and 𝑇’ are most often different and that the word order in the two sentences is also

generally different

 Objective
 Learn 𝑝 𝑦 , … 𝑦 |𝑥 , … , 𝑥 )
 Encoder

 Reads each symbol of the input sentence sequentially using a RNN
 After each symbol the state of the RNN is changed according to 𝒉 𝑓 𝒙 ,𝒉
 After reading the sentence, the final state is 𝒉 𝒗

 Decoder
 Generates the output sequence by predicting the next symbol 𝑦 given 𝒔 , 𝑦 and the vector 𝒗

 𝒔 𝑓 𝒚 , 𝒔 , 𝐯
 𝑝 𝑦 𝑦 , …𝑦 ,𝒗 𝑔 𝑦 , 𝒔 , 𝐯

 Training: cross-entropy loss
 max ∑ log 𝑝 𝒚𝒔 |𝒙𝒔 , where 𝒙𝒔 and 𝒚𝒔 are sentences and 𝑝  is the translation model, 𝑁 is

the number of sentences



Translation
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 Typical architecture
 RNN with 1000 hidden cells
 Word embeddings of dimension between 100 and 1000
 Softmax at the output for computing the word probabilities
 Of the order of 100 M parameters



Google Neural Machine Translation System as of 2016
(Wu et al 2016)
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
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 General Architecture  

Figure from Wu et al. 2016

Encoder: 8 stacked LSTM 
RNN + residual connections

Decoder: 8 stacked LSTM 
RNN + residual connections 
+ Softmax output layer

Attention 
mechanism



RNNs as neural image caption generator (Vinyals et al. 2015)
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 Objective
 Learn a textual description of an image

 i.e. using an image as input, generate a sentence that describes the objects and their
relation!

 Model
 Inspired by a translation approach but the input is an image

 Use a RNN to generate the textual description, word by word, provided a learned
description of an image via a deep CNN



Neural image caption generator (Vinyals et al. 2015)
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 Loss criterion
 max∑ log𝑝 𝑆|𝐼; 𝜃,

 Where (𝐼, 𝑆) is an associated couple (Image, Sentence)

 Notations correspond to the figure

 log𝑝 𝑆|𝐼;𝜃 ∑ log𝑝 𝑆 𝐼, 𝑆 , … , 𝑆
 𝑝 𝑆 𝐼, 𝑆 , … , 𝑆 is modeled with a RNN with 𝑆 , … , 𝑆 encoded into the 

hidden state ℎ of the RNN
 Here 𝒔 𝑓 𝒔 , 𝑥 is modelled using a RNN with LSTM cells
 For encoding the image, a CNN is used



Neural image caption generator (Vinyals et al. 2015)
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Attention Mechanism

Initial historical developments and examples
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Attention mechanism
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 Objective: focus on specific parts of the data representation for 
taking the current decision
 Implemented as an additional differentiable modules in several architectures

 Illustration: attention on image while generating sentences

Figs. from Xu et al. 2015



Attention mechanism



𝒉 𝒉 𝒉

𝒉 ∈ 𝑅 : input, e.g. embedding
or hidden output (e.g. RNN 
hidden layer)
𝒖 ∈ 𝑅 : additional info.
𝒄 ∈ 𝑅 : context vector
𝑒 ∈ 𝑅 : attention factor
𝛼 ∈ 𝑅 : attention coefficient
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒  

∑  

Objective: learn a combination of input 
vectors ℎ with attention weights
focusing on the most relevant parts of 
the input signal  𝒉

𝑒 𝑓 𝒖,𝒉

𝛼 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒

𝒄 𝛼 𝒉

𝒖

𝑒

𝛼𝛼

𝑒

Further processing, e.g. 
classification of 𝒄
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Attention mechanism

 Different attention functions 𝑓 :
 Additive

 𝑓 𝒖,𝒉  𝒗 tanh 𝑊 𝒉 𝑊 𝒖 , 𝒗 ∈ 𝑅 ,𝒉 ∈ 𝑅 ,𝑊 ∶  𝑑x𝑑,𝑊 ∶ 𝑑x𝑑

 Multiplicative
 𝑓 𝒖,𝒉 𝒖𝑻𝑊𝒉 , 𝒖 ∈ 𝑅 ,𝑊 ∶  𝑑x𝑑

 All the parameters 𝑊, 𝑣,𝑢 are learned
 Many variants of these formulations
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Attention mechanism
For document classification (adapted from Yang et al. 2016)
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 Objective: classify documents using a sequential model of attention
 Document : word sequence 𝑤 , … ,𝑤
 Objective: classify the document among predefined classes – learning criterion: 

log likelihood
 Word sequence encodings (e.g. pretrained via Word2Vec):  𝑥 , … , 𝑥
 Corresponding hidden state sequence: 𝒉 , … ,𝒉 obtained via a Recurrent NN

𝒙𝟐

𝒉𝟐

𝒙𝑻

𝒉𝑻

𝒙𝟏

𝒉𝟏

𝒄

Soft Max: classification

Word representation (pre-
trained embeddings)

Hidden state representation
(RNN)

𝜶𝟏 𝜶𝟐 𝜶𝑻

u
Additional info. vector

Fixed size document 
representation



Attention mechanism
Example: document classification (adapted from Yang et al. 2016)
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 𝒗 tanh 𝑊𝒉 𝒃 (vector)

 𝛼 𝒗 .𝒖
∑ 𝒗𝒕.𝒖

: attention weight (real value)

 𝒄 ∑ 𝛼 𝒉 : fixed size document representation (vector)

 𝒖 : context vector to be learned (vector)

Parameters to be learned: 
• Attention 𝑊, 𝑏, 𝑢
• Others: RNN, Softmax classifier

𝒙𝟐

𝒉𝟐

𝒙𝑻

𝒉𝑻

𝒙𝟏

𝒉𝟏

𝒄

Soft Max: classification

Word representation

Hidden state representation

𝜶𝟏 𝜶𝟐 𝜶𝑻

u

Context vector



Attention mechanism
Example: document classification (adapted from Yang et al. 2016)
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 Illustration (Yang et al. 2016)
 Yelp reviews: ratings from 1 to 5  (5 is the best)
 Classification = sentiment/ polarity classification
 Hierarchical attention: word and sentence levels
 Blue = word weight in the decision
 Red = sentence weight in the decision (hierarchical attention model – 2 levels: 

sentences and words within a sentence)



Attention mechanism
for translation (adapted from Bahdanau et al. 2015 – initial 
introduction of attention in RNNs)
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 Classical Encoder – Decoder framework for translation
 Encoder

 Input sentence 𝒙 , … ,𝒙 word embeddings

 Encoder: 𝒉 𝑓 𝒙 ,𝒉 implemented via a RNN / LSTM
 𝒉 is the hidden state for input 𝒙

 𝒄 𝑞 𝒉 , … ,𝒉 for the original Encoder-Decoder
framework, typically 𝒄 𝒉 the last 
hidden state for the input sentence

 Decoder
 Output sentence 𝒚 , … ,𝒚 for simplification input and output 

sentences are taken at the same length

 𝑝 𝒚 𝒚 , … ,𝒚 , 𝒄 𝑔 𝒚 , 𝒔 , 𝒄 implemented via a RNN or LSTM + 
softmax

 𝒔 is the hidden state of the decoder for output 𝒚
 Decoding is conditionned on a unique vector 𝒄 for the whole sentence



Attention mechanism
for translation (adapted from Bahdanau et al. 2015, initial introduction 
of attention)
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 Classical Encoder – Decoder framework for translation

𝒙𝒕

𝒉𝒕

𝑼
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𝒙𝑻
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Attention mechanism
for translation (adapted from Bahdanau et al. 2015, initial introduction 
of attention)
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 Attention mechanism
 Instead of conditionning the output 𝒚 on the final context 𝒄 𝒉 , the attention 

mechanism will use as context 𝒄 a linear combination of the 𝒉 , 𝑡 1 …𝑇
 One 𝒄 is computed for each 𝒚 instead of a common context 𝒄 for all 𝒚 s

 The encoder is the same as before
 Decoder

 𝑝 𝒚 𝒚 , … ,𝒚 ,𝒙 𝑔 𝒚 , 𝒔 , 𝒄
 𝒔 𝑓 𝒔 ,𝒚 , 𝒄𝒊

 Context vector
 𝑒 𝑎 𝒔 ,𝒉 computed via a simple MLP for example

 𝛼 ∑ weight of ℎ when decoding 𝑦

 𝒄 ∑ 𝛼 𝒉 context vector

 The whole system is trained end to end



Attention mechanism
for translation (adapted from Bahdanau et al. 2015, initial introduction 
of attention)
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 Attention mechanism

𝒙𝟐

𝒉𝟐

U
𝒙𝑻
U

𝒙𝟏

𝒉𝟏

U

𝒔𝒊 𝒔𝑻𝒔𝒊 𝟏

𝒚𝒊𝒚𝒊 𝟏

𝒄

𝛼 𝛼 𝛼

𝒉𝑻



Transformer Networks

Initial paper:  Vaswani 2017

Story Telling and Illustrations used in the slides: 

J. Alammar 2018 - 2019 - http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-gpt2/

P. Bloem 2019 - http://www.peterbloem.nl/blog/transformers

Machine Learning & Deep Learning   - P. Gallinari264



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)
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 Transformer networks were proposed in 2017
 They implement a self attention mechanism
 They became SOTA technology for many NLP problems
 Transformer blocks are now a basic component of the NN zoo
 They are key components for all the recent NLP transformer 

architectures
 BERT family (Google), GPT family (OpenAI), T5 family (Google), etc

 After NLP they have been adapted by the Vision community



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018-
2019, P. Bloem 2019)
Self Attention
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 Self Attention is the fundamental operation of transformers
 Self attention is a sequence to sequence operation

 Input and output sequences have the same length

 Let 𝑥 , 𝑥 , … , 𝑥 and 𝑧 , 𝑧 , … , 𝑧 be respectively the input and output vector
sequence

 Self attention computes the output sequence as:

 𝑧 ∑ 𝛼 𝑥
 With 𝛼 a normalized attention score

 A simple version of the normalized score could be:
 𝑒 𝑥 . 𝑥

 𝛼 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒
∑

 𝛼 measures how 𝑥 and 𝑥 are important for predicting 𝑧



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Self Attention
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 Self Attention is the fundamental operation of transformers

Self  Attention  is the  fundamental operation of  transformers

𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  

𝑧  𝑧  𝑧  𝑧  𝑧  𝑧  𝑧  𝑧  

𝑧 𝛼 𝑥
… 

Output 
sequence

Input: word
sequence

Learned
embeddings

For 𝑖 "𝑆𝑒𝑙𝑓" 𝑡𝑜 "𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟":

embedding

self attention



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Self Attention
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 Self attention is the only mechanism in the transformer that propagates
information between vectors

 Any other operation is applied to each vector without interaction between
vectors

 In the above example 𝑧 is a weighted sum over all embedding vectors
𝑥 weighted by their normalized dot product with the embedding 𝑥

 The dot product expresses how related two words in the input sequence are, 
w.r.t. the learning task

 Note
 Self Attention sees the input as a set and not as a sequence
 Permutation in the inputs simply results in a permutation of the outputs
 An additional mechanism should be used in order to consider the sequence

information (more on that later)



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019) - Self Attention – Queries, keys, values
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 Current transformers make use of a more complex self attention 
mechanism

 1. For each embedding 𝑥 create 3 vectors as a linear transformation 
of 𝑥 : query, key, value
 query: 𝑞 𝑊 𝑥
 key: 𝑘 𝑊 𝑥
 value:𝑣 𝑊 𝑥

 With 𝑊 , 𝑊 , 𝑊
Matrices of the appropriate
dimension



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Self Attention – Queries, keys, values
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 𝑥 is used for three roles:
 Query 𝑞 : it is compared to every vector 𝑥 to establish the weights for its

own output vector 𝒛𝒊
 Key 𝑘 : it is compared to every vector 𝑥 to establish the weights for the 

output 𝒛𝒋
 Value 𝑣 : it is used in the weighted sum to compute each output vector
𝒛𝒋

 Separating the roles in three vectors 𝑞 ,𝑘 ,𝑣 , all linear
transformations of 𝑥 gives a more flexible model

 Illustration for computing the output vector 𝑧
 𝒒𝒊 and 𝒌𝒋 will be used for computing the attention score:

 𝑒 𝑞 . 𝑘
 𝛼 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒  

 𝒗𝒋 will be used for computing the output item
 𝒛 ∑ 𝛼 𝒗 ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑞 .𝑘 𝒗



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019) - – Queries, keys, values
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 2. Compute score from query and key
 Dot product of  query and key value for each word

 Consider the sentence « Thinking Machines »

 𝑒 𝑞 . 𝑘 - here we consider the first word Thinking (i.e. 𝑖 1, 𝑗 1,2 since we
have 2 words in the sentence)



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019) - – Queries, keys, values
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 3. Normalize and softmax
 Divide by the square root of the dimension of the key vectors (8 in the figure)

 𝑒 .
, with k the dimension of the 𝑞,𝑘, 𝑣 vectors

 Compute softmax
 𝛼 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒  

 The softmax value indicates the weight of each word in the input sequence for 
position 1 in the example



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019) - – Queries, keys, values
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 4. Compute the output of the self attention layer at position 1, i.e. 
(𝑧
 Multiply each value vector 𝑣 by the softmax score
 Sum up the weighted value vectors

 𝒛 ∑ 𝛼 𝒗



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019) – Queries, keys, values
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 In matrix form for our 2 words sentence



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019) – Queries, keys, values
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 Compute the output of the self attention layer at position 1
 Matrix form



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)) - – Queries, keys, values
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 Multi-head self attention
 Duplicate the self attention mechanism
 Allows us to focus on different parts of the input sequence and to encode 

different relations between elements of the input sequence
 Matrices for the different heads are denoted 𝑊 ,𝑊 ,𝑊 with 𝑟 the index of 

head 𝑟



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019) - – Queries, keys, values
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 Compute one output for each head



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019))
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 Multi-head self attention
 Two usual ways of applying multi-head

 1. Cut the embedding vector 𝑥 into chunks and generate 𝑞, 𝑘, 𝑣 from each chunk
 e.g. if the embedding is size 256 and we have 8 heads, each chunk will be of size 32, the 
𝑊 ,𝑊 ,𝑊 are of size 32x32

 2. Apply each head to the whole vector
 𝑊 ,𝑊 ,𝑊 are of size 256x256



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)
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 Global output
 Concatenate the  individual head outputs
 Combine them with an additional matrix 𝑊 in order to produce an output of 

size 𝑘 , for example the initial size of the embeddings



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)
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 Summary of multi-head self attention 



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Transformer module
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 A tranformer module combines different operations and is roughly
defined as follows (several variants – here we detail an encoder 
module as in Vaswani 2017)

 The example takes two word as input and outputs two transformed
encodings • Normalization layers (layer 

normalization)
• Multiple self attention modules 

per encoder
• Residual (skip) connections like 

in ResNet (see dashes --->)
• Positional encoding

Layer normalization: normalize the 
activations of a layer for each
sample by centering and 
reduction of the layer activation 
values for that sample



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Transformer module
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 Add and normalized detailed
 Residual connections are added before normalization

 Helps with the gradient



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Transformer architecture
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 Stack multiple transformer modules



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Transformer architecture

 Attention: word dependencies

Fig. (Vaswani 2017)
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018, P. Bloem 2019)

 Positional encoding
 In order to account for the word order, the model makes use of a positional

encoding together with the first word embeddings (first transformer module in 
the transformer multilayer architecture)
 An information is added to each input embedding which helps determining the position 

of the word in the sentence.
 This information is added to the input embeddings at the bottom of the transformer 

module
 The encoding can be learned like word embeddings – this requires learning one 

embedding for each position
 The encoding can be defined according to some function 𝑓:𝑁 → 𝑅
 In the original transformer paper, the encoding is defined as follows:

 Let 𝑃𝐸 denote the Positional Encoding, 𝑃𝐸 ∈ 𝑅 x𝑅 , i.e. vector of length n, size of 
the sequence, and each positional encoding is of size 𝑑 (same size as embeddings 𝒗).

 𝑃𝐸_ 𝑝𝑜𝑠, 2𝑖 sin 𝑝𝑜𝑠 / 10000  , 𝑃𝐸_ 𝑝𝑜𝑠, 2𝑖 1 cos 𝑝𝑜𝑠 / 10000  
 With 𝑝𝑜𝑠 the position in the sequence and 𝑖 ∈ 1, … ,𝑑 the dimension in the 

position vector
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Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)
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 Positional encoding



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)
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 Intuition on the Query/Key/value components (J. Alammar 2019)
 Consider the sentence

 « a robot must obey the orders given it by human beings … »
 « It » refers to « a robot »

 This is what self attention should detect

 Consider self attention in the decoder module when processing the token « it »



Transformer networks (Vaswani 2017, illustrations J. Alammar
2018-2019, P. Bloem 2019)
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 Intuition on the Query/Key/value components (J.  Alammar 2019)
 The Query is a representation of the current word used to score against all the 

other words (using their keys). We only care about the query of the token we’re 
currently processing.

 Key vectors are like labels for all the words in the segment. They’re what we 
match against in our search for relevant words.

 Value vectors are actual word representations, once we’ve scored how relevant 
each word is, these are the values we add up to represent the current word.

Analogy: searching through a filing cabinet. The 
Query is like a note with the topic you’re  
researching. The Keys are like the labels of the 
folders inside the cabinet. When you match the tag 
with a note, we take out the contents of that folder, 
the Value vector. Except you’re not only looking for 
one value, but a blend of values from a blend of 
folders.



Transformer networks
Example: classifier (Bloem 2019)
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 Binary classifier for word sequences
 Targets: positive/ negative
 The output sequence is averaged in order to produce a fixed size vector
 Loss: cross entropy



Transformer networks (Vaswani 2017, illustrations J. Alammar 2018, P. 
Bloem 2019)
Example: text generation transformer - autoregressive model
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 Character level transformer for predicting next character from an 
input sequence
 Input: a sequence
 Output next character for each point in the sequence, i.e. language model
 i.e. the target sequence is the input shifted one character to the left



Transformer networks
Example: text generation transformer - autoregressive model (Bloem
2019)
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 Because the transformer has access to the whole « h e l l » sequence, prediction
for « e l l » becomes trivial

 If one wants to learn an autoregressive model one should prevent the 
transformer to look forward in the sequence

 Character level transformer for predicting next character from an input 
sequence

 For that one makes use of a MASK to the matrix of dot products before the 
softmax in the self attention module

 Note: multiplication here is the elementwise multiplication
Here x is the input in position i and y the output in position i



Transformer networks
Example: text generation transformer - autoregressive model (Bloem
2019)
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 Example followed
 Training from sequences of length 256, using 12 transformer blocks and 256 

embedding dimensions
 After training, let the model generate characters from a 256 input character

sequence seed
 For a sequence of 256 input characters the Transformer generates a distribution for 

the new character (257 ).

 Sample from this distribution and feed back to the input for predicting the next
(258 ) character, etc

Sample output (training from 10 characters from Wikipedia 
including markups):
1228X Human & Rousseau. Because many of his stories were originally 
published in long-forgotten magazines and journals, there are a number of 
[[anthology|anthologies]] by different collators each containing a different 
selection. His original books have been considered an anthologie in the 
[[Middle Ages]], and were likely to be one of the most common in the [[Indian 
Ocean]] in the [[1st century]]. As a result of his death, the Bible was 
recognised as a counter-attack by the [[Gospel of Matthew]] (1177-1133),…



Cross-attention
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Appendix - Historical side: Transformer networks (Vaswani 2017)

 The first implementation of Transformer was proposed by (Vaswani 2017) as an 
encoder-decoder scheme

 Modern implementation make use of transformer blocks, either encoders, 
decoders or encoder-decoder schemes

 It is however interesting to look at the initial idea in order to understand the 
vocabulary

 General scheme
 Stacks of encoder/ decoder modules

 Encoders (resp. decoders) have the same structure but do not share parameters

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

No pain no gain

on n’a rien sans rien

Input: word
embeddings

Output: word
probabilities/ best 
sequence
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Appendix - Historical side: Transformer networks (Vaswani 2017, 
illustrations J. Alammar 2018)
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 Encoder-Decoder modules structure

 Encoder
 Input flows through a self attention layer – encoding of a word in the sequence will depend on the other words
 Outputs of the self attention layer are fed in a feed-forward NN. The same network is used for each word

position

 Decoder: 2 differences with the encoder
 1.  The decoder has an additional encoder-decoder attention layer that focuses on relevant parts of the input 

provided by the encoder (when the self attention module below it looks at the info from the lower layer of the 
decoder).

 2. For the self attention module, the decoder can only look at past information to predict the next word – this
is similar to the autoregressive example seen before



Appendix  - Historical side: Transformer networks (Vaswani 2017) 
illustration: J. Alammar 2018 
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 Encoder + Decoder modules 



Appendix - Historical side: Transformer networks (Vaswani 2017) 
illustration: J. Alammar 2018 

Machine Learning & Deep Learning   - P. Gallinari297

 Modern architectures use either encoder (BERT), decoder (GPT) or 
encoder-decoder (T5) schemes
 BERT (Google) makes use of masked inputs (more on that later) and looks at 

the full input sequence
 GPT (Open AI) is an autoregressive model (like a classical language model) and 

looks only at past items for predicting the future
 T5 (Google) is an encoder-decoder model designed for reformulating several

NLP tasks in a text to text framework



Large size transformers
examples

Contextual encodings: 
Large size SOTA Transformer models: GPT – Decoder model

BERT – encoder model
T5 – Encoder Decoder model
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Large size transformers
Some resources
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 HuggingFace Transformer library
 Offers several implementation of recent transformer models in PyTorch and Tensorflow

 https://huggingface.co/

 List of transformers from Huggingface
 https://huggingface.co/docs/transformers/index
 https://huggingface.co/models

 BERT

 Tutorial on BERT word embeddings https://mccormickml.com/2019/05/14/BERT-word-
embeddings-tutorial/

 BERT as used in Google search engine as of 2019
 https://searchengineland.com/faq-all-about-the-bert-algorithm-in-google-search-

324193#:~:text=BERT%2C%20which%20stands%20for%20Bidirectional,of%20words
%20in%20search%20queries.

 Demos for different NLP tasks from Allen AI
 https://demo.allennlp.org/
 For a GPT2 demo see « language modeling »



Large size transformers
Teaser
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 NLP
 ChatGPT (OpenAI) https://chat.openai.com/chat
 LaMDA - https://blog.google/technology/ai/lamda/, 

https://arxiv.org/abs/2201.08239
 PALM - https://ai.googleblog.com/2022/04/pathways-language-model-palm-

scaling-to.html

 Text to Image
 Craiyon :  public version of Dall-E - https://www.craiyon.com/
 Dall-e https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/



Large size language models based on transformers
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 Right after the seminal publication on transformers (Vaswany 2027), several large size 
models based on these ideas were developed by different groups

 They have in common:
 Large size models and large corpora!!
 Credo:

 pretrain on large size corpora and fine tune on downstream tasks - Larger is better 
 Training on very large size corpora

 General objective: learn token representations in an unsupervised way from large corpora that could be used with
little adaptation for specific downstream tasks (requiring « small » labeled datasets) w/ or w/o fine tuning of the 
whole model

 Easily adaptable for a variety of downstream tasks
 Token level e.g. Named Entity Recognition (NER), …
 Sentence level e.g. Query Answering Q/A, text classification, …

Fig: https://arxiv.org/pdf/2310.05694.pdf



Large size language models based on transformers
ELMo (Peters et al. 2018. Deep contextualized word representations. NAACL (2018)).
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 Contextual word representation
 In Word2Vec, FastText, GloVe, word representations are unique
 We might want context dependent word representations
 This is what ELMo introduced
 (slides from https://fr2.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018)



Large size language models based on transformers
GPT family (OpenAI)
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 GPT (Radford et al. 2018), GPT 2 (Radford et al. 2019), GPT 3 (Radford et 
al. 2020) etc
 GPT means Generative Pre Training
 Language models based on transformer decoder architecture (Liu et al. 2018)

 As for the other Transformer models, training proceeds in 2 steps
 Unsupervised language modeling
 Fine tuning on downstream tasks
 Successive models are larger and larger and trained on larger and larger corpora

 GPT 2 comes in different versions from 117 M parameters (12 transformer decoder
blocks) to 1.542 M parameters (48 transformer decoder blocks)

 It is trained on a corpus of 8 M documents, 40 GB of text (scraped web pages curated by 
humans to ensure document quality)

 Demonstrates the ability of language models to solve tasks they are not trained on
 Hence proposes an alternative to fine tuning

 GPT 3: 96 Transformer decoder modules stacked, 175 Billions parameters (2020)
 100 times bigger than GPT2
 Demonstrates thatVERY LARGE models perform well on zero shot and few shot learning
 Started developments by different companies on LLM (Large Language Models)



Large size language models based on transformers
GPT family (OpenAI)
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 The decoder model
 Basically a masked – autoregressive model
 More details in http://jalammar.github.io/illustrated-gpt2/

 Open AI Blog on GPT2
 https://openai.com/blog/better-language-models/
 Paper

 https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

 GPT3
 Paper

 https://arxiv.org/pdf/2005.14165.pdf
 API released in 2020

 https://openai.com/blog/openai-api/
 Demos

 https://beta.openai.com/
 https://beta.openai.com/examples/

 GPT3.5, GPT4
 Popularized by chatGPT



Large size language models based on transformers
GPT family (OpenAI)
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 Downstream tasks beyond language modeling
 GPT (Radford et al. 2018)

 Classification, Entailment, Similarity, Q/A with multiple choices

 Context slot for the downstream tasks: for Q/A (multiple choices) contains text + 
questions

Transformer model 
Unsupervised training

Downstream
tasks (fine tuning)



Large size language models based on transformers
GPT family (OpenAI) – GPT2
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 GPT 2
 Same general architecture than GPT with some modifications

 layer normalization changed, initialization, scaling, etc…

 Training dataset
 40 GB of text (scraped web pages curated by humans to ensure document quality)

 Input representation
 Modified Byte Pair Encoding (see later)

 Training
 Language model only (unsupervised)

 Demonstrates that language models trained in an unsupervised way can achieve good 
performance, sometimes SOTA, on diverse tasks in  few shot, zero shot learning
schemes

 Generalize the use of prompting for task conditioning and for providing few shots 
examples
 Language allows to provide in a natural ways task indication and task examples
 Translation: (translate to French, English text, French text)
 Reading comprehension: (answer the question, document, question, answer)



Large size language models based on transformers
GPT family (OpenAI) – GPT2
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 Test tasks (not trained on)
 Language modeling on test datasets it has not been trained on – possibly

different from the web training dataset
 Predict the final word of sentences
 Reading comprehension

 Conditioning: document, associated conversation (sequence of questions and answers
about the text, final question GPT is asked to answer)

 Summarization
 Translation

 Conditioning
 Sequence of example pairs of the format english sentence = french sentence, and a 

final english sentence =
 Greedy decoding is then used on the output of GPT2, first generated sentence is

used as translation

 Question answering



Large size language models based on transformers
GPT family (OpenAI) – GPT3
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 GPT3 is 100 times larger than GPT2 – 175 B parameters for the 
larger model @year 2020

 Training dataset
 Same as for GPT2 – about 3 B words cleaned and augmented

 Model
 Same general architecture as GPT2 – auto-regressive decoder

 Demonstrates thatVERY LARGE models are able to perform SOTA 
on few shot and zero shot learning
 Size change qualitatively the ability of the model
 Starts the exploration of LLM for solving a variety of language tasks
 At the core of later developments like ChatGPT



Large size language models based on transformers
GPT family (OpenAI) – GPT3
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 Importance of size



Large size language models based on transformers
GPT family (OpenAI) – GPT3
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 Few shot etc
Figure 2.1: Zero-shot, one-
shot and few-shot, 
contrasted with traditional 
fine-tuning. The panels 
above show
four methods for 
performing a task with a 
language model – fine-
tuning is the traditional 
method, whereas zero-, 
one-,
and few-shot, which we 
study in this work, require 
the model to perform the 
task with only forward 
passes at test
time. We typically present 
the model with a few 
dozen examples in the few 
shot setting.



Large size language models based on transformers
GPT family (OpenAI) – GPT3
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 Arithmetic
 To test GPT-3’s ability to perform simple arithmetic operations without task-specific 

training, we developed a small battery of 10 tests that involve asking GPT-3 a simple 
arithmetic problem in natural language:

 • 2 digit addition (2D+) – The model is asked to add two integers sampled uniformly 
from [0; 100), phrased in the form of a question, e.g. “Q: What is 48 plus 76? A: 124.”

 • 2 digit subtraction (2D-) – The model is asked to subtract two integers sampled 
uniformly from [0; 100); the answer may be negative. Example: “Q: What is 34 minus 53? 
A: -19”.

 • 3 digit addition (3D+) – Same as 2 digit addition, except numbers are uniformly 
sampled from [0; 1000).



Large size language models based on transformers
GPT family (OpenAI) – GPT3
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 See prompting and few shot examples starting p 50 on 
https://arxiv.org/pdf/2005.14165.pdf

 Few shot translation
 Training dataset contains 93% english words and 7% non english
 Language model trained on this corpus (no translation training)
 Evaluated on aligned datasets not seen during training



Large size language models based on transformers
GPT family (OpenAI) – GPT3
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 Choosing an answer
 PIQA

 Common sense questions on the physical world

 COPA
 A task from the superGLUE dataset



Large size language models based on transformers
BERT family (Google)

Machine Learning & Deep Learning   - P. Gallinari315

 BERT family is a reference transformer model family
 BERT: Bidirectional Encoder Representations from Transformers
 It comes in many variants, see e.g. the available implementations in the Hugging Face 

library, https://huggingface.co/
 It is used in many different contexts

 e.g. multilingual BERT (about 100 languages)

 As with GPT, BERT proceeds in two steps
 Unsupervised language model training on large corpora
 Supervised fine tuning for a variety of tasks

 Originality
 Two training criteria

 Masked Language Model (MLM) + Next Sentence Prediction (NSP)
 Remember: downstream tasks may be at the token (MLM criterion) or sequence (NSP 

criterion) level
 Bidirectional Encoder: considers a whole sequence at each step and not only past

information like in auto-regressive models (GPT)
 The same architecture is used for unsupervised training and fine tuning (except from

output layers specific to downstream tasks)



Large size language models based on transformers
BERT family (Google)
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 General overview
Next Sentence Prediction

(training loss)

Masked Language
model (training loss)

Input sentence pair

Masked sentence pair

Token embeddings –
input to the transformer

Output: final token
embeddings

CLS: start symbol

SEP: sentence 
separator symbol

C: final transformation 
of input  token CLS

𝑇 : final transformation 
of input  token Tok 1



Large size language models based on transformers
BERT family (Google)
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 Input representation

 The initial token is always the special symbol CLS
 The final hidden state corresponding to this token is used as the input sequence agregate

representation for classification tasks
 Embeddings:  WordPiece Embeddings with a 30k token vocabulary (detailed later)

 Segment embedding indicates 1st or 2nd sentence (learned)
 Position embeddings

 As in the transformer description or relative position depending on the model



Large size language models based on transformers
BERT family (Google)
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 Training criteria
 Masked Language Model - MLM

 Mask 15% of the input tokens at random and predict the masked tokens.

 The final hidden vector corresponding to the Masked token are fed to a softmax layer 
as in classical Language Models
 Note: additional tricks are used in practice for the masking



Large size language models based on transformers
BERT family (Google)
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 Training criteria
 Next Sentence Prediction - NSP

 2 classes classification problem: is sentence B following sentence A in the corpus?
 Training on 50% positive/ negative samples
 1 item output
 This is supposed to encode whole input sentences



Large size language models based on transformers
BERT family (Google)
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 Pre-training data
 Books Corpus (800 M words)
 English Wikipedia (2500 M words)



Large size language models based on transformers
BERT family (Google)
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 Fine tuning
 Plug the task specific inputs and 

outputs into BERT and fine tune 
end to end.

 At the output, the token
representations are fed into an 
output layer for token level tasks
(sequence Tagging like NER, Q/A) 
and the CLS representation is fed
into an output layer for 
classification (e.g. entailment, 
sentiment analysis)



Large size language models based on transformers
BERT family (Google)
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 Feature Learning
 Instead of fine tuning, the model could be used to extract token representations

from a pre-trained model. The token are then fed into task specific architectures 
without fine tuning of the token representations (as with Word2Vec). 
 The paper indicates performance not far from fine tuning



Large size language models based on transformers
BERT family (Google)
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 Feature Learning



Large size language models based on transformers
BERT family (Google)
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 RoBERTa (Liu et al 2019)
 Follow up of BERT, analyzes key hyperparameters of BERT and proposes efficient 

strategies
 Has became a reference for BERT like architectures
 Main findings

 MLM training criterion is enough, no need for NSP

 Training with large batches improves performance

 More training data improves performance



Large size language models based on transformers
T5 (Google)
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 Illustrations from
 Raffel, C., et al. 2020. Exploring the Limits of Transfer Learning with a Unified 

Text-to-Text Transformer. JMLR. 21, (2020), 1–67.
 Slides: https://colinraffel.com/talks/mila2020transfer.pdf

 Objective of the paper
 Explore different strategies for large size Tranformers on a variety of NLP tasks

 model architectures, pre-training and fine tuning training objectives, transfer learning, 
scaling, etc

 Strategy
 Introduce a Text-to-Text framework allowing handling several NLP tasks in a 

unified way



Large size language models based on transformers
T5 (Google)
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 Framework: Text-to-Text Transfer Transformer (T5)
 Reformulate NLP tasks used in classical benchmarks (classification, 

summarization, translation) in a Text-to-Text framework
 Both input and output are textual strings

 Evaluate within this unified framework different model design choices

Task premise: 
this string 

defines the task

Input 
sentence

Output 
sentence

Translation

Classification

Regression

Summarization



Large size language models based on transformers
T5 (Google)
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 Framework: Text-to-Text Transfer Transformer (T5)
 Text-to-Text requires a decoder to generate text

 BERT encoders are designed to produce a single output per token, i.e. they are ok for 
classification tasks or text span selection, not directly applicable for generation

 This frameworks allows them to use maximum likelihood (typically cross-entropy) as 
a training objective for both pretraining and fine tuning

 Note:
 at test time, they use greedy decoding
 Vocabulary: Sentencepiece with a 32 k vocabulary

 Examples how to reframe NLP tasks in T5
 Translation

 Input: « translate English to German:That is good », translate English to German is a premise
(a promt) that defines the task

 Output: « das ist gut »
 Text classification

 MNLI benchmark: goal is to predict wether a premise implies (« entailment »), contradicts
(« contradiction ») or neither (« neutral ») a hypothesis

 Input: « mnli premise: I hate pigeons. Hypothesis: my feeling towards pigeons are filled with
animosity »

 Output: target word « entailment »



Large size language models based on transformers
T5 (Google) - illustration: J. Alammar 2018 
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 T5 architecture:
 different choices, best one is Encoder + Decoder close to the original 

Transformer (Vaswani 2017)



Large size language models based on transformers
T5 (Google)
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 Pre-training dataset 750 GB of text extracted from the web and 
cleaned (below examples of the cleaning process)
 Available at https://www.tensorflow.org/datasets/catalog/c4



Large size language models based on transformers
T5 (Google)
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 Unsupervised training objective
 Best one is similar to MLM in BERT (other choices discussed later)

Sample tokens in the 
input text

Replace them with « sentinel » -
special tokens uniques over the 
examples

Target: sentinel tokens + 
missing tokens
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 Workflow
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 Large scale comparison
 Comparing different hyperparameters, like architecture, training criteria, 

multitask versus pretraining + fine tuning, etc.

 Main findings
 Text-to-Text provides a simple way to train a single model on a variety of tasks
 Original encoder-decoder scheme works best in the T2T framework
 Objective: the MLM objective is superior to classical language based prediction
 Transfer training: fine tuning the whole model works better than tuning task

specific modules only
 Scale: larger models, more data increase the performance
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 Large scale comparison, example: Architectures evaluated
 3 types of architectures involving 3 attention patterns

 Fully-visible: similar to BERT

 Causal: similar to GPT

 Causal with prefix: allows full attention of part of the input
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 Large scale comparison, example: 3 architectures evaluated
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 Large scale comparison, example: different objectives for training



Large size language models based on transformers
T5 (Google)

Machine Learning & Deep Learning   - P. Gallinari336

 Summary of experiments
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 Recap on models architectures
 Different schemes for using Transformers (figure from Lewis, et al. 2019. BART: Denoising

sequence-to-sequence pre-training for natural language generation, translation, and comprehension).
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 A text is a sequence of characters
 An important step is the segmentation of the sequence into

meaningful units – this is calleds tokenization
 All the methods for dealing with NLP (RNNs, Transformers) use some form of 

tokenization.
 This means that a pretrained model should be used with the 

corresponding tokenization

 Note
 This is not the only one preprocessing step, cleaning, e.g. lowercase, or other

normalization operations might be performed.
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 Example from:
 https://huggingface.co/transformers/tokenizer_summary.html

 Consider the sentence:
 "Don't you love Transformers? We sure do."

 Naive tokenization methods
 Split words by spaces

 ["Don't", "you", "love", "Transformers?", "We", "sure", "do."]

 Split items by spaces and punctuation
 ["Don", "'", "t", "you", "love", "Transformers", "?", "We", "sure", "do", "."]
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 Rule based tokenizers
 spaCy: a free, open-source library for NLP in Python. It offers a rule based 

tokenizer. spaCY splits on spaces and then  looks individual substrings: looks for 
special tokens (may be user defined), and splits off prefixes, suffixes, infixes.

 Results in (too) large vocabulary – not used with transformers

 For the sentence "Don't you love Transformers? We sure do.” this would give 
(https://spacy.io/usage/spacy-101#annotations)
 ["Do", "n't", "you", "love", "Transformers", "?", "We", "sure", "do", "."]
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>>> from transformers import BertTokenizer

>>> tokenizer=BertTokenizer.from_pretrained("bert-base-uncased")

>>> tokenizer.tokenize("I have a new GPU!")

["i", "have", "a", "new", "gp", "##u", "!"]

>>> from transformers import XLNetTokenizer

>>> tokenizer=XLNetTokenizer.from_pretrained("xlnet-base-cased")

>>> tokenizer.tokenize("Don't you love Transformers? We sure do.") 

["▁Don", "'", "t", "▁you", "▁love", "▁", "Transform", "ers", "?", "▁We", "▁sure", "▁do", "."]
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 Relies on a pre-tokenizer that splits training data into words
 e.g. space tokenization, spaCy, etc
 Then compute the frequency of each word

 Algorithm
 Split all words into unicode characters – this constitutes the initial vocabulary
 While the vocabulary limit size is not reached

 Find the most frequent symbol bigram in the vocabulary
 Merge the symbols to create a new symbol and add this new symbol to the vocabulary

 Size of vocabulary and # merge operations are parameters of the algorithm
 Used in GPT (478 base symbols and 40 k merges)
 GPT2 uses a variant, replacing unicode characters by Bytes and using 256 bytes as 

base symbols (a unigram character may need multiple bytes for its encoding) and 50 k 
merges plus an « unk » symbol for symbols not seen during training, i.e. a 50257 
dictionary size
 With Byte BPE, no need for « unk » symbol, all the Bytes are seen during training
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 Example
Dictionary (5 words) Frequency

h u g 10

p u g 5

p u n 12

b u n 4

h u g s 5

Dictionary Frequency

h ug 10

p ug 5

p u n 12

b u n 4

h ug s 5

Vocabulary (7 symbols)

b, g, h, n, p, s, u

Vocabulary

b, g, h, n, p, s, u, ug

Pair (u,g) is the most frequent
(20) bigram, add a new symbol, 
« ug » in the vocabulary, and 
merge the corresponding
representations

Pair (u,n) is the most frequent
(16) bigram, add a new symbol, 
« un » in the vocabulary, and 
merge the corresponding
representations
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 Example

Dictionary Frequency

hug 10

p ug 5

p un 12

b un 4

hug s 5

Dictionary Frequency

h ug 10

p ug 5

p un 12

b un 4

h ug s 5

Pair (h, « ug ») is the most
frequent (15) bigram, add a 
new symbol, « ug » in the 
vocabulary, and merge the 
corresponding representations

Vocabulary

b, g, h, n, p, s, u, ug, un

Vocabulary

b, g, h, n, p, s, u, ug, un, hug

At test time, all the new text is
decomposed according to the 
final dictionary, e.g. « bug » is
tokenized as [« b », »ug »] and 
symbols not seen during training 
are replaced by a special
symbol « unk »
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 Merge is performed at the word level and not at the level of whole
sentences or sequences
 This is to save computation cost

 If there are N symbols, naive implementation of most frequent bigram requires 𝑂 𝑁
operations
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 Similar to BPE, but merge rule changes
 Instead of merging the most frequent bigrams, Wordpiece merges the symbol

pair that maximises the likelihood of a unigram language model trained on the 
training data, once added to the vocabulary

 Log likelihood at step t

 𝐿 𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑡 ∑ log𝑝 𝑥∈

 If we fusion symbols 𝑥 and 𝑥 , the new log likelihod is

 𝐿 𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑡 1 𝐿 𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑡 log ,

 Then one merges the couple 𝑥 and 𝑥 that maximizes log ,

This is the mutual information between the 2 symbols
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 Does not use pre-tokenization but considers the text as a raw input 
stream then including space and separation characters.

 Makes use of BPE or Unigram (another tokenizer not described
here) for constructing the appropriate vocabulary.
 Makes use of a special data structure (priority queue based algorithm) to reduce

the asymptotic runtime from 𝑂 𝑁 to 𝑂 𝑁𝑙𝑜𝑔𝑁

 Properties
 Could be used easily on a variety of languages including languages that do not 

use spaces to separate words (e.g. Chinese)
 Does not require any language specific tokenizers
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 Classification tasks – GLUE and Super Glue Benchmarks
 MNLI Multi-Genre Natural Language Inference

 is a large-scale, crowdsourced entailment classification task (Williams et al., 2018). 
Given a pair of sentences, the goal is to predict whether the second sentence is an 
entailment, contradiction, or neutral with respect to the first one.

 QQP Quora Question Pairs
 is a binary classification task where the goal is to determine if two questions asked on 

Quora are semantically equivalent (Chen et al., 2018).
 QNLI Question Natural Language Inference

 Is a version of the Stanford Question Answering Dataset (Rajpurkar et al., 2016) which 
has been converted to a binary classification task (Wang et al., 2018a). The positive 
examples are (question, sentence) pairs which do contain the correct answer, and the 
negative examples are (question, sentence) from the same paragraph which do not 
contain the answer.

 SST-2 The Stanford Sentiment Treebank
 is a binary single-sentence classification task consisting of sentences extracted from 

movie reviews with human annotations of their sentiment (Socher et al., 2013).
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 CoLA The Corpus of Linguistic Acceptability
 is a binary single-sentence classification task, where the goal is to predict whether an 

English sentence is linguistically “acceptable” or not (Warstadt et al., 2018).

 STS-B The Semantic Textual Similarity Benchmark
 is a collection of sentence pairs drawn from news headlines and other sources (Cer et 

al., 2017). They were annotated with a score from 1 to 5 denoting how similar the two 
sentences are in terms of semantic meaning.

 MRPC Microsoft Research Paraphrase Corpus
 consists of sentence pairs automatically extracted from online news sources, with 

human annotations for whether the sentences in the pair are semantically equivalent 
(Dolan and Brockett, 2005).

 RTE Recognizing Textual Entailment
 is a binary entailment task similar to MNLI, but with much less training data (Bentivogli

et al., 2009).14
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 Question Answering
 The Stanford Question Answering Dataset (SQuAD v1.1) is a collection of 100k 

crowdsourced question/answer pairs (Rajpurkar et al., 2016). Given a question 
and a passage from Wikipedia containing the answer, the task is to predict the 
answer text span in the passage.

 The SQuAD 2.0 task extends the SQuAD 1.1 problem definition by allowing for 
the possibility that no short answer exists in the provided paragraph, making the 
problem more realistic.

 Q/A with multiple choices
 The Situations With Adversarial Generations (SWAG) dataset contains 113k 

sentence-pair completion examples that evaluate grounded commonsense 
inference (Zellers et al., 2018). Given a sentence, the task is to choose the most 
plausible continuation among four choices.



References: papers used as illustrations for the presentation

Machine Learning & Deep Learning   - P. Gallinari352

 Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks. In Proceedings of The 34th International Conference 
on Machine Learning (pp. 1–32). Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent 
Adversarial Networks. In ICCV (pp. 2223–2232). 

 Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. 

 Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly Learning To Align and Translate. In Iclr 2015. 
https://doi.org/10.1146/annurev.neuro.26.041002.131047

 Baydin Atilim Gunes , Barak A. Pearlmutter, Alexey Andreyevich Radul, Automatic differentiation in machine learning: a survey. CoRR abs/1502.05767 
(2017)

 Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proceedings of 
the National Academy of Sciences of the United States of America, 116(32), 15849–15854. https://doi.org/10.1073/pnas.1903070116

 Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for 
Computational Linguistics, 5, 135-146.

 Cadène R., Thomas Robert, Nicolas Thome, Matthieu Cord:M2CAI Workflow Challenge: Convolutional Neural Networks with Time Smoothing and 
Hidden Markov Model for Video Frames Classification. CoRR abs/1610.05541 (2016)

 Chen M. Denoyer L., Artieres T. Multi-view Generative Adversarial Networks without supervision, 2017 , https://arxiv.org/abs/1711.00305.

 Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, 
Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848. 
https://doi.org/10.1109/TPAMI.2017.2699184

 Cho, K., Gulcehre, B. van M.C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. 2014. Learning Phrase Representations using RNN Encoder –
Decoder for Statistical Machine Translation. EMNLP 2014 (2014), 1724–1734.

 Cybenko, G. (1993). Degree of approximation by superpositions of a sigmoidal function. Approximation Theory and Its Applications, 9(3), 17–28. 

 Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. In arxiv.org/abs/1603.07285 (pp. 1–31). 

 Durand T. , Thome, N. and Cord M., WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks, CVPR 2016.

 Frome, A., Corrado, G., Shlens, J., Bengio, S., Dean, J., Ranzato, M.A. and Mikolov, T. 2013. DeViSE: A Deep Visual-Semantic Embedding Model. NIPS 
2013 (2013).

 Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In CVPR (pp. 2414–2423). 



References: papers used as illustrations for the presentation

Machine Learning & Deep Learning   - P. Gallinari353

 Goodfellow I, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio , Generative adversarial nets, NIPS 2014, 2672-2680

 Goodfellow, I., Pouget-Abadie, J., & Mirza, M. (2014). Generative Adversarial Networks. NIPS, 2672--2680. 

 Guhring et al., 2020, Expressivity of deep neural networks, arXiv:2007.04759

 He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual learning for image recognition. In CVPR, 770–778.

 He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity mappings in deep residual networks. In ECCV, 630–645.

 He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2017–Octob, 2980–2988. 

 Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward Networks [J]. Neural Networks, 4(2), 251–257. 

 Ioffe S., Szegedy C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 1995, http://arxiv.org/abs/1502.03167

 Jalammar 2018 - http://jalammar.github.io/illustrated-transformer/

 Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., & Girshick, R. (2017). CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. In CVPR (pp. 1988–1997). 
https://doi.org/10.1109/CVPR.2017.215

 Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Fei-Fei, L., Zitnick, C. L., & Girshick, R. (2017). Inferring and Executing Programs for Visual Reasoning. In ICCV (pp. 3008–3017).  
ttps://doi.org/10.1109/ICCV.2017.325

 Krizhevsky, A., Sutskever, I. and Hinton, G. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information. (2012), 1106–1114.

 Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J. and Ng, A. 2012. Building high-level features using large scale unsupervised learning. Proceedings of the 29th International Conference on 
Machine Learning (ICML-12). (2012), 81–88.

 Lerer, A., Gross, S., & Fergus, R. (2016). Learning Physical Intuition of Block Towers by Example. In Icml (pp. 430–438). Retrieved from http://arxiv.org/abs/1603.01312

 Lin, M., Chen, Q., & Yan, S. (2013). Network In Network. In arxiv.org/abs/1312.4400. https://doi.org/10.1109/ASRU.2015.7404828

 Lin, Z., Feng, M., Santos, C. N. dos, Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A Structured Self-attentive Sentence Embedding. In ICLR. 

 Liu, P.J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, Ł. and Shazeer, N. 2018. Generating wikipedia by summarizing long sequences. ICLR (2018), 1–18.

 Mathieu, M., Couprie, C., & LeCun, Y. (2016). Deep multi-scale video prediction beyond mean square error. In ICLR (pp. 1–14). Retrieved from http://arxiv.org/abs/1511.05440

 Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. In arxiv.org/abs/1411.1784. 

 Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. In NIPS Deep Learning Workshop. 
https://doi.org/10.1038/nature14236

 Nakkiran, P., Kaplum, G., Bansal, Y., Yang, T., Barak, P., & Sutskever, I. (2020). Deep Double Descent: Where Bigger Models and More Data Hurt. ICLR, 1–24.

 Pearlmutter B.A., Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Trans on NN, 1995



References: papers used as illustrations for the presentation

Machine Learning & Deep Learning   - P. Gallinari354

 Pennington, J., Socher, R. and Manning, C.D. 2014. GloVe : Global Vectors for Word Representation. EMNLP 2014 (2014), 1532–1543.

 Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In 
arxiv.org/abs/1511.06434 (pp. 1–15). https://doi.org/10.1051/0004-6361/201527329

 Radford, Luke Metz, Soumith Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016, 
http://arxiv.org/abs/1511.06434

 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. In CVPR (pp. 779–788). 

 Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. and Lee, H. 2016. Generative Adversarial Text to Image Synthesis. Icml (2016), 1060–1069.

 Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016). Generative Adversarial Text to Image Synthesis. In Icml (pp. 1060–1069).

 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In MICCAI 2015: Medical Image 
Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). 

 Ruder S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

 Shelhamer, E., Long, J., Darrell, T., Shelhamer, E., Darrell, T., Long, J., … Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. 
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3431–3440). 

 Srivastava N., Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov: Dropout: a simple way to prevent neural networks from 
overfitting. Journal of Machine Learning Research 15(1): 1929-1958 (2014)

 Sutskever, I., Vinyals, O. and Le, Q. V 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems
(NIPS) (2014), 3104–3112.

 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention Is All You Need. In NIPS.
 Vinyals, O., Toshev, A., Bengio, S. and Erhan, D. 2015. Show and Tell: A Neural Image Caption Generator, CVPR 2015: 3156-3164

 Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., … Goodlin, R. C. (1975). 1975 Adaptive noise cancelling: Principles 
and applications. Proceedings of the IEEE, 63(12), 1692–1716. https://doi.org/10.1109/PROC.1975.10036

 Wu, Yonghui,  Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus 
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith 
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, 
Jeffrey Dean, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, Technical Report, 2016.



References: papers used as illustrations for the presentation

Machine Learning & Deep Learning   - P. Gallinari355

 Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., … Bengio, Y. (2015). Show, Attend and Tell: Neural Image 
Caption Generation with Visual Attention. In Icml-2015 (pp. 2048–2057). https://doi.org/10.1109/72.279181

 Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for Document Classification. 
In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language 

 Yu, F., & Koltun, V. (2016). Multi-Scale Context Aggregation by Dilated Convolutions. In ICLR, arxiv.org/abs/1511.07122. 



Multi-layer Perceptron – SGD Training
Summary of the algorithm with MSE loss + sigmoid units
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 The algorithm is described for a MSE loss – similar derivations for 
other losses

 MLP with 𝑀 1 layers of cells numbered 0 (input layer), …, 𝑀(output layer), 𝑀 weight
layers numbered 𝑊 1 , … ,𝑊 𝑀 ,𝑤 𝑚 is the weight from cell 𝑗 in layer 𝑚 1 to 
cell 𝑖 in layer 𝑚 (and is one of the components of 𝑊

 Algorithm
 Sample an example 𝒙,𝒚 ,𝒙 ∈ 𝑅 , 𝐲 ∈ 𝑅
 Compute output 𝒚 𝐹 𝒙 ,𝒚 ∈ 𝑅
 Compute difference 𝜹 𝒚 𝒚 𝑦 𝑦 , … , 𝑦 𝑦
 Back propagate this error from the last weight layer to the first weight layer:

 𝑤 𝑚 𝑤 𝑚 ∆𝑤 𝑚  update equation for layer 𝑚 and weight 𝑤
 ∆𝑤 𝑚 𝜖𝑒 𝑚 𝑧 𝑚 1   gradiant for  𝑤 𝑚

 « 𝑒 » is the quantity that will be back propagated
 𝑒 𝑀 𝛿 𝑔′ 𝑎 𝑀 if 𝑖 is an output cell with 𝛿 𝑦 𝑦
 𝑒 𝑚 𝑔′ 𝑎 𝑚 ∑ 𝑒 𝑚 1 𝑤 𝑚 1   if 𝑖 is not an output cell


