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Advanced Deep learning
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 Generative models
 Variational Auto-Encoders
 Generative Adversarial Networks
 Diffusion models

 AI4Science - Physics Based Deep Learning
 Neural Nets and Ordinary Differential Equation
 Neural Networks for modeling spatio-temporal dynamics

• NNs as surrogate models for solving Partial Differential Equations
• Incorporating physical knowledge in statistical dynamics models
• Generalization for agnostic ML models for dynamics modeling
• Foundation models for science



Generative models

Variational Auto-Encoders
Generative Adversarial Networks

Diffusion models

Advanced Deep learning3



Generative models
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 Objective
 Learn a probability distribution model from data samples

 Given 𝑥ଵ, … , 𝑥ே ∈ 𝑅௡ learn to approximate their underlying distribution 𝒳
 For complex distributions, there is no analytical form, and for large size spaces

(𝑅௡) approximate methods (e.g. MCMC) might fail
 Deep generative models recently attacked this problem with the objective of  

handling large dimensions and complex distributions
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https://en.wikipedia.org/wiki/Edmond_de_Belamy
432 k$ Christies in 2018

De Bezenac et al. 2021
Generating female images from
male ones

Xie et al. 2019
artificial smoke



Generative models
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 Objective 
 General setup of deep generative models

 Learn a generator network 𝑔ఏ:𝑅௤ → 𝑅௡ that transforms a latent distribution 
𝒵 ⊂ 𝑅௤to match a target distribution 𝒳
 𝒵 is usually a simple distribution e.g. Gaussian from which it is easy to 

sample, 𝑞 ൏ 𝑛
 This is unlike traditional statistics where an analytic expression for the 

distribution is sought
 Once trained the generator can be used for:
 Sampling from the latent space: 
 𝑧 ∈ 𝑅௤~𝒵 and then generate synthetic data via 𝑔ఏ . , 𝑔ఏ 𝑧 ∈ 𝑅௡

 When possible, density estimation 𝑝ఏ 𝑥 ൌ ׬ 𝑝ఏ 𝑥 𝑧 𝑝𝒵 𝑧 𝑑𝑧 
 with 𝑝ఏ 𝑥 𝑧 a function of 𝑔ఏ



Generative models intuition
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 Let 𝑧ଵ, … , 𝑧ே , 𝑧௜ ∈ 𝑅௤ and 𝑥ଵ, … , 𝑥ே , 𝑥௜ ∈ 𝑅௡, two sets of points 
in different spaces
 Provided a sufficiently powerful model gሺ𝑥ሻ, it should be possible to 

learn complex deterministic mappings associating the two sets:

gሺzଵሻ

gሺzଶሻ

gሺzଷሻ
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𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑅௤

𝑅௡

zଵ

zଶ
zଷ



Generative models intuition
 Given distributions on a latent space 𝑝௭ሺzሻ, and on the data space
𝑝௫ሺ𝑥ሻ, it is possible to map 𝑝௭ሺzሻ onto 𝑝௫ 𝑥 ?
 𝑔ఏ defines a distribution on the target space 𝑝௫ 𝑔ఏ 𝑧 ൌ 𝑝ఏሺ𝑥ሻ

 𝑝ఏሺ𝑥ሻ is the generated data distribution, objective: 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ
 Data generation: sample z~𝑍, transform with 𝑔ఏ, 𝑔ఏሺ𝑧ሻ

Advanced Deep learning

𝑔ఏሺzሻ

𝑔ఏሺzሻ

𝑔ఏሺzሻ

𝒛 𝜽 𝒙
Latent 𝑧 space Target 𝑥 space
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Generative models intuition
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 Data generation: sample z~𝑍, transform with 𝑔ఏ, 𝑔ఏ 𝑧

 Important issue
 How to compare predicted distribution  𝑝ఏሺ𝑥ሻ and target distribution 
𝑝𝒳 𝑥 ?

ఏ



Course objective
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 Introduce three popular families of generative models
 Joint requirements

 Learn a generator 𝑔ఏ from samples so that distribution 𝑔ఏ 𝒵 is close to data 
distribution 𝒳, 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ

 This requires measuring the similarity between 𝑔ఏ 𝒵 and 𝒳
 Different similarities are used for each family

 Three families
 Variational autoencoders

 𝑔ఏ:𝑅௤ → 𝑅௡, 𝑞 ≪ 𝑛
 Trained to maximize a lower bound of the samples’ likelihood
 Assumption: a density function explains the data

 Generative Adversarial Networks
 𝑔ఏ:𝑅௤ → 𝑅௡, 𝑞 ≪ 𝑛
 Can approximate any distribution (no density assumption)
 Similarity between generated and target distribution is measured via a 

discriminator or transport cost in the data space
 Diffusion models

 𝑔ఏ:𝑅௤ → 𝑅௡, 𝑞 ≪ 𝑛 is an iterative process based on a Markov chain
 Assumption: a density function explains the data

9



Variational Auto-Encoders

After Kingma D., Welling M.,  Auto-EncodingVariational Bayes, 
ICLR 2014

Plus some blogs – see the references

Advanced Deep learning10



Prerequisite KL divergence

Advanced Deep learning11

 Kullback Leibler divergence
 Measure of the difference between two distributions  𝑝 and 𝑞
 Continuous variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ׬ ሺlog ௣ሺ௬ሻ
௤ሺ௬ሻ

ሻ𝑝 𝑦 𝑑𝑦௬

 Discrete variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ∑ ሺlog ௣ሺ௬೔ሻ
௤ሺ௬೔ሻ

ሻ𝑝ሺ𝑦௜ሻ௜

 Property
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൒ 0
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ 0 iff 𝑝 ൌ 𝑞

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ| 𝑞 𝑦 ൌ െ𝐸௣ ௬ 𝑙𝑜𝑔 ௤ ௬
௣ ௬

൒ െ log𝐸௣ ௬
௤ ௬
௣ ௬

ൌ 0
 the first inequality is obtained via Jensen inequality:
 For a convex function 𝑓, 𝑓 𝐸 𝑥 ൑ 𝐸ሾ𝑓 𝑥 ሿ, and െlog 𝑥 is a convex function

 note: 𝐷௄௅ is asymmetric, symmetric versions exist, e.g. Jensen-Shannon 
divergence



Preliminaries – Variational methods
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 Generative latent variable model
 Let us suppose available a joint model on the observed and latent variables 
𝑝ఏ 𝑥, 𝑧

 The observations 𝑥 are generated by the following process
 Sample from 𝑧 ~𝑝ఏ 𝑧 - 𝑝ఏ 𝑧 is the prior
 generate 𝑝ఏሺ𝑥|𝑧ሻ - 𝑝ఏሺ𝑥|𝑧ሻ is the likelihood

 Training objective
 We want to optimize the likelihood of the observed data

 𝑝 𝑥 ൌ 𝑝׬ 𝑥|𝑧 𝑝ሺ𝑧ሻ𝑑𝑧 - 𝑝 𝑥 is called the evidence
 Computing the integral requires evaluating over all the configurations of latent variables,
 This is often intractable
 In order to narrow the sampling space, one may use importance sampling, i.e. sampling 

important 𝑧 instead of sampling blindly from the prior
 Let us introduce a sampling function 𝑞஍ሺ𝑧|𝑥ሻ

Z x

θ



VAEs - Intuition
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 Intuitively, 𝑧 might correspond to the factors conditioning the 
generation of the data

Fig.  (Kingma 2015)



Generative models intuition
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 What we want: organize the latent space according to some
characteristics of the observations (images) 

 See also the demos @
 https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ 

Fig.: https://ml.berkeley.edu/blog/posts/vq-vae/



VAE
Loss criterion – summary
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 The log likelihood for data point 𝑥 can be decomposed as
 log𝑝ఏ 𝑥 ൌ 𝐷௄௅ሺ𝑞థ 𝑧 𝑥 ||𝑝ఏሺ𝑧|𝑥ሻሻ ൅ 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ
 with
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 Why is it useful?
 𝐷௄௅ሺ. | . ൒ 0, then 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ is a lower bound of log𝑝ఏ 𝑥
 in order to maximize log𝑝ఏ 𝑥 , we will maximize 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ

 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ is called the ELBO: Evidence Lower Bound
 With an appropriate choice of 𝑞థሺ𝑧|𝑥ሻ this is amenable to a computationable form
 𝑞థሺ𝑧|𝑥ሻ approximates the intractable posterior 𝑝ఏሺ𝑧|𝑥ሻ
 This method is called variational inference

 In general inference denotes the computations of hidden variables given observed ones (e.g. 
infering the class of an object)

 Note
 Because each representation 𝑧 is associated to a unique 𝑥, the loss likelihood can be

decomposed for each point – this is what we do here
 The global log likelihood is then the summation of these individual losses



VAE
Loss criterion – summary
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 Variational lower bound:
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 Remarks
 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ is a reconstruction term

 Measures how well the datum 𝑥 can be reconstructed from latent 
representation 𝑧

 𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ is a regularization term:

 Forces the learned distribution 𝑞థሺ𝑧|𝑥ሻ to stay close to the prior 𝑝ሺ𝑧ሻ
 Otherwise a trivial solution would be to learn a Dirac distribution for 
𝑞థ 𝑧 𝑥

 We want the 𝑧 to be close in the latent space for similar 𝑥s
 𝑝ሺ𝑧ሻ has usually a simple form e.g. 𝒩ሺ0, 𝐼ሻ, then 𝑞థሺ𝑧|𝑥ሻ is also forced to 

remain simple



VAE details
Derivation of the loss function
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 𝒍𝒐𝒈𝒑𝜽 𝒙 ൌ 𝐃𝑲𝑳ሺ𝒒𝝓 𝒛 𝒙 ||𝒑𝜽ሺ𝐳|𝐱ሻሻ ൅ 𝑽𝑳ሺ𝛉,𝛟; 𝐱ሻ
Proof

 log𝑝ఏ 𝑥 ൌ ׬ ሺlog𝑝 𝑥 ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭ ׬) 𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧 ൌ 1ሻ௭

 log𝑝ఏ 𝑥 ൌ׬ ሺlog ௣ሺ௫,௭ሻ
௣ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ׬ ሺlog ௣ሺ௫,௭ሻ
௤ሺ௭|௫ሻ

௤ሺ௭|௫ሻ
௣ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ׬ ሺlog ௣ሺ௫,௭ሻ
௤ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭ ൅ ׬ ሺlog ௤ሺ௭|௫ሻ
௣ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ𝐸௤ሺ௭|௫ሻሾlog p x, z െ  log 𝑞 𝑧 𝑥 ሿ ൅ 𝐷௄௅ሺ𝑞ሺ𝑧|𝑥ሻ||𝑝 𝑧 𝑥 ሻ

log𝑝ఏ 𝑥 ൌ𝑉௅ 𝜃,𝜙; 𝑥 ൅ D௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝ఏ 𝑧 𝑥 ሻ
with

𝑉௅ 𝜃,𝜙; 𝑥 ൌ 𝐸௤ሺ௭|௫ሻሾlog  pఏሺ𝑥, 𝑧ሻ െ  log 𝑞థ 𝑧 𝑥 ሿ
 Maximizing log𝑝ఏ 𝑥 is equivalent to maximizing 𝑉௅ 𝜃,𝜙; 𝑥 (and minimizing

D௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝ఏ 𝑧 𝑥 ሻ
 𝑉௅ 𝜃,𝜙; 𝑥 is called an Evidence Lower Bound (ELBO)



VAE details
Derivation of the loss function
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 𝑽𝑳 𝜽,𝝓;𝒙 ൌ െ𝑫𝑲𝑳ሺ𝒒𝝓ሺ𝒛|𝒙ሻ||𝒑 𝒛 ሻ ൅ 𝑬𝒒𝝓 𝒛 𝒙 ሾ𝒍𝒐𝒈𝒑𝜽ሺ𝒙|𝒛ሻሿ

Proof:
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥, 𝑧 െ log 𝑞థሺ𝑧|𝑥ሻሿ

 𝑉௅ 𝜃,𝜙; 𝑥 ൌ E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ൅ log𝑝ఏሺ𝑧ሻ െ log 𝑞థሺ𝑧|𝑥ሻሿ

 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െD୏୐ሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ ൅ E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ]



VAE
Loss criterion – summary
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 Variational lower bound:
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 This form provides a link with a NN implementation
 The generative 𝑝ఏ 𝑥 𝑧 and inference 𝑞థ 𝑧 𝑥 modules are implemented by 

NNs
 They will be trained to maximize the reconstruction error for each ሺ𝑧, 𝑥ሻ: 
𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ term

 The inference module 𝑞థ 𝑧 𝑥 will be constrained to remain close to the 
prior 𝑝 𝑧 : െD୏୐ሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ ൎ 0



VAE
Loss - summary
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 Loss function in the NN model

 Training performed via Stochastic gradient
 This requires an analytical expression for the loss functions and for gradient 

computations
 Sampling
 deterministic

Encoder - NN

𝑔 𝑥 ൌ 𝑞థ 𝑧 𝑥𝑥

Decoder - NN

𝑧 𝑓 𝑧 ൌ 𝑝ఏ 𝑥|𝑧 𝑥

Regularization loss 
െKLሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ

Reconstruction loss 
E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ]



VAE- reparametrization trick
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 Training with stochastic units: reparametrization trick
 Not possible to propagate the gradient through stochastic units (the 𝑧s

and 𝑥s are generated via sampling)
 Solution

 Parametrize 𝑧 as a deterministic transformation of a random variable 𝜖: 𝑧 ൌ
𝑔థ 𝑥, 𝜖 with 𝜖~𝑝 𝜖 independent of 𝜙, e.g. 𝜖~𝑁ሺ0,1ሻ

 Example
 If 𝑧~𝒩ሺ𝜇,𝜎ሻ, it can be reparameterized by 𝑧 ൌ 𝜇 ൅ 𝜎⨀𝜖, with 𝜖~𝒩ሺ0,1ሻ, 

with ⨀ pointwise multiplication (𝜇,𝜎 are vectors here)
 For the NN implementation we have: 𝑧 ൌ 𝜇௭ሺ𝑥ሻ ൅ 𝜎௭ሺ𝑥ሻ⨀𝜖௭

 This will allow the derivatives to « pass » through the 𝑧
 With this expression, one may compute the gradients of the ELBO with to 

the NN parameters of 𝜇௭ሺ𝑥ሻ and 𝜎௭ሺ𝑥ሻ
 For the derivative, the sampling operation is regarded as a deterministic

operation with an extra input 𝜖௭, whose distribution does not involve
variables needed in the derivation



VAE - reparametrization trick
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 Reparametrization (fig. from D. Kingma)



VAE
Exemple: Gaussian priors and posteriors
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 Special case: gaussian priors and posteriors
 Hyp:

 𝑝 𝑧 ൌ 𝒩 0, 𝐼
 𝑝ఏ 𝑥 𝑧 ൌ 𝒩 𝜇 𝑧 ,𝜎ሺ𝑧ሻ , 𝜎ሺ𝑧ሻ diagonal matrix,  𝑥 ∈ 𝑅஽

 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ , 𝜎 𝑥  diagonal matrix,  𝑧 ∈ 𝑅௃



VAE
Exemple: Gaussian priors and posteriors - illustration
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 Decoder:
 in the example 𝑧 is 1 dimensional and 𝑥 is 2 dimensional, 𝑓 is a 1 hidden

layer MLP with gaussian output units and tanh hidden units
 full arrows:  deterministic
 dashed arrows: sampling

𝑥ଵ

𝑥ଶ

𝑧

𝜇௫ଵሺ𝑧ሻ

𝜇௫ଶሺ𝑧ሻ

𝜎௫ଵሺ𝑧ሻ

𝜎௫ଶሺ𝑧ሻ



VAE
Gaussian priors and posteriors - illustration
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 Encoder
 in the example 𝑧 is 1 dimensional and 𝑥 is 2 dimensional, 𝑔 is a 1 hidden

layer MLP with gaussian output units and tanh hidden units
 full arrows:  deterministic
 dashed arrows: sampling

𝑥ଵ

𝑥ଶ

𝑧

𝜇௭ଵሺ𝑥ሻ

𝜎௭ଵሺ𝑥ሻ



VAE
Gaussian priors and posteriors
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 Putting it all together

𝑥ଵ

𝑥ଶ

𝜇௫ଵሺ𝑧ሻ

𝜇௫ଶሺ𝑧ሻ

𝜎௫ଵሺ𝑧ሻ

𝜎௫ଶሺ𝑧ሻ

𝑥ଵ

𝑥ଶ

𝑧

𝜇௭ଵሺ𝑥ሻ

𝜎௭ଵሺ𝑥ሻ

ఏథ



VAE
Gaussian priors and posteriors
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 Additional illustration 

https://lilianweng.github.io/posts/2018-08-12-vae/



VAE details
for Gaussian priors and posteriors
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VAE – instanciation example
Gaussian priors and posteriors
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 Special case: gaussian priors and posteriors
 Hyp:

 𝑝 𝑧 ൌ 𝒩 0, 𝐼
 𝑝ఏ 𝑥 𝑧 ൌ 𝒩 𝜇 𝑧 ,𝜎ሺ𝑧ሻ , 𝜎ሺ𝑧ሻdiagonal matrix,  𝑥 ∈ 𝑅஽

 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ , 𝜎 𝑥  diagonal matrix,  𝑧 ∈ 𝑅௃

 Variational lower bound
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ
 In this case, D௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ has an analytic expression (see next slide)

 െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ| 𝑝 𝑧 ൌ ଵ
ଶ
∑ ሺ1 ൅ log 𝜎௭ೕ

ଶ
െ 𝜇௭ೕ

ଶ
െ 𝜎௭ೕ

ଶ
ሻ௃

௝ୀଵ

 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ is estimated using Monte Carlo sampling

 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ ≃ ଵ
௅
∑ log ሺ𝑝ఏሺ𝑥|𝑧 ௟ ሻ௅
௟ୀଵ

 log ሺ𝑝ఏ 𝑥 𝑧 ௟ ൌ െሺ∑ ଵ
ଶ

log 𝜎௫ೕ
ଶ 𝑧 ௟ ൅

ሺ௫ೕିఓೣೕ ௭ሺ೗ሻ ሻమ

ଶఙೣೕ
మ ሺ௭ሺ೗ሻሻ

ሻ஽
௝ୀଵ

 i.e.  𝐿 samples with 𝑧 ௟ ൌ 𝑔థ 𝑥, 𝜖ሺ௟ሻ



VAE - instanciation example
Gaussian priors and posteriors (demos on next slides)
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 If 𝑧 ∈ 𝑅௃: െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൌ ଵ
ଶ
∑ ሺ1 ൅ log 𝜎௝

ଶ െ 𝜇௝
ଶ െ 𝜎௝

ଶሻ௃
௝ୀଵ

 proof

 𝐷௄௅ሺ𝑞థሺ𝑧ሻ| 𝑝 𝑧 ൌ ׬ 𝑞థ 𝑧 log ௤ഝሺ௭ሻ
௣ሺ௭ሻ

𝑑𝑧

 Consider the 1 dimensional case
 𝑞థ׬ 𝑧 log 𝑝 𝑧 𝑑𝑧 ൌ 𝒩׬ 𝑧; 𝜇,𝜎 log𝒩 𝑧; 0,1 𝑑𝑧

 𝑞థ׬ 𝑧 log 𝑝 𝑧 𝑑𝑧 ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ
ሺ𝜇ଶ ൅ 𝜎ଶሻ

 Property of 2nd order moment of a Gaussian

 𝑞థ׬ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ׬𝒩 𝑧; 𝜇,𝜎 log𝒩 𝑧; 𝜇,𝜎 𝑑𝑧

 𝑞థ׬ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ
ሺ1 ൅ log𝜎ଶሻ

 ……

 Since both ddps are diagonal, extension to 𝐽 dimensions is straightforward, 
hence the result



VAE - instanciation example
Gaussian priors and posteriors – demos for the 1 dimensional case
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 Remember 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ
 Then 𝑞థ׬ 𝑧 log𝑝 𝑧 𝑑𝑧 ൌ 𝒩׬ 𝑧; 𝜇,𝜎 log𝒩 𝑧; 0,1 𝑑𝑧
 ൌ 𝐸௤ಅሾlog𝒩 𝑧; 0,1 ሿ

ൌ 𝐸௤ಅ ሾlogሺ ଵ
ଶగ

exp െ ௭మ

ଶ
ሻሿ

ൌ 𝐸௤ಅ െ ଵ
ଶ

log 2𝜋 െ ௭మ

ଶ

ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ
𝐸௤ಅ ሾ𝑧ଶሿ

 What is the value of 𝐸௤ 𝑧ଶ ?
 𝐸௤ಅ 𝑧 െ 𝜇 ଶ ൌ 𝜎ଶ

 𝐸௤ಅ 𝑧ଶ െ 2𝐸௤ಅ 𝑧𝜇 ൅ 𝜇ଶ ൌ 𝜎ଶ

 𝐸௤ಅ 𝑧𝜇 ൌ 𝜇ଶ

 𝐸௤ಅ 𝑧ଶ ൌ  𝜇ଶ ൅ 𝜎ଶ

 Then 𝒒𝝓׬ 𝒛 𝒍𝒐𝒈𝒑 𝒛 𝒅𝒛 ൌ െ 𝟏
𝟐
𝒍𝒐𝒈𝟐𝝅 െ 𝟏

𝟐
ሺ𝝁𝟐 ൅ 𝝈𝟐)



VAE - instanciation example
Gaussian priors and posteriors – demos for the 1 dimensional case

Advanced Deep learning32

 𝑞థ׬ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ׬𝒩 𝑧;𝜇,𝜎 log𝒩 𝑧;𝜇,𝜎 𝑑𝑧

ൌ 𝐸௤ಅሾlogሺ ଵ
ଶగఙ

exp െ ௭ିఓ మ

ଶఙమ
ሻሿ

ൌ െ ଵ
ଶ

log 2𝜋 െ log𝜎 െ 𝐸௤ಅሾ
௭ିఓ మ

ଶఙమ
ሿ

ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ

log𝜎ଶ െ ଵ
ଶ

ൌ െଵ
ଶ

log 2𝜋 െ ଵ
ଶ
ሺlog𝜎ଶ ൅ 1ሻ



VAE - instanciation example
Gaussian priors and posteriors
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 Loss
 Regularization term

 െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൌ ଵ
ଶ
∑ ሺ1 ൅ log 𝜎௝

ଶ െ 𝜇௝
ଶ െ 𝜎௝

ଶሻ௃
௝ୀଵ

 Reproduction term

 log 𝑝 𝑥 𝑧 ൌ ∑ ଵ
ଶ

log ሺ𝜎௝ଶ 𝑧 ሻ ൅
ሺ௫ೕିఓೕ ௭ ሻమ

ଶఙೕ
మሺ௭ሻ

஽
௝ୀଵ

 Training
 Mini batch or pure stochastic

 Repeat
 𝑥← random point or minibatch
 𝜖 ← sample from 𝑝 𝜖 for each 𝑥
 𝜃← 𝛻ఏ𝑉௅ሺ𝜃,𝜙; 𝑥,𝑔 𝜖,𝜙 ሻ
 ϕ← 𝛻థ𝑉௅ሺ𝜃,𝜙; 𝑥,𝑔 𝜖,𝜙 ሻ

 Until convergence



Learning discrete distributions: VQ-VAE (highlights)
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 So far we considered continuous latent distributions
 There are several instances were discrete distributions are more 

appropriate
 Text data, objects in images (color, size, orientation,…), etc
 There are several algorithms, e.g. transformers designed to work with

discrete data
 Teaser: Dall-e – makes use of a discreteVAE together with transformers

in order to generate diverse images
 https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/
 https://gpt3demo.com/apps/openai-dall-e
 https://www.craiyon.com/ (mini version of Dall-e)



Learning discrete distributions: VQ-VAE
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 What is a discrete latent distribution?

Fig: https://ml.berkeley.edu/blog/posts/vq-vae/



Learning discrete distributions: VQ-VAE
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 VQ-VAE modifies the vanillaVAE by adding a discrete codebook of 
vectors to the VAE - It is used to quantize the VAE bottleneck
 General scheme: VQ-VAE paper - https://arxiv.org/pdf/1711.00937.pdf



Learning discrete distributions: VQ-VAE
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 Loss function

 𝐿 ൌ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶ൅∥ 𝑠𝑔 𝑧௘ 𝑥 െ 𝑧௤ 𝑥 ∥ଶ ൅𝛽 ∥ 𝑧௘ 𝑥 െ 𝑠𝑔 𝑧௤ 𝑥 ∥ଶ

 With 𝑠𝑔ሺ𝑧ሻ stop gradient, i.e. do not back-propagate through 𝑧
 ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶ: train decoder and encoder

 ∥ 𝑠𝑔 𝑧௘ 𝑥 െ 𝑧௤ 𝑥 ∥ଶ: train the codebook 𝑒 ൌ 𝑧௤ሺ𝑥ሻ
 ∥ 𝑧௘ 𝑥 െ 𝑠𝑔 𝑧௤ 𝑥 ∥ଶ: train encoder, forces 𝑧௘ 𝑥 to stay close to 𝑒 ൌ 𝑧௤ሺ𝑥ሻ

 This is because the codebook does not train as fast as the encoder and the decoder
 Prevents the encoder values to diverge 

 Gradients
 Since it is not possible to compute the gradient through the VQ component, it is proposed to simply

copy the gradient w.r.t. 𝑧௤ to 𝑧௘

 ∇௭೐ ௫ ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶൌ ∇௭೜ ௫ ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶ

 This is called straight-through gradient
 Note

 This is an incomplete description, the model requires additional steps
 Dall-e makes use of a slightly different discreteVAE  (called dVAE)
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 References
 Nice blogs explaining VAEs

 https://lilianweng.github.io/posts/2018-08-12-vae/
 https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
 https://www.fenghz.xyz/vector-quantization-based-generative-model/
 Luo, C. (2022). Understanding Diffusion Models: A Unified Perspective. 

http://arxiv.org/abs/2208.11970 - positions hierarchicalVAEs w.r.t diffusion 
models

 Blogs introducing variational inference
 https://blog.evjang.com/2016/08/variational-bayes.html
 https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-

variational-inference-25a8aa9bce29
 Papers

 Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. ICLR 
(2014), Ml, 1–14. http://arxiv.org/abs/1312.6114



Generative Adversial Networks - GANs

Ian J. Goodfellow, et al. 2014

There has been a strong hype for GANs  for several years - O(1000) GAN papers on Arxiv

Advanced Deep learning39



GANs

Advanced Deep learning

 Generative latent variable model

 Given Samples 𝑥ଵ, … , 𝑥ே ∈ 𝑅௡, with 𝑥~𝒳, latent space distribution 𝑧~𝒵 e.g 𝑧~𝒩 0, I , 
use a NN to learn a possibly complex mapping 𝑔ఏ:𝑅௤ → 𝑅௡ such that:

𝑝௫ 𝑔ఏ 𝑧 ൌ 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ

 Different solutions for measuring the similarity between 𝑝ఏሺ𝑥ሻ and 𝑝௫ሺ𝑥ሻ
 In this course: binary classification

 Note:
 Once trained, sample from 𝑧 directly generates the samples 𝑔ఏ 𝑧  
 Different from VAEs and Flows where the NN 𝑔ఏ .  generate distribution parameters

z x

θ

NN

𝑧

𝑔ఏ 𝑧  

𝑥
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GANs – Adversarial training as binary classification

Advanced Deep learning

 Principle
 A generative network generates data after sampling from a latent 

distribution
 A discriminant network tells if the data comes from the generative

network or from real samples
 The discriminator will be used to measure the distance between the distributions 
𝑝ఏሺ𝑥ሻ and 𝑝௫ሺ𝑥ሻ

 The two networks are trained together
 The generative network tries to fool the discriminator, while the discriminator

tries to distinguish between true and artificially generated data
 The problem is formulated as a MinMax game
 The Discriminator will force the Generator to be « clever » and learn the data 

distribution

 Note
 No hypothesis on the existence of a density function

 i.e. no density estimate (Flows), no lower bound (VAEs)

41



GANs – Adversarial training as binary classification
Intuition - Training

Advanced Deep learning

 Discriminator is presented alternatively with true (𝑥ሻ and fake
𝑥ො ൌ 𝑔ఏሺ𝑧ሻ data

Generator Network
𝑔ఏሺ𝑧ሻ

𝑧~𝑝௭ሺ𝑧ሻ
𝑝ఏሺ𝑥|𝑧ሻ 

𝑥ො

Generated
data

Discriminator 
Network
𝐷థሺ𝑥ሻ

1 if 𝑥
0 if 𝑥ො

Latent 
variable

𝑥~𝑝௫ሺ𝑥ሻ
𝑥Real data

𝐷థ and 𝑔ఏ are typically
MLPs/Deep CNNs/…
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GAN – Adversarial training as binary classification
Intuition - Training

Advanced Deep learning

 Algorithm alternates between optimizing 𝐷థ (separate true and 
generated data) and 𝑔ఏ (generate data as close as possible to true
examples) – Once trained, G should be able to generate data witha
distribution close to the ground truth

𝑥 𝑥

Train 𝐷థ Train 𝑔ఏ

Train 𝐷థ Train𝑔ఏ
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GANs - Adversarial training as binary classification 
Loss function (Goodfellow et al. 2014)

Advanced Deep learning

 𝑥~𝑝௫ 𝑥 distribution over data 𝑥
 𝑧~𝑝୸ሺ𝑧ሻ prior on 𝑧, usually a simple distribution (e.g. Normal distribution)
 Loss

 min
ఏ

max
థ

𝐿ሺ𝐷థ,𝑔ఏሻ ൌ 𝐸௫~௣ೣ ௫ ሾ𝑙𝑜𝑔𝐷థ 𝑥 ሿ ൅𝐸୸~௣೥ሺ௭ሻሾlog 1 െ 𝐷థ 𝑔ఏ 𝑧 ሿ

 𝑔ఏ:𝑅௤ → 𝑅௡ mapping from the latent (𝑧) space to the data (𝑥) space
 𝐷థ:𝑅௡ → ሾ0,1ሿ probability that 𝑥 comes from the data rather than from the 

generator 𝑔ఏ
 If 𝑔ఏ is fixed, 𝐿ሺ𝐷థ,𝑔ఏሻ is a classical binary cross entropy for 𝐷థ, distinguishing

real and fake examples
 Note:

 Training is equivalent to find 𝐷థ∗ ,𝑔ఏ∗ such that
 𝐷థ∗ ∈  𝑎𝑟𝑔 max

థ
𝐿ሺ𝐷థ,𝑔ఏ∗ሻ and 𝑔ఏ∗ ∈  𝑎𝑟𝑔 m𝑖𝑛

ఏ
𝐿ሺ𝐷థ∗ ,𝑔ఏሻ

 Saddle point problem
 instability

 Practical training algorithm
 Alternates optimizing (maximizing) w.r.t. 𝐷థ optimizing (minimizing) w.r.t. 𝑔ఏ
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Adversarial training as binary classification 
Training GANs

Advanced Deep learning

 Training alternates optimization (SGD) on 𝐷థ and 𝑔ఏ
 In the alternating scheme, 𝑔ఏ usually requires more steps than 𝐷థ+ 

different batch sizes

 It is known to be highly unstable with two pathological problems
 Oscillation:  no convergence
 Mode collapse: 𝑔 collapses on a few modes only of the target

distribution (produces the same few patterns for all 𝑧 samplings)
 Low dimensional supports (Arjovsky 2017): 𝑝௫and 𝑝ఏ may lie on low

dimensional manifold that do not intersect.
 It is then easy to find a discriminator, without 𝑝ఏ close to 𝑝௫

 Lots of heuristics, lots of theory, but
 Behavior is still largely unexplained, best practice is based on heuristics
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GAN- Adversarial training as binary classification 
Equilibrium analysis (Goodfellow et al. 2014)

Advanced Deep learning

 The seminal GAN paper provides an analysis of the solution that could be
obtained at equilibrium

 Let us define

 𝐿ሺ𝐷థ,𝑔ఏሻ ൌ 𝐸௫~௣ೣ ௫ ሾ𝑙𝑜𝑔𝐷థ 𝑥 ሿ ൅𝐸୶~௣ഇሺ௫ሻሾlog 1 െ 𝐷థ 𝑥 ሿ

 with 𝑝௫ 𝑥 the true data distribution and 𝑝ఏ 𝑥 the distribution of generated data
 Note that this is equivalent to the 𝐿 𝐷,𝐺 definition on the slide before

 If 𝑔ఏ and 𝐷థ have sufficient capacity
 Computing 𝑎𝑟𝑔𝑚𝑖𝑛

ఏ
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛

ఏ
max
థ

𝐿 𝐷థ,𝑔ఏ  

 Is equivalent to compute
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ఏ𝐷௃ௌ 𝑝௫ , 𝑝ఏ with 𝐷௃ௌ(,) the Jenson-Shannon dissimilarity measure

between distributions
 The loss function of a GAN quantifies the similarity between the real sample

distribution and the generative data distribution by JSD when the discriminator is
optimal
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GAN- Adversarial training as binary classification 
Equilibrium analysis (Goodfellow et al. 2014)

Advanced Deep learning

 If the optimum is reached

 𝐷థ 𝑥 ൌ ଵ
ଶ

for all 𝑥 → Equilibrium

 In practice equilibrium is never reached

 Note

 Maximize log 𝐷థ 𝑔ఏ 𝑧 instead of minimizing log 1 െ 𝐷థ 𝑔ఏ 𝑧

provides stronger gradients and is used in practice, i.e. log 1 െ 𝐷థ 𝑔ఏ 𝑧

is replaced by െlog 𝐷థ 𝑔ఏ 𝑧
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GAN equilibrium analysis (Goodfellow et al. 2014)
Prerequisite KL divergence
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 Kullback Leibler divergence
 Measure of the difference between two distributions  𝑝 and 𝑞
 Continuous variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ׬ ሺlog ௣ሺ௬ሻ
௤ሺ௬ሻ

ሻ𝑝 𝑦 𝑑𝑦௬

 Discrete variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ∑ ሺlog ௣ሺ௬೔ሻ
௤ሺ௬೔ሻ

ሻ𝑝ሺ𝑦௜ሻ௜

 Property
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൒ 0
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ 0 iff 𝑝 ൌ 𝑞

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ| 𝑞 𝑦 ൌ െ𝐸௣ ௬ 𝑙𝑜𝑔 ௤ ௬
௣ ௬

൒ െ log𝐸௣ ௬
௤ ௬
௣ ௬

൒ 0
 where the first inequality is obtained via Jensen inequality

 note: 𝐷௄௅ is asymmetric, symmetric versions exist, e.g. Jensen-Shannon 
divergence



GAN equilibrium analysis (Goodfellow et al. 2014) - proof
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 For a given generator 𝑔,  the optimal discriminator is

 D∗ 𝑥 ൌ ௣𝒳ሺ௫ሻ
௣𝒳 ௫ ା௣ഇ ሺ௫ሻ

 Let 𝑓 𝑦 ൌ 𝑎 𝑙𝑜𝑔 𝑦 ൅ 𝑏 𝑙𝑜𝑔ሺ1 െ 𝑦ሻ, with 𝑎, 𝑏, 𝑦 ൐ 0


ௗ௙
ௗ௬
ൌ ௔

௬
െ ௕

ଵି௬
, ௗ௙
ௗ௬
ൌ 0 ⟺ 𝑦 ൌ ௔

௔ା௕
and this is a max

 𝑀𝑎𝑥஽ 𝐿ሺ𝐷,𝐺ሻ ൌ 𝐸௫~௣𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥 ሿ ൅𝐸୶~௣ഇሺ௫ሻሾlog 1 െ 𝐷 𝑥 ሿ is then
obtained for:

 D∗ 𝑥 ൌ ௣𝒳ሺ௫ሻ
௣𝒳 ௫ ା௣ഇ ሺ௫ሻ



GAN equilibrium analysis (Goodfellow et al. 2014) - proof
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 Let 𝐶 𝑔 ൌ max
஽

𝐿 𝑔,𝐷 ൌ 𝐿ሺ𝑔,𝐷∗ሻ
 It si easily verified that:

 𝐶 𝑔 ൌ െ log 4 ൅ 𝐾𝐿 𝑝𝒳 𝑥 ;  ௣𝒳 ௫ ା௣ഇ ௫
ଶ

൅ 𝐾𝐿 𝑝ఏ 𝑥 ;  ௣𝒳 ௫ ା௣ഇ ௫
ଶ

 Since 𝐾𝐿 𝑝; 𝑞 ൒ 0 and 𝐾𝐿 𝑝; 𝑞 ൌ 0 iff 𝑝 ൌ 𝑞
 𝐶ሺ𝑔ሻ is minimum for 𝑝ఏ ൌ 𝑝𝒳 with 𝐷∗ 𝑥 ൌ ଵ

ଶ
 At equilibrium, GAN training optimises Jenson-Shannon Divergence, 𝐽𝑆𝐷 𝑝; 𝑞 ൌ

ଵ
ଶ
𝐾𝐿 𝑝; ௣ା௤

ଶ
൅ ଵ

ଶ
𝐾𝐿 𝑞; ௣ା௤

ଶ
between 𝑝ఏ and 𝑝𝒳

 Summary
 The loss function of a GAN quantifies the similarity between the real sample

distribution and the generative data distribution by JSD when the 
discriminator is optimal

 Note


௣𝒳ሺ௫ሻ
௣ഇሺ௫ሻ

ൌ ௣ሺ௫|௬ୀଵሻ
௣ሺ௫|௬ୀ଴ሻ

ൌ 𝑘 ௣ሺ௬ୀଵ|௫ሻ
௣ሺ௬ୀ଴|௫ሻ

ൌ 𝑘 ஽∗ሺ௫ሻ
ଵି஽∗ሺ௫ሻ

with 𝑘 ൌ ௣ሺ௬ୀ଴ሻ
௣ሺ௬ୀଵሻ

 The discriminator is used to implicitely measure the discrepancy between
the distributions



Training GANs
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 Training alternates optimization on 𝐷 and 𝐺
 In the alternating scheme, 𝐺 usually requires more steps than 𝐷

 It is known to be highly unstable with two pathological problems
 Oscillation:  no convergence
 Mode collapse: 𝐺 collapses on a few modes only of the distribution (produces the 

same few patterns for all 𝑧 samplings)
 Low dimensional supports (Arjovsky 2017): 𝑝ௗ௔௧௔and 𝑝௚ may lie on low dimensional

manifold that do not intersect. It is then easy to find a discriminator, without training 
𝑝௚ to be close to 𝑝ௗ௔௧௔

 Very large number of papers offering tentative solutions to these problems
 e.g. recent developments concerning Wasserstein GANs (Arjovsky 2017)

 This remain difficult and heuristic although various explanation heve been developped
(e.g. stability of the generator – related to optimal transport or dynamics of the 
network – see course on ODE) 

 Evaluation
 What could we evaluate?
 No natural criterion

 Very often beauty of the generated patterns!



Objective functions
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 A large number of alternative objective functions have been 
proposed, we will present two examples
 Least Square GANs
 Wasserstein GANs



Objective functions – Least Square GANS (Mao et al. 2017)
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 If a generated sample is well classified but far from the real data 
distribution, there is no reason for the generator to be updated

 LS-GAN replaces the cross entropy loss with a LS loss which
penalizes generated examples by moving them close to the real data 
distribution.

 The objective becomes
 𝐿 𝐷 ൌ 𝐸௫~௣𝒳 ௫ ሺ𝐷 𝑥 െ 𝑏ሻଶ ൅ 𝐸௭~௣೥ ௭ 𝐷ሺ𝑔 𝑧 ሻ െ 𝑎 ଶ

 𝐿 𝑔 ൌ  𝐸௭~௣೥ሺ௭ሻ 𝐷 𝑔 𝑧 െ 𝑐 ଶ

 Where 𝑎, 𝑏 are constants respectively associated to generated and real 
data  and c is a value that 𝑔 wants 𝐷 to believe for the generated data.

 They use for example 𝑎 ൌ 0, 𝑏 ൌ 𝑐 ൌ 1



Objective functions – Wasserstein GANs (Arjovski et al. 2017)
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 Arjovski advocates that 𝐷௄௅ (or 𝐷୎ୗሻ might not be appropriate
 They suggest using the Wasserstein distance between the real and 

generated distributions (also known as Earth Moving Distance or EMD)
 Intuitively, this is the minimum mass displacement to transform one 

distribution to the other
 Wassertein distance is defined as

 𝑊 𝑝𝒳 ,𝑝ఏ ൌ inf
ఊ∈ஈሺ௣𝒳 ,௣ഇሻ

𝐸ሺ௫,௫ᇲሻ~ఊሾ∥ 𝑥 െ 𝑥′ ∥ሿ

 where Πሺ𝑝𝒳 , 𝑝ఏሻ is the set of distributions over 𝑋ଶ , with 𝑋 ⊂ 𝑅௡ the space of 
data, whose marginals are respectively 𝑝𝒳ሺ𝑥ሻ and 𝑝ఏሺ𝑥ሻ, ∥ 𝑥 െ 𝑥′ ∥ is the 
Euclidean norm.

 Intuitively,
 𝑊ሺ, ሻ is the minimum amount of work required to transform 𝑝𝒳ሺ𝑥ሻ to 𝑝ఏሺ𝑥ሻ –

see next slide
 it makes sense to learn a generator 𝑔 minimizing this metric

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ீ𝑊ሺ𝑝𝒳 , 𝑝ఏሻ



Wasserstein GANs (Arjovski et al. 2017)
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 Earth Mover distance illustration
 2 distributions (pink (𝜇) and blue (𝜇′))
 An elementary rectangle weights ¼
 The figure illustrates the computation of 𝑊 𝜇, 𝜇ᇱ , the Wasserstein

distance between pink and blue: this is the earth mover distance to 
transport pink on blue. This is denoted as 𝜇ᇱ ൌ #𝜇, 𝜇ᇱ is the push 
forward of 𝜇

Fig. from F. Fleuret 2018



Objective functions – Wasserstein GANs (Arjovski et al. 2017)
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 Let 𝑥 and 𝑦 respectively denote the variables from the source and 
the target distributions

 𝑝𝒳 𝑥 ൌ ׬ 𝛾 𝑥,𝑦 𝑑𝑦௬ is the amount of mass to move from 𝑥, 

𝑝ఏ 𝑦 ൌ ׬ 𝛾 𝑥,𝑦 𝑑𝑥௬ is the amount of mass to move to 𝑦

 Transport is defined as the amont of mass multiplied by the distance 
it moves, then the transport cost is: 𝛾 𝑥, 𝑦 . ∥ 𝑥 െ 𝑦 ∥ and the 
minimum transport cost is inf

ఊ∈ஈሺ௣𝒳 ,௣ഇሻ
𝐸ሺ௫,௫ᇲሻ~ఊሾ∥ 𝑥 െ 𝑥′ ∥ሿ



Wasserstein GANs (Arjovski et al. 2017)
Optimal Transport interpretation
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 Left: standard ways to compute distance between functions (point distance)
 Right: Optimal Transport way

 Seek the best map 𝑇 which transports the blue distribution on the red one.
 The smaller 𝑇 , the closest 𝑓 and 𝑔.

 Wasserstein distance is defined as  𝑊ሺ𝑓,𝑔ሻ ൌ inf
்|்#௙ୀ௚

׬ |𝑇ሺ𝑥ሻ െ 𝑥|𝑑𝑥 ௫

 Which can be translated in:
 “You look at all the ways to transport 𝑓 on 𝑔 with a map 𝑇 (denoted 𝑇#𝑓 ൌ 𝑔 ).
 For a given such transport map 𝑇, you look at the total distance you traveled on the 

𝑥 axis , that is ׬ |𝑇ሺ𝑥ሻ െ 𝑥|𝑑𝑥௫ . 
 Among all these transport maps, you look at the one which achieves the optimal (i.e. 

minimal) distance traveled. This minimal distance is called the Wasserstein distance 
between 𝑓 and 𝑔.”

Fig. Santambrogio, 2015



Wasserstein GANs (Arjovsky et al. 2017)

Advanced Deep learning58

 The 𝑊ሺ, ሻ definition does not provide an operational way for learning 𝐺
 Arjovsky uses a duality theorem from Kantorovitch and Rubinstein, stating the 

following result:
 𝑊 𝑝𝒳 , 𝑝ఏ ൌ sup

∥௙∥ಽஸଵ
𝐸௫∼௣𝒳 𝑓 𝑥 െ𝐸௫∼௣ഇ 𝑓 𝑥

 Where 𝑓:𝑋 → 𝑅 is 1-Lipchitz, i.e. 𝑓 𝑥 െ 𝑓ሺ𝑦ሻ ൏ 1 ∥ 𝑥 െ 𝑦 ∥,∀ 𝑥, 𝑦 ∈ 𝑋
 i.e. ∥ 𝑓 ∥௅൑ 1 denotes the 1-Lipchitz functions

 Implementation
 Using this result, one can look for a generator 𝑔 and a critic 𝑓௪:

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௚𝑊 𝑝𝒳 , 𝑝ఏ
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௚ sup

∥௙∥ಽ
𝐸௫∼௣𝒳 𝑓௪ 𝑥  െ 𝐸௫∼௣ഇ 𝑓௪ 𝑥

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௚ sup
∥௙∥ಽ

𝐸௫∼௣𝒳 𝑓௪ 𝑥  െ 𝐸௭∼௣೥ 𝑓௪ 𝐺ሺ𝑧ሻ

 𝑓௪is implemented via a NN with parameters 𝑤, it is called a critic because it does not classify
but scores its inputs

 In the original WGAN,𝑓௪is made 1-Lipchitz by clipping the weights (Arjovski et al. 2017)
 Better solutions were developed later



Wasserstein GANs (Arjovski et al. 2017)
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 Algorithm

 Alternate
 Optimize 𝑓௪
 Optimize 𝑔ఏ

From Arjovski 2017



GANs examples
Deep Convolutional GANs (Radford 2015) - Image generation
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 LSUN bedrooms dataset - over 3 million training examples

Fig. Radford 2015



Gan example
MULTI-VIEW DATA GENERATION WITHOUT VIEW
SUPERVISION (Chen 2018 - Sorbonne)
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 Objective
 Generate images by disantangling content and view

 Eg. Content 1 person, View: position, illumination, etc
 2 latent spaces: view and content

 Generate image pairs: same item with 2 different views
 Learn to discriminate between generated and real pairs



1 row = 1 content

Column = view Column = view

Fig. Chen 2018



Conditional GANs (Mirza 2014) 
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 The initial GAN models distributions by sampling from the latent 𝑍
space

 Many applications require to condition the generation on some data
 e.g.: text generation from images, in-painting, super-resolution, etc

 (Mirza 2014) proposed a simple extension of the original GAN 
formulation to a conditional setting:
 Both the generator and the discriminator are conditioned on variable 𝑦

– corresponding to the conditioning data

min
௚

max
஽

𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~௣𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥|𝑦 ሿ ൅𝐸୸~௣ሺ௭ሻሾlog 1 െ 𝐷 𝑔 𝑧|𝑦 ሿ



Conditional GANs (Mirza 2014) 
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min
௚

max
஽

𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~௣𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥|𝑦 ሿ ൅𝐸୸~௣ሺ௭ሻሾlog 1 െ 𝐷 𝑔 𝑧|𝑦 ሿ

Fig. (Mirza 2014)



Conditional GANs example
Generating images from text (Reed 2016)
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 Objective
 Generate images from text caption
 Model: GAN conditioned on text input

 Compare different GAN variants on image generation
 Image size 64x64

Fig. from Reed 2016



Conditional GANs example – Pix2Pix
Image translation with cGANs (Isola 2016)
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 Objective
 Learn to « translate » images for a variety of tasks using a common

framework
 i.e. no task specific loss, but only adversarial training + conditioning

 Tasks: semantic labels -> photos, edges -> photos, (inpainting) photo and 
missing pixels -> photos, etc



Conditional GANs example – Pix2Pix
Image translation with cGANs (Isola 2016)
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 Loss function
 Conditional GAN

 min
௚

max
஽

𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~௣𝒳 ௫
௬~௣ ௬

ሾ𝑙𝑜𝑔𝐷 𝑥,𝑦 ሿ ൅𝐸୸~௣ሺ௭ሻ
௬~௣ ௬

ሾlog 1 െ 𝐷 𝑔 𝑧,𝑦 ,𝑦 ሿ

 Note: the formulation is slightly different from the conditional GAN model of (Mirza 
2014):  it makes explicit the sampling on 𝑦 , but this is the same loss.

 This loss alone does not insure a correspondance between the conditioning
variable 𝑦 and the input data 𝑥
 They add a loss term, its role is to keep the generated data g 𝑧,𝑦 « close » to the 

conditioning variable 𝑦
 𝐿௅భ 𝑔 ൌ 𝐸௫,௬,௭ 𝑥 െ 𝑔 𝑦, 𝑧 ଵ

 Where . ଵ is the 𝐿ଵ norm

 Final loss
 min

௚
ሺmax

஽
𝐿ሺ𝐷,𝑔ሻ ൅ 𝜆𝐿௅భ 𝑔 ሻ



Conditional GANs example – Pix2Pix
Image translation with cGANs – Examples (Isola 2016)
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

Fig. (Isola 2016)



Conditional GANs example – Pix2Pix
Image translation with cGANs - Examples - (Isola 2016)
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

Fig. (Isola 2016)



Conditional GANs example – Pix2Pix
Image translation with cGANs – Examples - (Isola 2016)
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 Failure examples

Fig. (Isola 2016)



Cycle GANs (Zhu 2017)
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 Objective
 Learn to « translate » images without aligned corpora

 2 corpora available with input and output samples, but no pair alignment between
images

 Given two unaligned corpora, a conditional GAN can learn a 
correspondance between the two distributions (by sampling the two
distributions), however this does not guaranty a correspondance between
input and output

 Approach
 (Zhu 2017) proposed to add a « consistency » constraint similar to back 

translation in language
 This idea has been already used for vision tasks in different contexts
 Learn two generative mappings

 𝑔:𝑋 → 𝑌 and 𝑓:𝑌 → 𝑋 such that:
 𝑓 ∘ 𝑔ሺ𝑥ሻ ≃ 𝑥 and g ∘ 𝑓ሺ𝑦ሻ ≃y 

 and two discriminant functions 𝐷௒ and 𝐷௑



Cycle GANs (Zhu 2017)
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

Fig (Zhu 2017)



Cycle GANs (Zhu 2017)
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 Training
 The loss combines two conditional GAN losses ሺ𝑔,𝐷௒ሻ and ሺ𝑓,𝐷௑ሻ and 

a cycle consistency loss

 𝐿௖௬௖௟௘ 𝑓,𝑔 ൌ 𝐸௣𝒳ሺ௫ሻሾ 𝑓 𝑔 𝑥 െ 𝑥ሻ ଵሿ ൅ 𝐸௣೏ೌ೟ೌ ௬ ሾฮ𝑔 𝑓 𝑦 െ
𝑦ሻฮଵሿ

 𝐿ሺ𝑔,𝐷௒, 𝑓,𝐷௑ሻ ൌ 𝐿 𝑔,𝐷௒ ൅ 𝐿 𝑓,𝐷௑ ൅ 𝐿௖௬௖௟௘ 𝑓,𝑔
 Note: they replaced the usual 𝐿 𝑔,𝐷௒  and 𝐿 𝑓,𝐷௑ term by a mean

square error term, e.g.:
 𝐿 𝑔,𝐷௒ ൌ 𝐸௣𝒴ሺ௬ሻ ሺ𝐷௒ 𝑦 െ 1 ଶሿ ൅ 𝐸௣𝒳ሺ௫ሻሾ𝐷௒ሺ𝐺 𝑥 ሻሿ



Cycle GANs (Zhu 2017)
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 Examples

 Failures
Fig (Zhu 2017)



(Karras et al. 2019) – Style GAN 

 (Karras et al. 2019) – Style GAN
 Noyte: now (2020) StyleGAN3: https://nvlabs.github.io/stylegan3/
 https://nvlabs.github.io/stylegan2/versions.html 
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Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 Recall batch normalization

 𝐵𝑁 𝑥 ൌ 𝛾 ௫ିఓ ௫
ఙ ௫

൅ 𝛽, here all the quantities are vectors (or tensors) 

of the appropriate size
 The mean for channel 𝑐 is computed as:

 𝜇௖ 𝑥 ൌ ଵ
ேுௐ

∑ ∑ ∑ 𝑥௡௖௛௪ௐ
௪ୀଵ

ு
௛ୀଵ

ே
௡ୀଵ

 With 𝑁 the number of images in the batch, 𝐻 the height and 𝑊 the width, i.e. 
𝑥 is of shape [𝑁,𝐶,𝐻,𝑊]

 𝛾 and 𝛽 are trainable parameters that are different for each channel
 BN averages over all the images in the batch 
 i.e. all the images in the batch are averaged around a single « style »



Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 Adaptive Instance Normalization (Huang 2017)
 Idea: inject through the linear transformation defined by 𝛾, 𝛽 the feature

statistics from another image (e.g. its style)
 Let 𝑥 (content) and 𝑦 (style) two images or image transformations

 𝐴𝑑𝑎𝐼𝑁 𝑥, 𝑦 ൌ 𝜎 𝑦 ௫ିఓ ௫
ఙ ௫

൅ 𝜇ሺ𝑦ሻ

 This simply replaces the the channel-wise statistics of 𝑥 by those of 𝑦
 AdaIN can normalize the style of each individual sample to a target style

(Huang 2017)



Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 (Huang 2017) examples



Architecture of Style Gan
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

Karras et al. 2019

• A mapping network 
generates a 
representation vector 𝑤

• Affine transformations 
(A) are trained to 
compute 𝜆 and 𝛽
vectors for different
resolution of the image 
generator from 𝑤 – this
induces different styles 
for each resolution

• Noise input are single 
channel images 
consisting of 
uncorrelated Gaussian
noise – a single noise 
image is broadcasted
to all the feature maps
– this induces
stochastic variations



Architecture of Style Gan
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• Affine transformations computed from 𝑤

https://towardsdatascience.com/explained-a-style-
based-generator-architecture-for-gans-generating-
and-tuning-realistic-6cb2be0f431



Architecture of Style Gan
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• Global architecture of StyleGAN

https://towardsdatascience.com/explained-a-style-based-generator-
architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431



GANs
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 Making GANs work is usually hard
 All papers are full of technical details, choices (architecture, 

optimization, etc.), tricks, not easy to reproduce.



Diffusion models



Diffusion models
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 Diffusion models emerged in 2019, gained momentum in 2021
 As in 2023, diffusion models are used in several popular large scale

models for text to image generation
 e.g. Imagen https://imagen.research.google/, stable diffusion 

https://stablediffusionweb.com/, Dall-e-2 https://openai.com/dall-e-2/
 Generative modeling tasks

 Continuous space models: Image generation, super resolution, image editing, 
segmentation; etc.

 Discrete space models, e.g. applications to text generation

 Several approaches including
 Discrete time models

 Denoising Diffusion Probabilistic Models (DDPMs)
 Score based Generative Models (SGM)

 Time continuous models
 Score Based Models with Differential Equations (SGMdiffeq)



Diffusion models
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 Diffusion models implement the following idea
 Forward diffusion

Gradually add noise to an input image until one get a fully noisy image
 Reverse denoising

 Generate data from the target distribution
 Sample from the noise space and reverse the forward process 

 Forward and reverse processes are used for training
 At inference, generation is performed via the rewverse process

Fig.  Kreis et al. 2022



Denoising Diffusion Probabilistic Models
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Denoising Diffusion Probabilistic Models - DDPM
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 DDPM are based on two Markov chains
 A forward chain that adds noise to data െ൐ Forward process

 Hand designed: transforms any data distribution into a simple prior
distribution – here we will use a standard Gaussian for the prior

 A reverse chain that converts noise to data െ൐ Reverse process
 The forward chain is reversed by learning transition kernels parameterized

by neural networks
 New data are generated by sampling from the simple prior, followed by 

ancestral sampling through the reverse Markov chain



Denoising Diffusion Probabilistic Models
Forward (diffusion) process
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 Data distribution 𝑥଴~𝑞 𝑥଴
 The forward MC generates a sequence of random variables 
𝑥ଵ, 𝑥ଶ, … , 𝑥் starting at 𝑥଴ with transition kernel 𝑞ሺ𝑥௧|𝑥௧ିଵሻ

 Given sufficient steps, 𝑞ሺ𝑥்ሻ will be close to a prior distribution 𝜋ሺ𝑥ሻ, e.g. 
gaussian distribution with fixed mean and variance

 A typical design for the kernel is a gaussian perturbation 𝑞 𝑥௧ 𝑥௧ିଵ ൌ
𝒩 𝑥௧; 1 െ 𝛽௧𝑥௧ିଵ;𝛽௧𝐼  ∀𝑡 ∈ 1, … ,𝑇
 𝐼 is the identity matrix, with the same size as image 𝑥଴,  𝛽௧ ∈ ሺ0,1ሻ is a variance 

parameter hand fixed or learned, we consider it hand fixed here.
 𝛽௧ is chosen so that 𝛽௧ ൏ ⋯ ൏ 𝛽் , e. g. 𝑇 ൌ 2000, 𝛽ଵ ൌ 10ିସ,𝛽் ൌ 10ିଶ with a linear

increase
 Other types of kernels (than gaussians) could be used

Fig.  Kreis et al. 2022
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 The forward diffusion process is then defined as

• 𝐱𝟎~𝐪 𝐱𝟎 ,
• 𝒒 𝒙𝟏, … ,𝒙𝑻|𝒙𝟎 ൌ ∏ 𝒒ሺ𝒙𝒕|𝒙𝒕ି𝟏ሻ𝑻

𝒕ୀ𝟏 ,
• 𝐪 𝐱𝐭 𝐱𝐭ି𝟏 ൌ 𝓝 𝐱𝐭; 𝟏 െ 𝛃𝐭𝐱𝐭ି𝟏;𝛃𝐭𝐈  ∀𝒕 ∈ 𝟏, … ,𝑻

• 𝑥௧ ൌ 𝟏 െ 𝛃𝐭𝐱𝐭ି𝟏 ൅ 𝛃𝐭𝝐 with 𝜖~𝓝ሺ0, Iሻ
• 𝛽௧ ∈ ሾ0,1ሿ is a variance hyperparemeter, 𝛽௧ ൏ ⋯ ൏ 𝛽்
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 Property: the forward process can be sampled at any time 𝑡 in closed
form (derivation next slides)
 For the gaussian transition kernel

 𝑞 𝑥௧ 𝑥଴ ൌ 𝒩ሺ𝑥௧; 𝛼ത௧𝑥ை, ሺ1 െ 𝛼ത௧)I) – this is called the diffusion kernel

 with 𝛼௧ ൌ 1 െ 𝛽௧,𝛼ത௧ ൌ ∏ 𝛼௦௧
௦ୀଵ

 This allows us to sample 𝑥௧~𝑝ሺ𝑥௧ሻ using the reparametrization trick
 Sample 𝑥଴~𝑞 𝑥଴ and then sample x୲~𝑞 𝑥௧ 𝑥଴ (this is called ancestral 

sampling)

 𝑥௧ ൌ 𝛼ത௧𝑥ை ൅ ሺ1 െ  𝛼ത௧)𝜖, with 𝜖~𝒩ሺ0, 𝐼ሻ, ∀𝑡~𝒰 1, … ,𝑇
 The schedule for 𝛽௧ is defined so that 𝑞 𝑥் 𝑥଴ ൎ 𝒩ሺ𝑥்; 0, 𝐼ሻ

Fig.  Kreis et al. 2022
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 Illustration of the forward diffusion process – discrete trajectories in 
the 𝑥 space

Fig. Ayan Das 2021

Samples 
𝑥଴~𝑞ሺ𝑥଴ሻ

Samples 
𝑥்~𝑞ሺ𝑥்|𝑥଴ሻ
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 Closed form for 𝑞 𝑥௧ 𝑥଴
 𝑞ሺ𝑥௧│𝑥଴ ሻ ൌ 𝑁ሺ𝑥௧;√  𝛼ത௧ 𝑥ை, ሺ1 െ  𝛼ത௧ሻ𝐼ሻ with 𝛼௧ ൌ 1 െ 𝛽௧,𝛼ത௧ ൌ ∏ 𝛼௦௧

௦ୀଵ

 𝑥௧ ൌ 𝛼௧𝑥௧ିଵ ൅ 1 െ 𝛼௧𝜖

 𝑥௧ିଵ ൌ 𝛼௧ିଵ𝑥௧ିଶ ൅ 1 െ 𝛼௧ିଵ𝜖

 𝑥௧ ൌ  𝛼௧ሺ 𝛼௧ିଵ𝑥௧ିଶ ൅ 1 െ 𝛼௧ିଵ𝜖ሻ ൅ 1 െ 𝛼௧𝜖

 𝑥௧ ൌ  𝛼௧𝛼௧ିଵ𝑥௧ିଶ ൅ 𝛼௧ሺ1 െ 𝛼௧ିଵሻ𝜖 ൅ 1 െ 𝛼௧𝜖

 𝑥௧ ൌ  𝛼௧𝛼௧ିଵ𝑥௧ିଶ ൅ 1 െ 𝛼௧𝛼௧ିଵ𝜖 (*)

 ……

 𝑥௧ ൌ 𝛼ത௧𝑥ை ൅ 1 െ  𝛼ത௧𝜖

 (*) Sum of two Gaussians
 Let 𝑥 and 𝑦 two Gaussian random variables with the same dimensionality, 𝑝ሺ𝑥ሻ ൌ
𝒩ሺ𝜇௫ , Σ௫ሻ and 𝑝ሺ𝑦ሻ ൌ 𝒩ሺ𝜇௬ , Σ௬ሻ, then their sum is also Gaussian: p x ൅ y ൌ
𝒩ሺ𝜇௫ ൅ 𝜇௬ , Σ௫ ൅ Σ௬ሻ
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 Other quantities related to the forward process
 Marginal distribution 𝑞 𝑥௧
 𝑞 𝑥௧ ൌ 𝑞׬ 𝑥௧ 𝑥଴ 𝑞଴ 𝑥 𝑑𝑥

 Cannot be written in closed form but can be sampled by ancestral 
sampling: sample from 𝑞଴ 𝑥 and then trasform by the diffusion kernel 
𝑞 𝑥௧ 𝑥଴

 Conditional distribution 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ
 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ is intractable

 Conditional diffusion distribution 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴
 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴  is amenable to a closed form – and will be used for 

training the decoder – see later
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 The reverse MC requires the inversion of the Markov chain
 Sample 𝑥் from a prior distribution x୘~𝑝 𝑥் ൌ 𝒩ሺ𝑥்; 0, 𝐼ሻ
 Iteratively sample x୲~𝑞 𝑥௧ିଵ 𝑥௧

 In general, 𝑞 𝑥௧ିଵ 𝑥௧ is untractable
 One will learn 𝑝ఏ 𝑥௧ିଵ 𝑥௧  a parametric approximation of 𝑞 𝑥௧ିଵ 𝑥௧
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 The true reverse distribution 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ are complex multimodal 
distributions, they are approximated as normal disctributions

 The reverse MC is then parameterized by
 A prior distribution 𝑝 𝑥் ൌ 𝒩ሺ𝑥்; 0, 𝐼ሻ
 A learnable transition kernel 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ൌ 𝒩ሺ𝑥௧ିଵ; 𝜇ఏ 𝑥௧, 𝑡 ,𝜎௧ଶ𝐼ሻ

 𝜇ఏ 𝑥௧ , 𝑡 is typically implemented via a U-Net, 𝜇ఏ 𝑥௧ , 𝑡 is the same size as 𝑥௧
  𝜎௧ଶ can be learned, but in (Ho et al. 2020) it is set to 𝛽௧

 Reverse factorization: 𝑝ఏ 𝑥଴, … , 𝑥் ൌ 𝑝ఏ 𝑥଴:் ൌ 𝑝ሺ𝑥்ሻ∏ 𝑝ఏሺ𝑥௧ିଵ|𝑥௧ሻ்
௧ୀଵ

 We can then generate a data sample 𝑥଴ by first sampling a noise vector 𝑥்~𝑝ሺ𝑥்ሻ
and then iteratively sampling from the learnable transition kernel 
𝑥௧ିଵ~𝑝ఏሺ𝑥௧ିଵ|𝑥௧ሻ until 𝑡 ൌ 1 where we get 𝑝ఏሺ𝑥 |𝑥ଵሻ

Fig.  Kreis et 
al. 2022
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 Training amounts at learning the 𝜃 parameters:
 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ൌ 𝒩ሺ𝑥௧ିଵ; 𝜇ఏ 𝑥௧ , 𝑡 ,𝜎௧ଶ𝐼ሻ 𝑡 ൌ 𝑇, … , 1
 Ideally, we would like 𝜃 so that the probability assigned by the model to 

each training sample 𝑝ఏሺ𝑥଴ሻ is maximized, a.k.a. by maximizing the 
likelihood 𝐸௤ ௫బ ሾ𝑝ఏ 𝑥଴ ሿ
 However this would require marginalizing over all possible (reverse) 

trajectories to compute it

 𝑝ఏ 𝑥଴ ൌ 𝐸௣ഇሺ௫భ,…,௫೅ሻሾ𝑝ఏ 𝑥ை, 𝑥ଵ, … , 𝑥் ሿ
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 Instead, one adjusts the parameter 𝜃 so that
 the joint distribution of the reverse MC:

 𝑝ఏ 𝑥଴, … , 𝑥் ൌ 𝑝 𝑥் ∏ 𝑝ఏ 𝑥௧ିଵ 𝑥௧்
௧ୀଵ

 matches the distribution of the forward process:
 𝑞 𝑥଴, … , 𝑥் ൌ 𝑞ሺ𝑥଴ሻ∏ 𝑞ሺ𝑥௧|𝑥௧ିଵሻ்

௧ୀଵ

 This is achieved by minimizing the Kullback-Leibler divergence between
the two distributions
 𝐷௄௅ሺ𝑞 𝑥଴, … , 𝑥் ||𝑝ఏ 𝑥଴, … , 𝑥் ሻ

 Note:
 This is similar to variational auto-encoders, i.e. this amounts at maximizing a 

lower bound of the log-likelihood (ELBO)
 But here this operates on the decoder (reverse diffusion process) and not on 

the encoder like for VAEs
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 Let us examine the three terms of the lower bound 𝐿
 𝐷௄௅ 𝑝 𝑥் 𝑥଴ ∥ 𝑝 𝑥்

 does not depend on parameters 𝜃 and can be ignored during training
 𝑝ఏ 𝑥଴ 𝑥ଵ

 is modeled (Ho et al. 2020) as a separate discrete decoder (not detailed here)
 𝐷௄௅ 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ - (proofs next slides)

 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ is a tractable gaussian distribution

 𝑝ఏ 𝑥௧ିଵ 𝑥௧ is also a gaussian distribution

 𝐷௄௅ 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ can then be computed in a closed form

 It reduces to a simple form

𝐸௤ ௫బ െ𝑙𝑜𝑔𝑝ఏ 𝑥଴ ൑ 𝐿
with the lower bound ሺELBOሻ 𝐿

𝐿 ൌ 𝐸௤ ௫బ ௤ሺ௫భ:೅|௫బሻሾെ log 𝑝ఏ 𝑥଴ 𝑥ଵ ൅ 𝐷௄௅ 𝑞 𝑥் 𝑥଴ ∥ 𝑝 𝑥் ൅෍𝐷௄௅ሺ𝑞 𝑥௧ିଵ 𝑥௧, 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ
௧வଵ
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 Let us consider the KL term 𝐷௄௅ 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧
 It can be shown that 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥଴ ൌ 𝒩 𝑥௧ିଵ; 𝜇෤ 𝑥௧, 𝑥଴ ,𝛽෨௧𝐼 , with:

 𝜇෤ 𝑥௧, 𝑥଴ ൌ ఈഥ೟షభఉ೟
ଵିఈഥ೟

𝑥଴ ൅
ଵିఉ೟ሺଵିఈഥ೟షభሻ

ଵିఈഥ೟
𝑥௧ and 𝛽෨௧ ൌ

ଵିఈഥ೟షభ
ଵିఈഥ೟

𝛽௧

 Recall that 𝑥௧ ൌ 𝛼ത௧𝑥ை ൅ ሺ1 െ  𝛼ത௧)𝜖 for 𝜖~𝒩ሺ0, 𝐼ሻ
 and 𝛼௧ ൌ 1 െ 𝛽௧,𝛼ത௧ ൌ ∏ 𝛼௦௧

௦ୀଵ

 Then 𝜇෤ 𝑥௧ , 𝑥଴ can be rewriten in a simplified form as:

 𝜇෤ 𝑥௧, 𝑥଴ ൌ ଵ
ఈ೟
ሺ𝑥௧ െ

ଵିఈ೟
ଵିఈഥ೟

𝜖ሻ
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 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ൌ 𝒩ሺ𝑥௧ିଵ; 𝜇ఏ 𝑥௧ , 𝑡 ,𝜎௧ଶ𝐼ሻ
 Both 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥଴ and 𝑝ఏ 𝑥௧ିଵ 𝑥௧ being Gaussian, the KL divergence 

writes as

 We would like to train 𝜇ఏ 𝑥௧, 𝑡  to approximate 𝜇෤ 𝑥௧, 𝑥଴
 How to do that: next slide

𝐸௤ ௫బ ,௤ሺ௫೟|௫బሻሾ𝐷௄௅ 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሿ

ൌ 𝐸௤ ௫బ ,௤ሺ௫೟|௫బሻ
1

2𝜎ଶ 𝜇෤ 𝑥௧ , 𝑥଴ െ 𝜇ఏ 𝑥௧ , 𝑡 ଶ ൅ 𝑐𝑡𝑒
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 We would like to train 𝜇ఏ 𝑥௧ , 𝑡  to approximate 𝜇෤ 𝑥௧ , 𝑥଴
 i.e. 𝜇ఏ 𝑥௧, 𝑡 must approximate 𝜇෤ 𝑥௧, 𝑥଴ ൌ ଵ

ఈ೟
ሺ𝑥௧ െ

ଵିఈ೟
ଵିఈഥ೟

𝜖ሻ

 𝑥௧ is available as input at training time, (Ho et al. 2020) propose the following noise 
prediction parametrization

 𝜇ఏ 𝑥௧, 𝑡 ൌ ଵ
ఈ೟
ሺ𝑥௧ െ

ଵିఈ೟
ଵିఈഥ೟

𝜖ఏ 𝑥௧, 𝑡 ሻ

 i.e. parametrize the gaussian noise term 𝜖ఏ 𝑥௧, 𝑡 to make it predict 𝜖 from the input 𝑥௧ at 
time 𝑡
 Note: parametrizing 𝜖ఏ 𝑥௧ , 𝑡 is just another way to parametrize 𝜇ఏ 𝑥௧ , 𝑡 , but it has been found

more efficient experimentally

 With this parametrization, the loss term
  𝐿௧ିଵ ൌ 𝐸௤ ௫బ ,௤ሺ௫೟|௫బሻሾ𝐷௄௅ 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሿ writes

 𝐿௧ିଵ ൌ 𝐸௫బ~௤ ௫బ ,ఢ~𝒩ሺ଴,ଵሻሾ
ఉ೟మ

ଶఙ೟మ ଵିఉ೟ ଵିఈ೟
𝜖 െ 𝜖ఏ 𝛼ത௧𝑥ை ൅ ሺ1 െ  𝛼ത௧)𝜖 , 𝑡

ଶ
ሿ+Cte

 This is simplified in Ho et al. 2020 (heuristic), so that the global loss 𝐿 writes as

 with 𝒰ሺ1,𝑇ሻ a uniform distribution

𝐿 ൌ 𝐸௫బ~௤ ௫బ ,ఢ~𝒩 ଴,ଵ ,௧~𝒰ሺଵ,்ሻሾ 𝜖 െ 𝜖ఏ 𝛼ത௧𝑥ை ൅ ሺ1 െ  𝛼ത௧)𝜖 , 𝑡
ଶ
ሿ
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

Fig. Ho et al 2020
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 𝜖ఏ 𝑥௧, 𝑡 is often implemented with a U-Net with ResNet blocks and self 
attention layers (recent implementations have been proposed with
transformers)

 Time features are fed to residual blocks, time encoding follows the 
transformers sinusoidal position embedding

 The parameters are shared for all the time steps, only the time 
representation makes the difference between the time steps

Fig.  Kreis et 
al. 2022
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 In Ho et al. 2020
 𝑇 ൌ 1000, 𝛽ଵ ൌ 10ିସ,𝛽் ൌ 0.02 with a linear schedule
 The pixel values are normalized in ሾെ1,1ሿ
 As usual, lots of influential architecture/ algorithmic parameters conditioning

the good behavior of the model
 The process of generation is extremely slow  (the original model takes up 

to 20 h to generate 50k images of size 32x32)
 Several variants/ improvements proposed since the Ho et al. 2020 paper

 Conditional models allow to generate e.g. images conditionned on text
 Latent diffusion models (Rombach et al. 2022) perform diffusion in a latent 

space, accelarating the generation (used e.g. in stable diffusion)
 The image is first encoded in a smaller diemensional latent space and decoded in 

order to produce the generated image in the original space
 Diffusion and denoising happen in the latent space
 The model allows for conditioning image generation (on text, classes, …)

 Faster models, such as DDIM (Denoising Diffusion Implicit Models,  Song et 
al. 2021)
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 We first show

 െ𝐸௤ ௫బ ሾlog𝑝ఏ 𝑥଴ ሿ ൑ 𝐸௤ ௫బ:் ሾlog ௤ 𝑥ଵ:்  𝑥଴
௣ഇ ௫బ:೅

ሿ ≜ 𝐿

 and then
 𝐿 ൌ 𝐸ሾെ𝑙𝑜𝑔𝑝ఏ 𝑥଴ 𝑥ଵ ൅ 𝐷௄௅ 𝑞 𝑥் 𝑥଴ ∥ 𝑝 𝑥் ൅
∑ 𝐷௄௅ሺ𝑞 𝑥௧ିଵ 𝑥௧, 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ௧வଵ
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 െ𝐸௤ ௫బ ሾlog𝑝ఏ 𝑥଴ ሿ ൑ 𝐸௤ ௫బ:் ሾlog ௤ 𝑥ଵ:்  𝑥଴
௣ഇ ௫బ:೅

ሿ ≜ 𝐿

 Proof
 െ log𝑝ఏ 𝑥଴ ൑ െ log𝑝ఏ 𝑥଴ ൅ 𝐷௄௅ሺ𝑞 𝑥ଵ:் 𝑥଴ ∥ 𝑝ఏ 𝑥ଵ:்|𝑥଴ ሻ

 െ log𝑝ఏ 𝑥଴ ൑ െ log𝑝ఏ 𝑥଴ ൅ 𝐸௫భ:೅~௤ 𝑥ଵ:் 𝑥଴ ሾlog ௤ 𝑥ଵ:் 𝑥଴
௣ഇ ௫బ:೅ /௣ഇ ௫బ

ሿ 

 െ log𝑝ఏ 𝑥଴ ൑ െ log𝑝ఏ 𝑥଴ ൅ 𝐸௫భ:೅~௤ 𝑥ଵ:் 𝑥଴ ሾlog ௤ 𝑥ଵ:் 𝑥଴
௣ഇ ௫బ:೅

൅ log 𝑝ఏ 𝑥଴ ሿ 

 െ log𝑝ఏ 𝑥଴ ൑ 𝐸௫భ:೅~௤ 𝑥ଵ:் 𝑥଴ ሾlog ௤ 𝑥ଵ:் 𝑥଴
௣ഇ ௫బ:೅

ሿ

 െ𝐸௤ ௫బ log𝑝ఏ 𝑥଴ ൑ 𝐸௫బ:೅~௤ሺ௫బ:೅ሻሾlog ௤ 𝑥ଵ:் 𝑥଴
௣ഇ ௫బ:೅

ሿ
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 𝐿 ൌ 𝐸௤ ௫బ:் ሾെ log 𝑝ఏ 𝑥଴ 𝑥ଵ ൅ 𝐷௄௅ 𝑞 𝑥் 𝑥଴ ∥ 𝑝 𝑥் ൅
∑ 𝐷௄௅ሺ𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ௧வଵ

 Proof

 𝐿 ൌ 𝐸௤ ௫బ:் ሾlog ௤ 𝑥ଵ:் 𝑥଴
௣ഇ ௫బ:೅

ሿ

 𝐿 ൌ 𝐸௤ ௫బ:் ሾെ log𝑝 𝑥் ൅ ∑ log ௤ 𝑥௧ 𝑥௧ିଵ
௣ഇ 𝑥௧ିଵ 𝑥௧

்
௧ୀଵ ሿ

 𝐿 ൌ 𝐸௤ ௫బ:் െ log𝑝 𝑥் ൅ ∑ log ௤ 𝑥௧ 𝑥௧ିଵ
௣ഇ 𝑥௧ିଵ 𝑥௧

்
௧ୀଶ ൅ log ௤ 𝑥ଵ 𝑥଴

௣ഇ 𝑥଴ 𝑥ଵ

 𝐿 ൌ 𝐸௤ ௫బ:் ሾെ log𝑝 𝑥் ൅ ∑ logሺ ௤ 𝑥௧ିଵ 𝑥௧ , 𝑥଴
௣ഇ 𝑥௧ିଵ 𝑥௧

. ௤ 𝑥௧ 𝑥଴
௤ 𝑥௧ିଵ 𝑥଴

்
௧ୀଶ ሻ ൅ log ௤ 𝑥ଵ 𝑥଴

௣ഇ 𝑥଴ 𝑥ଵ
ሿ

 𝐿 ൌ 𝐸௤ ௫బ:் ሾെ log𝑝 𝑥் ൅ ∑ log ௤ 𝑥௧ିଵ 𝑥௧ , 𝑥଴
௣ഇ 𝑥௧ିଵ 𝑥௧

 ்
௧ୀଶ ൅ ∑ log ௤ 𝑥௧ 𝑥଴

௤ 𝑥௧ିଵ 𝑥଴
்
௧ୀଶ ൅ log ௤ 𝑥ଵ 𝑥଴

௣ഇ 𝑥଴ 𝑥ଵ
ሿ

 𝐿 ൌ 𝐸௤ ௫బ:் ሾെ log𝑝 𝑥் ൅ ∑ log ௤ 𝑥௧ିଵ 𝑥௧ , 𝑥଴
௣ഇ 𝑥௧ିଵ 𝑥௧

 ்
௧ୀଶ ൅ log ௤ 𝑥் 𝑥଴

௤ 𝑥ଵ 𝑥଴
൅ log ௤ 𝑥ଵ 𝑥଴

௣ഇ 𝑥଴ 𝑥ଵ
ሿ

 𝐿 ൌ 𝐸௤ ௫బ:் log ௤ 𝑥் 𝑥଴
௣ ௫೅

൅ ∑ log ௤ 𝑥௧ିଵ 𝑥௧ , 𝑥଴
௣ഇ 𝑥௧ିଵ 𝑥௧

 ்
௧ୀଶ െ log𝑝ఏ 𝑥଴ 𝑥ଵ

 𝐿 ൌ 𝐸௤ ௫బ:் ሾെ log𝑝ఏ 𝑥଴ 𝑥ଵ ൅ 𝐷௄௅ 𝑞 𝑥் 𝑥଴ ∥ 𝑝 𝑥் ൅ ∑ 𝐷௄௅ሺ𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ௧வଵ
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 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ ൌ 𝒩 𝑥௧ିଵ;𝜇෤ 𝑥௧ , 𝑥଴ ,𝛽෨௧𝐼 with

 𝜇෤ 𝑥௧ , 𝑥଴ ൌ ଵ
ఈ೟
ሺ𝑥௧ െ

ଵିఈ೟
ଵିఈഥ೟

𝜖ሻ

 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ ൌ 𝑞 𝑥௧ 𝑥௧ିଵ, 𝑥଴
௤ 𝑥௧ିଵ 𝑥଴
௤ 𝑥௧ 𝑥଴

 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥଴ ∝ expെଵ
ଶ
ሺ ௫೟ି ఈ೟௫೟షభ మ

ఉ೟
൅ ௫೟షభି ఈഥ೟షభ௫బ

మ

ଵିఈഥ೟షభ
െ ௫೟ି ఈഥ೟௫బ

మ

ଵିఈഥ೟
ሻ

 … to be completed


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 The Score function of a data distribution 𝑞 𝑥 , 𝑥 ∈ 𝑅௡ is:
∇௫ log 𝑞ሺ𝑥ሻ  ∈ 𝑅௡

 Interpretation
 Given a point 𝑥 in data space, the score tells us which direction to move 

towards a region with higher likelihood
 How to use this information for generating data from the distribution 𝑞ሺ. ሻ?

 Sample 𝑥଴ from a prior (e.g. Gaussian) distribution 𝜋ሺ𝑥ሻ in 𝑅௡ and 
iterate 𝑥௜ାଵ ൌ 𝑥௜ ൅ ∇௫ log 𝑞ሺ𝑥௜ሻ

 Warning: indexes are in the reverse order compared to DDPM
 This is similar to the reverse process in DDPMs

Fig. Song 2022
illustrates the score 
function (arrows) and 
the density for a 
mixture of two
gaussians

High density
region

Low density
region
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 Score based model (SBM) sఏ .
 ∇௫ log 𝑞ሺ𝑥ሻ is usually intractable, one will learn a score based model, i.e. 

a parametric model sఏ x to be implemented by a NN
 sఏሺxሻ ൎ ∇௫ log 𝑞ሺ𝑥ሻ, 𝑠ఏ:𝑅௡ → 𝑅௡

 sఏሺxሻ will be learned from a sample of the target distribution 𝑞ሺ𝑥ሻ

 Score matching
 SBM can be trained by minimizing the following loss between the model 

sఏ . and the data distribution ∇௫ log 𝑞 𝑥
 𝐸௤ ௫ ∇௫ log 𝑞 𝑥 െ sఏ x ଶ

ଶ ൌ ׬ ∇௫ log 𝑞 𝑥 െ sఏ x ଶ
ଶ𝑞 𝑥 𝑑𝑥

 Summary
 A distribution can be represented by its score function ∇௫ log 𝑞ሺ𝑥ሻ
 The score function can be estimated by training a score based model 

sఏ x using samples from the target distribution with score matching
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 Langevin dynamics
 Once trained, sఏ x can be used by starting from a prior distribution 
𝑥଴~𝜋ሺ𝑥ሻ (e.g. a Gaussian) and iterating a Markov chain for generating
samples
 𝑥௜ାଵ ൌ 𝑥௜ ൅ 𝜖𝑠ఏ 𝑥௜ ൅ 2𝜖𝑧௜ , 𝑖 ൌ 0, … ,𝐾, with 𝑧௜~𝒩ሺ0, 𝐼ሻ, 𝜖 is a small

constant
 This is similar to the reverse process in DDPM
 When 𝜖 → 0 and 𝐾 →  ∞, 𝑥௄ converges to a sample from 𝑞ሺ𝑥ሻ under some

regularity conditions
 In practice take 𝜖 small and 𝐾 large (100 to 1000)

Fig. Song 2022
Langevin dynamics for sampling from a mixture 
of 2 gaussians, arrows indicate the score vector
values, the animated Gif shows the 
convergence of the dynamics towards the target
distribution
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

Fig. Song 
2022
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 let us come back to the score matching training formulation
 𝑎𝑟𝑔𝑚𝑖𝑛ఏ𝐸௤ ௫ ሾ ∇௫ log 𝑞 𝑥 െ sఏ x ଶ

ଶሿ

 This formulation leaves us with 2 problems (Song et al. 2020)
 (1) 𝑞ሺ𝑥ሻ is unknown
 (2) In low density regions, there are only a few data points available so

that 𝑠ఏ 𝑥 will be inaccurate.
 (Song et al. 2020) propose different solutions to this problem, let us 

describe one of them:
 Noise conditionned score network (NCSN)
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 Noise conditionned score network (NCSN)
 Intuition

 Instead of training on the data distribution directly, train on noisy data
 Perturb data points with noise 𝒩 0,𝜎𝐼 , train score based models on the 

noisy points using score matching.
 If the noise magnitude is large enough this should help populating the low

density regions, i.e. helps solving pb (2) (sఏ x innaccurate in low density
regions)

 What should be the noise scale?
 Large noise populate the space but alters the original distribution
 Small noise does not cover low density regions
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 Noise conditionned score network (NCSN)
 This idea is then refined as follows

 Use multiple and increasing scales of noise 𝒩 0,𝜎௜𝐼 , 𝑖 ൌ 1 … ,𝑇 with 𝜎ଵ ൏
𝜎ଶ ൏ ⋯ ൏ 𝜎் in order to obtain 𝑇 noise-perturbed distributions 𝑞ఙ೔ሺ𝑥෤ሻ ≜
𝑞ఙ೔׬ 𝑥෤ 𝑥 𝑞 𝑥 𝑑𝑥

 In practice this is achieved by drawing samples from 𝑞ఙ೔ሺ𝑥෤ሻ by sampling 
𝑥~𝑞ሺ𝑥ሻ and computing 𝑥෤ ൌ 𝑥 ൅ 𝜎௜𝑧 with 𝑧~𝒩ሺ𝑂, 𝐼ሻ

 Use a unique (𝜽) score function paramaterized by 𝜎, sఏሺx;𝜎ሻ for all the 
noise scales and train it with the different noise scales using score matching
so that sఏሺx;𝜎୧ሻ ൎ ∇௫ log 𝑞ఙ೔ 𝑥
 sఏሺx;𝜎ሻ is called a noise conditional score-based model

 Noise schedule: for example geometric schedule between two extreme
values 𝜎ଵto 𝜎்

 Note
 This is similar to the forward process in DDPMs
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 Noise conditionned score network (NCSN)
 Let 𝑥෤ a perturbation of 𝑥 generated according to the transition kernel 𝑞ఙ 𝑥෤ 𝑥 ൌ 𝒩ሺ𝑥෤; x,𝜎ଶ𝐼ሻ

 i.e. 𝑥෤ is a noisy version of 𝑥
 𝑥෤ can be generated as 𝑥෤ ൌ 𝑥 ൅ 𝜎ଶ𝜖, 𝜖~𝒩ሺ𝑂, 𝐼ሻ
 Let us define 𝑞ఙሺ𝑥෤ሻ ≜ ׬ 𝑞ఙ 𝑥෤ 𝑥 𝑞 𝑥 𝑑𝑥

 The proposed loss function is


ଵ
்
∑ 𝜆 𝜎௜ 𝐸௤഑೔ሺ௫ሻ ∇௫෤log𝑞ఙ೔ 𝑥෤ െ 𝑠ఏ 𝑥෤,𝜎௜ ଶ

ଶ்
௜ୀଵ

 This is a weighted sum of score matching losses, 𝜆 𝑖 ∈ 𝑅,൐ 0, often chosen as 𝜆 𝑖 ൌ 𝜎௜ଶ

 This can be rewriten up to a constant as


ଵ
்
∑ 𝜆 𝜎௜ 𝐸௫~௤ ௫ ,௫෤~௤഑೔ 𝑥෤ 𝑥

௫෤ି௫
ఙ೔
మ ൅𝑠ఏ 𝑥෤,𝜎௜

ଶ

ଶ
்
௜ୀଵ

 𝑞ఙ 𝑥෤ 𝑥 ൌ 𝒩ሺ𝑥෤; x,𝜎ଶ𝐼ሻ ⇒ ∇௫෤log𝑞ఙ 𝑥෤ ൌ െ௫෤ି௫
ఙమ

 𝜆 𝜎௜ is set for example to 𝜎௜ଶ - so that all the components inside the summation have the same order
of magnitude and do not depend on 𝜎


ଵ
்
∑ 𝐸௫~௤ ௫ ,௫෤~௤഑೔ 𝑥෤ 𝑥

௫෤ି௫
ఙ೔

൅ 𝜎௜  𝑠ఏ 𝑥෤,𝜎௜
ଶ

ଶ
்
௜ୀଵ

 After training 𝜎௜ , 𝑠ఏ 𝑥෤,𝜎௜ will return an estimate of the score ∇௫෤log𝑞ఙ೔ 𝑥෤
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 For the generation, it is proposed to use an annealed form of the 
Langevin dynamics

Fig. Song –
Blog 2021

Remark: at each
annealing iteration, one 
starts from the final 
sample of the previous
iteration

Initialize 𝑥଴ ~𝒩ሺ𝑂, 𝐼ሻ (prior distribution)
For 𝑡 ൌ 𝑇 to 1 (annealing iterations)

set 𝛼௧ the step size e.g. 𝛼௧ ൌ 𝜖 ఙ೟
మ

ఙభమ
with 𝜖 a small positive constant

For 𝑖 ൌ 1 to 𝑁 െ 1 (N steps of Langevin dynamics)
Draw 𝑧௜~𝒩ሺ0, 𝐼ሻ
𝑥௜ାଵ ൌ 𝑥௜ ൅ 𝛼௧𝑠ఏ 𝑥௜ ,𝜎௧ ൅ 2𝛼௧𝑧௜

𝑥଴ ൌ 𝑥ே
Return 𝑥଴
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 𝑠ఏ 𝑥௜ , 𝑡  is parametrized with U-Nets with residual connections as 
for DDPMs

 Equivalence with DDPM
 The two training objectives (DDPM and SGM) are equivalent once we

set
 𝜖ఏ 𝑥, 𝑡 ൌ െ𝜎௧ሺ𝑥, 𝑡ሻ
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

Fig. Song et al 
2020
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 Generalizes the discrete diffusion and score based formulations to 
time continuous dynamics
 i.e. one considers the limit when the time step 𝛼௧in score based

methods goes to 0

 Both DDPM and Score based approaches can be formulated as 
discretizations of SDE formulations
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 Stochastic differential equations (SDE)
 𝑑𝑥ሺ𝑡ሻ ൌ 𝑓 𝑥, 𝑡 𝑑𝑡 ൅ 𝑔 𝑡 𝑑𝜔

 𝑓 𝑥, 𝑡 is a vector valued drift function, 𝑓:𝑅௡ → 𝑅௡
 𝑔ሺ𝑡ሻ is a scalar valued diffusion function, 𝑔:𝑅 → 𝑅

 𝑔 is considered scalar and independent of 𝑥 for simplification,
but could be a vector valued fonction and dependent of x too
 𝜔 is a Wiener process (Brownian motion), 𝑑𝜔~𝒩ሺ𝑂, dtሻ
 Under some conditions, the SDE has a unique solution

 Time discretization
 𝑥௧ା୼௧ ൌ 𝑥௧ ൅ 𝑓 𝑥௧, 𝑡 Δt ൅ g x୲, t Δ𝜔, with Δ𝜔~𝒩ሺ0,Δ𝑡ሻ

 Note
 Langevin dynamics 𝑥௧ାଵ ൌ 𝑥௧ ൅ 𝛼௧𝑠ఏ 𝑥௧, 𝑡 ൅ 2𝛼௧𝑧௧ appears as a special

case of the discrete equation with:

 Δ𝑡 ൌ 1, 𝑓 𝑥௧ , 𝑡 ൌ  𝛼௧𝑠ఏ 𝑥௧ , 𝑡 , g x୲, t ൌ 2𝛼௧ ,Δ𝜔 ൌ 𝑧௧
 As for the discrete case, the forward diffusion process does not depend on 

the data

Fig. Kreis et al. 2022
Sample from a SDE 
trajectory
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 Diffusion processes can be modeled as solutions of SDEs
 The solution of a SDE is a continous collection of random variables 

𝑥 𝑡 ௧∈ ଴,்

 These variables trace stochastic trajectories when 𝑡 grows from 0 to 𝑇
 Let us denote 𝑞௧ሺ𝑥ሻ the probability density of 𝑥ሺ𝑡ሻ, and 
𝑞ሺ𝑥ሺ𝑡ሻ|𝑥 𝑠 ሻ the transition kernel from 𝑥 𝑠 to 𝑥 𝑡 with 𝑠 ൏ 𝑡

 The objective is to construct a forward diffusion process 
𝑥 𝑡 ௧∈ ଴,் , indexed by the continuous variable 𝑡 so that 𝑥ሺ0ሻ~𝑝଴, 

the data distribution and 𝑥ሺ𝑇ሻ~𝑞் is a tractable distribution that
can be easily sampled, i.e. a prior 𝜋, e.g. a gaussian with fixed mean
and variance
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 Illustration: stochastic trajectories for the forward diffusion process

Fig. Kreis et al. 2022
Samples: SDE trajectories from different initial 
points
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 Illustration: stochastic trajectories for the forward diffusion process

Fig. Song 2021 - https://yang-
song.net/blog/2021/score/
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 DDPMs and SGMs are both special cases of the SDE discretization

 >>>>>>>>>>>>>>>to be completed <<<<<<<<<<<<<<<<<<<
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 For samples generation, one needs to reverse the SDE
 Any diffusion process modeled as a SDE can be reversed by solving the 

reverse SDE backward, i.e. from 𝑡 ൌ 𝑇 to 𝑡 ൌ 0
 i.e. one starts at 𝑥ሺ𝑇ሻ~𝑞் and reversing the process we obtain samples
𝑥ሺ0ሻ~𝑞଴

 The reverse SDE writes as
 𝑑𝑥 ൌ 𝑓 𝑥, 𝑡 െ 𝑔 𝑡 ଶ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 𝑑𝑡 ൅ 𝑔 𝑡 𝑑𝑤, with 𝑑𝑡 an infinitesimal

negative time step
 𝑞௧ 𝑥 is the distribution of 𝑥 at time 𝑡 ∈  ሾ0,𝑇ሿ
 Once ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 is known for all t, we can use this equation and simulate

it by sampling from 𝑞்ሺ𝑥ሻ to generate a sample from 𝑞଴

Fig. Song et 
al. 2021
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 Reverse process illustration
 One starts from noisy samples to generate target data samples

Fig. Song 2021 - https://yang-
song.net/blog/2021/score/
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 With this formulation, we are then left with two problems
 The training problem: how to estimate ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 the score function of 
𝑞௧ሺ𝑥ሻ? 

 How to solve the reverse SDE?
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 Solving the reverse SDE requires to know the terminal distribution 𝑝்ሺ𝑥ሻ and 
the score function ∇௫𝑙𝑜𝑔𝑞௧ 𝑥
 For the former one uses a prior distribution 𝜋ሺ𝑥ሻ, typically a gaussian
 For the latter, one trains a time-dependent score-based model 𝑠ఏሺ𝑥, 𝑡ሻ such that

𝑠ఏሺ𝑥, 𝑡ሻ ൎ ∇௫𝑙𝑜𝑔𝑞௧ 𝑥
 Note: this is analogous to the discrete case 𝑠ఏሺ𝑥, 𝑖ሻ ൎ ∇௫𝑙𝑜𝑔𝑞ఙ೔ 𝑥

 The training objective is a continuous extension of the one used with SGMs:
 𝐸௧~𝒰ሺ଴,்ሻ𝐸௤೟ሺ௫ሻ 𝜆 𝑡 ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 െ 𝑠ఏሺ𝑥, 𝑡ሻ ଶ

ଶ 
 𝒰ሺ0,𝑇ሻ is a uniform distribution over ሾ0,𝑇ሿ and 𝜆:𝑅 → 𝑅 is a positive weighting function

 As for the discrete case, 𝜆 𝑡 will be set so as to balance the magintude of the different
score matching losses across time

 Generation
 Once trained, one can simulate from 𝑑𝑥 ൌ 𝑓 𝑥, 𝑡 െ 𝑔 𝑡 ଶ𝑠ఏሺ𝑥, 𝑡ሻ 𝑑𝑡 ൅ 𝑔 𝑡 𝑑𝑤

 Practical training
 Use a score matching method e.g. denoising score matching
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 Denoising score matching
 As in the discrete case, diffuse individual data points using diffusion kernels 
𝑞௧ 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ
 𝑀𝑖𝑛ఏ𝐸௧~𝒰ሺ଴,்ሻ𝐸௫ሺ଴ሻ~௤బሺ௫ሻ𝐸௫ሺ௧ሻ~௤ ௫ሺ௧ሻ|௫ሺ଴ሻሻ ቂ𝜆 𝑡 ฮ∇௫೟𝑙𝑜𝑔𝑞௧ 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ െ

𝑠ఏሺ𝑥ሺ𝑡ሻ, 𝑡ሻฮଶ
ଶ
 ቃ

 diffusion kernels 𝑞 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ are chosen Gaussian for linear SDEs (this means𝑓is 
affine): 

𝑞 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ ൌ 𝒩 𝑥 𝑡 ; 𝛾௧𝑥 0 ,𝜎௧ଶ𝐼
 Objective: as in the discrete case, the loss function can be derived as

 𝑀𝑖𝑛ఏ𝐸௧~𝒰ሺ଴,்ሻ𝐸௫~௤ሺ௫ሻ𝐸ఢ~𝒩ሺை,ூሻ
ఒ ௧
ఙ೟మ

𝜖 െ 𝜖ఏሺ𝑥௧ , 𝑡ሻ ଶ
ଶ 

 Practice
 Different loss weightings are proposed, e.g. 𝜆 𝑡 ൌ 𝜎௧ଶ for the simplest case
 𝑠ఏሺ𝑥ሺ𝑡ሻ, 𝑡ሻ or 𝜖ఏሺ𝑥௧, 𝑡ሻ implemented with U-Nets
 For the time integration, one could use Fourier features on t or replace t by 
𝜎௧
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 Once 𝑠ఏሺ𝑥, 𝑡ሻ is learned, it can be plugged in the reverse SDE
 𝑑𝑥 ൌ 𝑓 𝑥, 𝑡 െ 𝑔 𝑡 ଶ𝑠ఏሺ𝑥, 𝑡ሻ 𝑑𝑡 ൅ 𝑔 𝑡 𝑑𝑤
 Starting with 𝑥ሺ𝑇ሻ~𝜋, one can solve this reverse SDE to obtain a sample
𝑥ሺ0ሻ from the target distribution 𝑞ሺ𝑥ሻ – or at least a sample from the 
approximate distribution 𝑞ఏሺ𝑥ሻ ൎ 𝑞ሺ𝑥ሻ

 How to solve the reverse SDE
 Learning free methods

 SDE solvers – a variety of SDE solvers is available from the numerical analysis
literature
 Discretize the SDE in time and use a SDE solver

 ODE solvers – this is detailed in the next slides – Faster that SDE solvers

 Learning methods
 Take benefit from the special for of the SDE in order to optimize the reverse 

solver
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 (Song et al 2021) show that it is possible to associate an ODE to 
any SDE without changing the marginal distribution 𝑞௧ 𝑥 ௧∈ሾ଴,்ሿ. 
i.e. both the ODE and the SDE share the same set of marginal 
distributions 𝑞௧ 𝑥 ௧∈ሾ଴,்ሿ
 The ODE associated to the reverse SDE is:


ௗ௫
ௗ௧
ൌ 𝑓 𝑥, 𝑡 െ ଵ

ଶ
𝑔ଶ 𝑡 ∇୶log q୲ሺxሻ

 This is called the probability flow ODE associated to the SDE
 It is then possible to sample from the same distribution as the 

reverse SDE by solving the ODE using classical ODE solvers (e.g. 
Runge Kutta)

 Note
 When ∇୶log q୲ሺxሻ is replaced by 𝑠ఏሺ𝑥, 𝑡ሻ the ODE becomes a special

case of Neural ODE (see later in the course) – more precisely it is a 
continuous normalizing flow



Score stochastic differential equation
ODE solvers

Advanced Deep learning134

 Current practice
 Solve the forward process using the sde formulation (easy, no training)
 Solve the reverse process using the ODE formulation
 Note: the ODE could be used for the forward and reverse diffusion since

(simply change the integration direction i.e. consider 𝑡 ൐  0 for one 
direction and and 𝑡 ൏  0 for the other direction), however the forward
process is simpler with the fixed SDE formulation.

Fig. Kreis et 
al. 2021
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 ODE trajectories are smoother that SDE trajectories, however they
allow to sample the same marginals 𝑝௧ 𝑥 ௧∈ሾ଴,்ሿ

Fig. Song et 
al. 2021
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 Several applications imply conditional generation
 Text to image: DALL-E, IMAGEN
 Class conditional generation
 Super resolution, colorization, panorama etc (Saharia et al. 2020)

Fig from Saharia et 
al. 2020
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 Conditional setting
 Include the condition as input to the reverse process
 The condition is input to the U-Net or whateverNet used for denoising
 Class conditioning

 Encode a scalar or class indicator as a vector embedding

 Text conditioning
 Vector embedding or sequence of vector embeddings, cross attetion, …

 Image conditioning
 Channel wise concatenation of the conditional image

 How to perform class conditioning
 Several possibilities have been proposed

 We detail here classifier guidance and classifier free guidance
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 Classifier guidance
 Instead of 𝑞௧ሺ𝑥ሻ, one will attempt to compute 𝑞௧ 𝑥 𝑦 with 𝑦 a 

conditioning variable
 For simplification let us consider that 𝑦 is a class indicator

 ∇ log 𝑞௧ 𝑥 𝑦 ൌ ∇ log ௤೟ ௫ ௤ 𝑦 𝑥௧
௤ ௬

 ∇ log 𝑞௧ 𝑥 𝑦 ൌ ∇ log 𝑞௧ 𝑥 ൅ ∇ log 𝑞 𝑦 𝑥௧ െ log 𝑞 𝑦
 ∇ log 𝑞௧ 𝑥 𝑦 ൌ ∇ log 𝑞௧ 𝑥 ൅ ∇ log 𝑞 𝑦 𝑥௧

 To be completed
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 Pro
 performance competitive with the best generative models

 Cons
 extremely slow – due to the large number of sampling steps

 Several improvements – more to come
 Sampling process
 Training dynamics
 Noise level parametrization
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