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 Generative models
 Variational Auto-Encoders
 Generative Adversarial Networks
 Diffusion models

 AI4Science - Physics Based Deep Learning
 Neural Nets and Ordinary Differential Equation
 Neural Networks for modeling spatio-temporal dynamics

• NNs as surrogate models for solving Partial Differential Equations
• Incorporating physical knowledge in statistical dynamics models
• Generalization for agnostic ML models for dynamics modeling
• Foundation models for science



Generative models

Variational Auto-Encoders
Generative Adversarial Networks

Diffusion models
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Generative models

Advanced Deep learning

 Objective
 Learn a probability distribution model from data samples

 Given 𝑥ଵ, … , 𝑥ே ∈ 𝑅 learn to approximate their underlying distribution 𝒳
 For complex distributions, there is no analytical form, and for large size spaces

(𝑅) approximate methods (e.g. MCMC) might fail
 Deep generative models recently attacked this problem with the objective of  

handling large dimensions and complex distributions
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https://en.wikipedia.org/wiki/Edmond_de_Belamy
432 k$ Christies in 2018

De Bezenac et al. 2021
Generating female images from
male ones

Xie et al. 2019
artificial smoke



Generative models
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 Objective 
 General setup of deep generative models

 Learn a generator network 𝑔ఏ:𝑅 → 𝑅 that transforms a latent distribution 
𝒵 ⊂ 𝑅to match a target distribution 𝒳
 𝒵 is usually a simple distribution e.g. Gaussian from which it is easy to 

sample, 𝑞 ൏ 𝑛
 This is unlike traditional statistics where an analytic expression for the 

distribution is sought
 Once trained the generator can be used for:
 Sampling from the latent space: 
 𝑧 ∈ 𝑅~𝒵 and then generate synthetic data via 𝑔ఏ . , 𝑔ఏ 𝑧 ∈ 𝑅

 When possible, density estimation 𝑝ఏ 𝑥 ൌ  𝑝ఏ 𝑥 𝑧 𝑝𝒵 𝑧 𝑑𝑧 
 with 𝑝ఏ 𝑥 𝑧 a function of 𝑔ఏ



Generative models intuition

Advanced Deep learning

 Let 𝑧ଵ, … , 𝑧ே , 𝑧 ∈ 𝑅 and 𝑥ଵ, … , 𝑥ே , 𝑥 ∈ 𝑅, two sets of points 
in different spaces
 Provided a sufficiently powerful model gሺ𝑥ሻ, it should be possible to 

learn complex deterministic mappings associating the two sets:

gሺzଵሻ

gሺzଶሻ

gሺzଷሻ
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𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑅

𝑅

zଵ

zଶ
zଷ



Generative models intuition
 Given distributions on a latent space 𝑝௭ሺzሻ, and on the data space
𝑝௫ሺ𝑥ሻ, it is possible to map 𝑝௭ሺzሻ onto 𝑝௫ 𝑥 ?
 𝑔ఏ defines a distribution on the target space 𝑝௫ 𝑔ఏ 𝑧 ൌ 𝑝ఏሺ𝑥ሻ

 𝑝ఏሺ𝑥ሻ is the generated data distribution, objective: 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ
 Data generation: sample z~𝑍, transform with 𝑔ఏ, 𝑔ఏሺ𝑧ሻ

Advanced Deep learning

𝑔ఏሺzሻ

𝑔ఏሺzሻ

𝑔ఏሺzሻ

𝒛 𝜽 𝒙
Latent 𝑧 space Target 𝑥 space
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Generative models intuition
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 Data generation: sample z~𝑍, transform with 𝑔ఏ, 𝑔ఏ 𝑧

 Important issue
 How to compare predicted distribution  𝑝ఏሺ𝑥ሻ and target distribution 
𝑝𝒳 𝑥 ?

ఏ



Course objective
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 Introduce three popular families of generative models
 Joint requirements

 Learn a generator 𝑔ఏ from samples so that distribution 𝑔ఏ 𝒵 is close to data 
distribution 𝒳, 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ

 This requires measuring the similarity between 𝑔ఏ 𝒵 and 𝒳
 Different similarities are used for each family

 Three families
 Variational autoencoders

 𝑔ఏ:𝑅 → 𝑅, 𝑞 ≪ 𝑛
 Trained to maximize a lower bound of the samples’ likelihood
 Assumption: a density function explains the data

 Generative Adversarial Networks
 𝑔ఏ:𝑅 → 𝑅, 𝑞 ≪ 𝑛
 Can approximate any distribution (no density assumption)
 Similarity between generated and target distribution is measured via a 

discriminator or transport cost in the data space
 Diffusion models

 𝑔ఏ:𝑅 → 𝑅, 𝑞 ≪ 𝑛 is an iterative process based on a Markov chain
 Assumption: a density function explains the data
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Variational Auto-Encoders

After Kingma D., Welling M.,  Auto-EncodingVariational Bayes, 
ICLR 2014

Plus some blogs – see the references
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Prerequisite KL divergence
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 Kullback Leibler divergence
 Measure of the difference between two distributions  𝑝 and 𝑞
 Continuous variables

 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ  ሺlog ሺ௬ሻ
ሺ௬ሻ

ሻ𝑝 𝑦 𝑑𝑦௬

 Discrete variables

 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ∑ ሺlog ሺ௬ሻ
ሺ௬ሻ

ሻ𝑝ሺ𝑦ሻ

 Property
 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ  0
 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ 0 iff 𝑝 ൌ 𝑞

 𝐷ሺ𝑝ሺ𝑦ሻ| 𝑞 𝑦 ൌ െ𝐸 ௬ 𝑙𝑜𝑔  ௬
 ௬

 െ log𝐸 ௬
 ௬
 ௬

ൌ 0
 the first inequality is obtained via Jensen inequality:
 For a convex function 𝑓, 𝑓 𝐸 𝑥  𝐸ሾ𝑓 𝑥 ሿ, and െlog 𝑥 is a convex function

 note: 𝐷 is asymmetric, symmetric versions exist, e.g. Jensen-Shannon 
divergence



Preliminaries – Variational methods
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 Generative latent variable model
 Let us suppose available a joint model on the observed and latent variables 
𝑝ఏ 𝑥, 𝑧

 The observations 𝑥 are generated by the following process
 Sample from 𝑧 ~𝑝ఏ 𝑧 - 𝑝ఏ 𝑧 is the prior
 generate 𝑝ఏሺ𝑥|𝑧ሻ - 𝑝ఏሺ𝑥|𝑧ሻ is the likelihood

 Training objective
 We want to optimize the likelihood of the observed data

 𝑝 𝑥 ൌ 𝑝 𝑥|𝑧 𝑝ሺ𝑧ሻ𝑑𝑧 - 𝑝 𝑥 is called the evidence
 Computing the integral requires evaluating over all the configurations of latent variables,
 This is often intractable
 In order to narrow the sampling space, one may use importance sampling, i.e. sampling 

important 𝑧 instead of sampling blindly from the prior
 Let us introduce a sampling function 𝑞ሺ𝑧|𝑥ሻ

Z x

θ



VAEs - Intuition
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 Intuitively, 𝑧 might correspond to the factors conditioning the 
generation of the data

Fig.  (Kingma 2015)



Generative models intuition
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 What we want: organize the latent space according to some
characteristics of the observations (images) 

 See also the demos @
 https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ 

Fig.: https://ml.berkeley.edu/blog/posts/vq-vae/



VAE
Loss criterion – summary
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 The log likelihood for data point 𝑥 can be decomposed as
 log𝑝ఏ 𝑥 ൌ 𝐷ሺ𝑞థ 𝑧 𝑥 ||𝑝ఏሺ𝑧|𝑥ሻሻ  𝑉ሺ𝜃,𝜙; 𝑥ሻ
 with
 𝑉 𝜃,𝜙; 𝑥 ൌ െ𝐷ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ  𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 Why is it useful?
 𝐷ሺ. | .  0, then 𝑉ሺ𝜃,𝜙; 𝑥ሻ is a lower bound of log𝑝ఏ 𝑥
 in order to maximize log𝑝ఏ 𝑥 , we will maximize 𝑉ሺ𝜃,𝜙; 𝑥ሻ

 𝑉ሺ𝜃,𝜙; 𝑥ሻ is called the ELBO: Evidence Lower Bound
 With an appropriate choice of 𝑞థሺ𝑧|𝑥ሻ this is amenable to a computationable form
 𝑞థሺ𝑧|𝑥ሻ approximates the intractable posterior 𝑝ఏሺ𝑧|𝑥ሻ
 This method is called variational inference

 In general inference denotes the computations of hidden variables given observed ones (e.g. 
infering the class of an object)

 Note
 Because each representation 𝑧 is associated to a unique 𝑥, the loss likelihood can be

decomposed for each point – this is what we do here
 The global log likelihood is then the summation of these individual losses



VAE
Loss criterion – summary
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 Variational lower bound:
 𝑉 𝜃,𝜙; 𝑥 ൌ െ𝐷ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ  𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 Remarks
 𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ is a reconstruction term

 Measures how well the datum 𝑥 can be reconstructed from latent 
representation 𝑧

 𝐷ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ is a regularization term:

 Forces the learned distribution 𝑞థሺ𝑧|𝑥ሻ to stay close to the prior 𝑝ሺ𝑧ሻ
 Otherwise a trivial solution would be to learn a Dirac distribution for 
𝑞థ 𝑧 𝑥

 We want the 𝑧 to be close in the latent space for similar 𝑥s
 𝑝ሺ𝑧ሻ has usually a simple form e.g. 𝒩ሺ0, 𝐼ሻ, then 𝑞థሺ𝑧|𝑥ሻ is also forced to 

remain simple



VAE details
Derivation of the loss function
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 𝒍𝒐𝒈𝒑𝜽 𝒙 ൌ 𝐃𝑲𝑳ሺ𝒒𝝓 𝒛 𝒙 ||𝒑𝜽ሺ𝐳|𝐱ሻሻ  𝑽𝑳ሺ𝛉,𝛟; 𝐱ሻ
Proof

 log𝑝ఏ 𝑥 ൌ  ሺlog𝑝 𝑥 ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭ ) 𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧 ൌ 1ሻ௭

 log𝑝ఏ 𝑥 ൌ ሺlog ሺ௫,௭ሻ
ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ ሺlog ሺ௫,௭ሻ
ሺ௭|௫ሻ

ሺ௭|௫ሻ
ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ ሺlog ሺ௫,௭ሻ
ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭   ሺlog ሺ௭|௫ሻ
ሺ௭|௫ሻ

ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ𝐸ሺ௭|௫ሻሾlog p x, z െ  log 𝑞 𝑧 𝑥 ሿ  𝐷ሺ𝑞ሺ𝑧|𝑥ሻ||𝑝 𝑧 𝑥 ሻ

log𝑝ఏ 𝑥 ൌ𝑉 𝜃,𝜙; 𝑥  Dሺ𝑞థሺ𝑧|𝑥ሻ||𝑝ఏ 𝑧 𝑥 ሻ
with

𝑉 𝜃,𝜙; 𝑥 ൌ 𝐸ሺ௭|௫ሻሾlog  pఏሺ𝑥, 𝑧ሻ െ  log 𝑞థ 𝑧 𝑥 ሿ
 Maximizing log𝑝ఏ 𝑥 is equivalent to maximizing 𝑉 𝜃,𝜙; 𝑥 (and minimizing

Dሺ𝑞థሺ𝑧|𝑥ሻ||𝑝ఏ 𝑧 𝑥 ሻ
 𝑉 𝜃,𝜙; 𝑥 is called an Evidence Lower Bound (ELBO)



VAE details
Derivation of the loss function
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 𝑽𝑳 𝜽,𝝓;𝒙 ൌ െ𝑫𝑲𝑳ሺ𝒒𝝓ሺ𝒛|𝒙ሻ||𝒑 𝒛 ሻ  𝑬𝒒𝝓 𝒛 𝒙 ሾ𝒍𝒐𝒈𝒑𝜽ሺ𝒙|𝒛ሻሿ

Proof:
 𝑉 𝜃,𝜙; 𝑥 ൌ Eഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥, 𝑧 െ log 𝑞థሺ𝑧|𝑥ሻሿ

 𝑉 𝜃,𝜙; 𝑥 ൌ Eഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧  log𝑝ఏሺ𝑧ሻ െ log 𝑞థሺ𝑧|𝑥ሻሿ

 𝑉 𝜃,𝜙; 𝑥 ൌ െDሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ  Eഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ]



VAE
Loss criterion – summary
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 Variational lower bound:
 𝑉 𝜃,𝜙; 𝑥 ൌ െ𝐷ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ  𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 This form provides a link with a NN implementation
 The generative 𝑝ఏ 𝑥 𝑧 and inference 𝑞థ 𝑧 𝑥 modules are implemented by 

NNs
 They will be trained to maximize the reconstruction error for each ሺ𝑧, 𝑥ሻ: 
𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ term

 The inference module 𝑞థ 𝑧 𝑥 will be constrained to remain close to the 
prior 𝑝 𝑧 : െDሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ ൎ 0



VAE
Loss - summary
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 Loss function in the NN model

 Training performed via Stochastic gradient
 This requires an analytical expression for the loss functions and for gradient 

computations
 Sampling
 deterministic

Encoder - NN

𝑔 𝑥 ൌ 𝑞థ 𝑧 𝑥𝑥

Decoder - NN

𝑧 𝑓 𝑧 ൌ 𝑝ఏ 𝑥|𝑧 𝑥

Regularization loss 
െKLሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ

Reconstruction loss 
Eഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ]



VAE- reparametrization trick

Advanced Deep learning21

 Training with stochastic units: reparametrization trick
 Not possible to propagate the gradient through stochastic units (the 𝑧s

and 𝑥s are generated via sampling)
 Solution

 Parametrize 𝑧 as a deterministic transformation of a random variable 𝜖: 𝑧 ൌ
𝑔థ 𝑥, 𝜖 with 𝜖~𝑝 𝜖 independent of 𝜙, e.g. 𝜖~𝑁ሺ0,1ሻ

 Example
 If 𝑧~𝒩ሺ𝜇,𝜎ሻ, it can be reparameterized by 𝑧 ൌ 𝜇  𝜎⨀𝜖, with 𝜖~𝒩ሺ0,1ሻ, 

with ⨀ pointwise multiplication (𝜇,𝜎 are vectors here)
 For the NN implementation we have: 𝑧 ൌ 𝜇௭ሺ𝑥ሻ  𝜎௭ሺ𝑥ሻ⨀𝜖௭

 This will allow the derivatives to « pass » through the 𝑧
 With this expression, one may compute the gradients of the ELBO with to 

the NN parameters of 𝜇௭ሺ𝑥ሻ and 𝜎௭ሺ𝑥ሻ
 For the derivative, the sampling operation is regarded as a deterministic

operation with an extra input 𝜖௭, whose distribution does not involve
variables needed in the derivation



VAE - reparametrization trick
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 Reparametrization (fig. from D. Kingma)



VAE
Exemple: Gaussian priors and posteriors
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 Special case: gaussian priors and posteriors
 Hyp:

 𝑝 𝑧 ൌ 𝒩 0, 𝐼
 𝑝ఏ 𝑥 𝑧 ൌ 𝒩 𝜇 𝑧 ,𝜎ሺ𝑧ሻ , 𝜎ሺ𝑧ሻ diagonal matrix,  𝑥 ∈ 𝑅

 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ , 𝜎 𝑥  diagonal matrix,  𝑧 ∈ 𝑅



VAE
Exemple: Gaussian priors and posteriors - illustration
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 Decoder:
 in the example 𝑧 is 1 dimensional and 𝑥 is 2 dimensional, 𝑓 is a 1 hidden

layer MLP with gaussian output units and tanh hidden units
 full arrows:  deterministic
 dashed arrows: sampling

𝑥ଵ

𝑥ଶ

𝑧

𝜇௫ଵሺ𝑧ሻ

𝜇௫ଶሺ𝑧ሻ

𝜎௫ଵሺ𝑧ሻ

𝜎௫ଶሺ𝑧ሻ



VAE
Gaussian priors and posteriors - illustration
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 Encoder
 in the example 𝑧 is 1 dimensional and 𝑥 is 2 dimensional, 𝑔 is a 1 hidden

layer MLP with gaussian output units and tanh hidden units
 full arrows:  deterministic
 dashed arrows: sampling

𝑥ଵ

𝑥ଶ

𝑧

𝜇௭ଵሺ𝑥ሻ

𝜎௭ଵሺ𝑥ሻ



VAE
Gaussian priors and posteriors
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 Putting it all together

𝑥ଵ

𝑥ଶ

𝜇௫ଵሺ𝑧ሻ

𝜇௫ଶሺ𝑧ሻ

𝜎௫ଵሺ𝑧ሻ

𝜎௫ଶሺ𝑧ሻ

𝑥ଵ

𝑥ଶ

𝑧

𝜇௭ଵሺ𝑥ሻ

𝜎௭ଵሺ𝑥ሻ

ఏథ



VAE
Gaussian priors and posteriors
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 Additional illustration 

https://lilianweng.github.io/posts/2018-08-12-vae/



VAE details
for Gaussian priors and posteriors
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VAE – instanciation example
Gaussian priors and posteriors
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 Special case: gaussian priors and posteriors
 Hyp:

 𝑝 𝑧 ൌ 𝒩 0, 𝐼
 𝑝ఏ 𝑥 𝑧 ൌ 𝒩 𝜇 𝑧 ,𝜎ሺ𝑧ሻ , 𝜎ሺ𝑧ሻdiagonal matrix,  𝑥 ∈ 𝑅

 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ , 𝜎 𝑥  diagonal matrix,  𝑧 ∈ 𝑅

 Variational lower bound
 𝑉 𝜃,𝜙; 𝑥 ൌ െ𝐷ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ  𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ
 In this case, Dሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ has an analytic expression (see next slide)

 െ𝐷ሺ𝑞థሺ𝑧|𝑥ሻ| 𝑝 𝑧 ൌ ଵ
ଶ
∑ ሺ1  log 𝜎௭ೕ

ଶ
െ 𝜇௭ೕ

ଶ
െ 𝜎௭ೕ

ଶ
ሻ

ୀଵ

 𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ is estimated using Monte Carlo sampling

 𝐸ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ ≃ ଵ

∑ log ሺ𝑝ఏሺ𝑥|𝑧  ሻ
ୀଵ

 log ሺ𝑝ఏ 𝑥 𝑧  ൌ െሺ∑ ଵ
ଶ

log 𝜎௫ೕ
ଶ 𝑧  

ሺ௫ೕିఓೣೕ ௭ሺሻ ሻమ

ଶఙೣೕ
మ ሺ௭ሺሻሻ

ሻ
ୀଵ

 i.e.  𝐿 samples with 𝑧  ൌ 𝑔థ 𝑥, 𝜖ሺሻ



VAE - instanciation example
Gaussian priors and posteriors (demos on next slides)
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 If 𝑧 ∈ 𝑅: െ𝐷ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൌ ଵ
ଶ
∑ ሺ1  log 𝜎

ଶ െ 𝜇
ଶ െ 𝜎

ଶሻ
ୀଵ

 proof

 𝐷ሺ𝑞థሺ𝑧ሻ| 𝑝 𝑧 ൌ  𝑞థ 𝑧 log ഝሺ௭ሻ
ሺ௭ሻ

𝑑𝑧

 Consider the 1 dimensional case
 𝑞థ 𝑧 log 𝑝 𝑧 𝑑𝑧 ൌ 𝒩 𝑧; 𝜇,𝜎 log𝒩 𝑧; 0,1 𝑑𝑧

 𝑞థ 𝑧 log 𝑝 𝑧 𝑑𝑧 ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ
ሺ𝜇ଶ  𝜎ଶሻ

 Property of 2nd order moment of a Gaussian

 𝑞థ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ𝒩 𝑧; 𝜇,𝜎 log𝒩 𝑧; 𝜇,𝜎 𝑑𝑧

 𝑞థ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ
ሺ1  log𝜎ଶሻ

 ……

 Since both ddps are diagonal, extension to 𝐽 dimensions is straightforward, 
hence the result



VAE - instanciation example
Gaussian priors and posteriors – demos for the 1 dimensional case
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 Remember 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ
 Then 𝑞థ 𝑧 log𝑝 𝑧 𝑑𝑧 ൌ 𝒩 𝑧; 𝜇,𝜎 log𝒩 𝑧; 0,1 𝑑𝑧
 ൌ 𝐸ಅሾlog𝒩 𝑧; 0,1 ሿ

ൌ 𝐸ಅ ሾlogሺ ଵ
ଶగ

exp െ ௭మ

ଶ
ሻሿ

ൌ 𝐸ಅ െ ଵ
ଶ

log 2𝜋 െ ௭మ

ଶ

ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ
𝐸ಅ ሾ𝑧ଶሿ

 What is the value of 𝐸 𝑧ଶ ?
 𝐸ಅ 𝑧 െ 𝜇 ଶ ൌ 𝜎ଶ

 𝐸ಅ 𝑧ଶ െ 2𝐸ಅ 𝑧𝜇  𝜇ଶ ൌ 𝜎ଶ

 𝐸ಅ 𝑧𝜇 ൌ 𝜇ଶ

 𝐸ಅ 𝑧ଶ ൌ  𝜇ଶ  𝜎ଶ

 Then 𝒒𝝓 𝒛 𝒍𝒐𝒈𝒑 𝒛 𝒅𝒛 ൌ െ 𝟏
𝟐
𝒍𝒐𝒈𝟐𝝅 െ 𝟏

𝟐
ሺ𝝁𝟐  𝝈𝟐)



VAE - instanciation example
Gaussian priors and posteriors – demos for the 1 dimensional case
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 𝑞థ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ𝒩 𝑧;𝜇,𝜎 log𝒩 𝑧;𝜇,𝜎 𝑑𝑧

ൌ 𝐸ಅሾlogሺ ଵ
ଶగఙ

exp െ ௭ିఓ మ

ଶఙమ
ሻሿ

ൌ െ ଵ
ଶ

log 2𝜋 െ log𝜎 െ 𝐸ಅሾ
௭ିఓ మ

ଶఙమ
ሿ

ൌ െ ଵ
ଶ

log 2𝜋 െ ଵ
ଶ

log𝜎ଶ െ ଵ
ଶ

ൌ െଵ
ଶ

log 2𝜋 െ ଵ
ଶ
ሺlog𝜎ଶ  1ሻ



VAE - instanciation example
Gaussian priors and posteriors
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 Loss
 Regularization term

 െ𝐷ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൌ ଵ
ଶ
∑ ሺ1  log 𝜎

ଶ െ 𝜇
ଶ െ 𝜎

ଶሻ
ୀଵ

 Reproduction term

 log 𝑝 𝑥 𝑧 ൌ ∑ ଵ
ଶ

log ሺ𝜎ଶ 𝑧 ሻ 
ሺ௫ೕିఓೕ ௭ ሻమ

ଶఙೕ
మሺ௭ሻ


ୀଵ

 Training
 Mini batch or pure stochastic

 Repeat
 𝑥← random point or minibatch
 𝜖 ← sample from 𝑝 𝜖 for each 𝑥
 𝜃← 𝛻ఏ𝑉ሺ𝜃,𝜙; 𝑥,𝑔 𝜖,𝜙 ሻ
 ϕ← 𝛻థ𝑉ሺ𝜃,𝜙; 𝑥,𝑔 𝜖,𝜙 ሻ

 Until convergence



Learning discrete distributions: VQ-VAE (highlights)
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 So far we considered continuous latent distributions
 There are several instances were discrete distributions are more 

appropriate
 Text data, objects in images (color, size, orientation,…), etc
 There are several algorithms, e.g. transformers designed to work with

discrete data
 Teaser: Dall-e – makes use of a discreteVAE together with transformers

in order to generate diverse images
 https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/
 https://gpt3demo.com/apps/openai-dall-e
 https://www.craiyon.com/ (mini version of Dall-e)



Learning discrete distributions: VQ-VAE
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 What is a discrete latent distribution?

Fig: https://ml.berkeley.edu/blog/posts/vq-vae/



Learning discrete distributions: VQ-VAE
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 VQ-VAE modifies the vanillaVAE by adding a discrete codebook of 
vectors to the VAE - It is used to quantize the VAE bottleneck
 General scheme: VQ-VAE paper - https://arxiv.org/pdf/1711.00937.pdf



Learning discrete distributions: VQ-VAE
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 Loss function

 𝐿 ൌ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧 𝑥 ∥ଶ∥ 𝑠𝑔 𝑧 𝑥 െ 𝑧 𝑥 ∥ଶ 𝛽 ∥ 𝑧 𝑥 െ 𝑠𝑔 𝑧 𝑥 ∥ଶ

 With 𝑠𝑔ሺ𝑧ሻ stop gradient, i.e. do not back-propagate through 𝑧
 ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧 𝑥 ∥ଶ: train decoder and encoder

 ∥ 𝑠𝑔 𝑧 𝑥 െ 𝑧 𝑥 ∥ଶ: train the codebook 𝑒 ൌ 𝑧ሺ𝑥ሻ
 ∥ 𝑧 𝑥 െ 𝑠𝑔 𝑧 𝑥 ∥ଶ: train encoder, forces 𝑧 𝑥 to stay close to 𝑒 ൌ 𝑧ሺ𝑥ሻ

 This is because the codebook does not train as fast as the encoder and the decoder
 Prevents the encoder values to diverge 

 Gradients
 Since it is not possible to compute the gradient through the VQ component, it is proposed to simply

copy the gradient w.r.t. 𝑧 to 𝑧

 ∇௭ ௫ ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧 𝑥 ∥ଶൌ ∇௭ ௫ ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧 𝑥 ∥ଶ

 This is called straight-through gradient
 Note

 This is an incomplete description, the model requires additional steps
 Dall-e makes use of a slightly different discreteVAE  (called dVAE)
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Generative Adversial Networks - GANs

Ian J. Goodfellow, et al. 2014

There has been a strong hype for GANs  for several years - O(1000) GAN papers on Arxiv
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GANs

Advanced Deep learning

 Generative latent variable model

 Given Samples 𝑥ଵ, … , 𝑥ே ∈ 𝑅, with 𝑥~𝒳, latent space distribution 𝑧~𝒵 e.g 𝑧~𝒩 0, I , 
use a NN to learn a possibly complex mapping 𝑔ఏ:𝑅 → 𝑅 such that:

𝑝௫ 𝑔ఏ 𝑧 ൌ 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ

 Different solutions for measuring the similarity between 𝑝ఏሺ𝑥ሻ and 𝑝௫ሺ𝑥ሻ
 In this course: binary classification

 Note:
 Once trained, sample from 𝑧 directly generates the samples 𝑔ఏ 𝑧  
 Different from VAEs and Flows where the NN 𝑔ఏ .  generate distribution parameters

z x

θ

NN

𝑧

𝑔ఏ 𝑧  

𝑥
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GANs – Adversarial training as binary classification

Advanced Deep learning

 Principle
 A generative network generates data after sampling from a latent 

distribution
 A discriminant network tells if the data comes from the generative

network or from real samples
 The discriminator will be used to measure the distance between the distributions 
𝑝ఏሺ𝑥ሻ and 𝑝௫ሺ𝑥ሻ

 The two networks are trained together
 The generative network tries to fool the discriminator, while the discriminator

tries to distinguish between true and artificially generated data
 The problem is formulated as a MinMax game
 The Discriminator will force the Generator to be « clever » and learn the data 

distribution

 Note
 No hypothesis on the existence of a density function

 i.e. no density estimate (Flows), no lower bound (VAEs)
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GANs – Adversarial training as binary classification
Intuition - Training

Advanced Deep learning

 Discriminator is presented alternatively with true (𝑥ሻ and fake
𝑥ො ൌ 𝑔ఏሺ𝑧ሻ data

Generator Network
𝑔ఏሺ𝑧ሻ

𝑧~𝑝௭ሺ𝑧ሻ
𝑝ఏሺ𝑥|𝑧ሻ 

𝑥ො

Generated
data

Discriminator 
Network
𝐷థሺ𝑥ሻ

1 if 𝑥
0 if 𝑥ො

Latent 
variable

𝑥~𝑝௫ሺ𝑥ሻ
𝑥Real data

𝐷థ and 𝑔ఏ are typically
MLPs/Deep CNNs/…
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GAN – Adversarial training as binary classification
Intuition - Training

Advanced Deep learning

 Algorithm alternates between optimizing 𝐷థ (separate true and 
generated data) and 𝑔ఏ (generate data as close as possible to true
examples) – Once trained, G should be able to generate data witha
distribution close to the ground truth

𝑥 𝑥

Train 𝐷థ Train 𝑔ఏ

Train 𝐷థ Train𝑔ఏ
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GANs - Adversarial training as binary classification 
Loss function (Goodfellow et al. 2014)

Advanced Deep learning

 𝑥~𝑝௫ 𝑥 distribution over data 𝑥
 𝑧~𝑝ሺ𝑧ሻ prior on 𝑧, usually a simple distribution (e.g. Normal distribution)
 Loss

 min
ఏ

max
థ

𝐿ሺ𝐷థ,𝑔ఏሻ ൌ 𝐸௫~ೣ ௫ ሾ𝑙𝑜𝑔𝐷థ 𝑥 ሿ 𝐸~ሺ௭ሻሾlog 1 െ 𝐷థ 𝑔ఏ 𝑧 ሿ

 𝑔ఏ:𝑅 → 𝑅 mapping from the latent (𝑧) space to the data (𝑥) space
 𝐷థ:𝑅 → ሾ0,1ሿ probability that 𝑥 comes from the data rather than from the 

generator 𝑔ఏ
 If 𝑔ఏ is fixed, 𝐿ሺ𝐷థ,𝑔ఏሻ is a classical binary cross entropy for 𝐷థ, distinguishing

real and fake examples
 Note:

 Training is equivalent to find 𝐷థ∗ ,𝑔ఏ∗ such that
 𝐷థ∗ ∈  𝑎𝑟𝑔 max

థ
𝐿ሺ𝐷థ,𝑔ఏ∗ሻ and 𝑔ఏ∗ ∈  𝑎𝑟𝑔 m𝑖𝑛

ఏ
𝐿ሺ𝐷థ∗ ,𝑔ఏሻ

 Saddle point problem
 instability

 Practical training algorithm
 Alternates optimizing (maximizing) w.r.t. 𝐷థ optimizing (minimizing) w.r.t. 𝑔ఏ
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Adversarial training as binary classification 
Training GANs

Advanced Deep learning

 Training alternates optimization (SGD) on 𝐷థ and 𝑔ఏ
 In the alternating scheme, 𝑔ఏ usually requires more steps than 𝐷థ+ 

different batch sizes

 It is known to be highly unstable with two pathological problems
 Oscillation:  no convergence
 Mode collapse: 𝑔 collapses on a few modes only of the target

distribution (produces the same few patterns for all 𝑧 samplings)
 Low dimensional supports (Arjovsky 2017): 𝑝௫and 𝑝ఏ may lie on low

dimensional manifold that do not intersect.
 It is then easy to find a discriminator, without 𝑝ఏ close to 𝑝௫

 Lots of heuristics, lots of theory, but
 Behavior is still largely unexplained, best practice is based on heuristics
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GAN- Adversarial training as binary classification 
Equilibrium analysis (Goodfellow et al. 2014)

Advanced Deep learning

 The seminal GAN paper provides an analysis of the solution that could be
obtained at equilibrium

 Let us define

 𝐿ሺ𝐷థ,𝑔ఏሻ ൌ 𝐸௫~ೣ ௫ ሾ𝑙𝑜𝑔𝐷థ 𝑥 ሿ 𝐸୶~ഇሺ௫ሻሾlog 1 െ 𝐷థ 𝑥 ሿ

 with 𝑝௫ 𝑥 the true data distribution and 𝑝ఏ 𝑥 the distribution of generated data
 Note that this is equivalent to the 𝐿 𝐷,𝐺 definition on the slide before

 If 𝑔ఏ and 𝐷థ have sufficient capacity
 Computing 𝑎𝑟𝑔𝑚𝑖𝑛

ఏ
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛

ఏ
max
థ

𝐿 𝐷థ,𝑔ఏ  

 Is equivalent to compute
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ఏ𝐷ௌ 𝑝௫ , 𝑝ఏ with 𝐷ௌ(,) the Jenson-Shannon dissimilarity measure

between distributions
 The loss function of a GAN quantifies the similarity between the real sample

distribution and the generative data distribution by JSD when the discriminator is
optimal
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GAN- Adversarial training as binary classification 
Equilibrium analysis (Goodfellow et al. 2014)

Advanced Deep learning

 If the optimum is reached

 𝐷థ 𝑥 ൌ ଵ
ଶ

for all 𝑥 → Equilibrium

 In practice equilibrium is never reached

 Note

 Maximize log 𝐷థ 𝑔ఏ 𝑧 instead of minimizing log 1 െ 𝐷థ 𝑔ఏ 𝑧

provides stronger gradients and is used in practice, i.e. log 1 െ 𝐷థ 𝑔ఏ 𝑧

is replaced by െlog 𝐷థ 𝑔ఏ 𝑧
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GAN equilibrium analysis (Goodfellow et al. 2014)
Prerequisite KL divergence

Advanced Deep learning48

 Kullback Leibler divergence
 Measure of the difference between two distributions  𝑝 and 𝑞
 Continuous variables

 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ  ሺlog ሺ௬ሻ
ሺ௬ሻ

ሻ𝑝 𝑦 𝑑𝑦௬

 Discrete variables

 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ∑ ሺlog ሺ௬ሻ
ሺ௬ሻ

ሻ𝑝ሺ𝑦ሻ

 Property
 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ  0
 𝐷ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ 0 iff 𝑝 ൌ 𝑞

 𝐷ሺ𝑝ሺ𝑦ሻ| 𝑞 𝑦 ൌ െ𝐸 ௬ 𝑙𝑜𝑔  ௬
 ௬

 െ log𝐸 ௬
 ௬
 ௬

 0
 where the first inequality is obtained via Jensen inequality

 note: 𝐷 is asymmetric, symmetric versions exist, e.g. Jensen-Shannon 
divergence



GAN equilibrium analysis (Goodfellow et al. 2014) - proof
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 For a given generator 𝑔,  the optimal discriminator is

 D∗ 𝑥 ൌ 𝒳ሺ௫ሻ
𝒳 ௫ ାഇ ሺ௫ሻ

 Let 𝑓 𝑦 ൌ 𝑎 𝑙𝑜𝑔 𝑦  𝑏 𝑙𝑜𝑔ሺ1 െ 𝑦ሻ, with 𝑎, 𝑏, 𝑦  0


ௗ
ௗ௬
ൌ 

௬
െ 

ଵି௬
, ௗ
ௗ௬
ൌ 0 ⟺ 𝑦 ൌ 

ା
and this is a max

 𝑀𝑎𝑥 𝐿ሺ𝐷,𝐺ሻ ൌ 𝐸௫~𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥 ሿ 𝐸୶~ഇሺ௫ሻሾlog 1 െ 𝐷 𝑥 ሿ is then
obtained for:

 D∗ 𝑥 ൌ 𝒳ሺ௫ሻ
𝒳 ௫ ାഇ ሺ௫ሻ



GAN equilibrium analysis (Goodfellow et al. 2014) - proof
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 Let 𝐶 𝑔 ൌ max


𝐿 𝑔,𝐷 ൌ 𝐿ሺ𝑔,𝐷∗ሻ
 It si easily verified that:

 𝐶 𝑔 ൌ െ log 4  𝐾𝐿 𝑝𝒳 𝑥 ;  𝒳 ௫ ାഇ ௫
ଶ

 𝐾𝐿 𝑝ఏ 𝑥 ;  𝒳 ௫ ାഇ ௫
ଶ

 Since 𝐾𝐿 𝑝; 𝑞  0 and 𝐾𝐿 𝑝; 𝑞 ൌ 0 iff 𝑝 ൌ 𝑞
 𝐶ሺ𝑔ሻ is minimum for 𝑝ఏ ൌ 𝑝𝒳 with 𝐷∗ 𝑥 ൌ ଵ

ଶ
 At equilibrium, GAN training optimises Jenson-Shannon Divergence, 𝐽𝑆𝐷 𝑝; 𝑞 ൌ

ଵ
ଶ
𝐾𝐿 𝑝; ା

ଶ
 ଵ

ଶ
𝐾𝐿 𝑞; ା

ଶ
between 𝑝ఏ and 𝑝𝒳

 Summary
 The loss function of a GAN quantifies the similarity between the real sample

distribution and the generative data distribution by JSD when the 
discriminator is optimal

 Note


𝒳ሺ௫ሻ
ഇሺ௫ሻ

ൌ ሺ௫|௬ୀଵሻ
ሺ௫|௬ୀሻ

ൌ 𝑘 ሺ௬ୀଵ|௫ሻ
ሺ௬ୀ|௫ሻ

ൌ 𝑘 ∗ሺ௫ሻ
ଵି∗ሺ௫ሻ

with 𝑘 ൌ ሺ௬ୀሻ
ሺ௬ୀଵሻ

 The discriminator is used to implicitely measure the discrepancy between
the distributions



Training GANs
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 Training alternates optimization on 𝐷 and 𝐺
 In the alternating scheme, 𝐺 usually requires more steps than 𝐷

 It is known to be highly unstable with two pathological problems
 Oscillation:  no convergence
 Mode collapse: 𝐺 collapses on a few modes only of the distribution (produces the 

same few patterns for all 𝑧 samplings)
 Low dimensional supports (Arjovsky 2017): 𝑝ௗ௧and 𝑝 may lie on low dimensional

manifold that do not intersect. It is then easy to find a discriminator, without training 
𝑝 to be close to 𝑝ௗ௧

 Very large number of papers offering tentative solutions to these problems
 e.g. recent developments concerning Wasserstein GANs (Arjovsky 2017)

 This remain difficult and heuristic although various explanation heve been developped
(e.g. stability of the generator – related to optimal transport or dynamics of the 
network – see course on ODE) 

 Evaluation
 What could we evaluate?
 No natural criterion

 Very often beauty of the generated patterns!



Objective functions
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 A large number of alternative objective functions have been 
proposed, we will present two examples
 Least Square GANs
 Wasserstein GANs



Objective functions – Least Square GANS (Mao et al. 2017)
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 If a generated sample is well classified but far from the real data 
distribution, there is no reason for the generator to be updated

 LS-GAN replaces the cross entropy loss with a LS loss which
penalizes generated examples by moving them close to the real data 
distribution.

 The objective becomes
 𝐿 𝐷 ൌ 𝐸௫~𝒳 ௫ ሺ𝐷 𝑥 െ 𝑏ሻଶ  𝐸௭~ ௭ 𝐷ሺ𝑔 𝑧 ሻ െ 𝑎 ଶ

 𝐿 𝑔 ൌ  𝐸௭~ሺ௭ሻ 𝐷 𝑔 𝑧 െ 𝑐 ଶ

 Where 𝑎, 𝑏 are constants respectively associated to generated and real 
data  and c is a value that 𝑔 wants 𝐷 to believe for the generated data.

 They use for example 𝑎 ൌ 0, 𝑏 ൌ 𝑐 ൌ 1



Objective functions – Wasserstein GANs (Arjovski et al. 2017)
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 Arjovski advocates that 𝐷 (or 𝐷ୗሻ might not be appropriate
 They suggest using the Wasserstein distance between the real and 

generated distributions (also known as Earth Moving Distance or EMD)
 Intuitively, this is the minimum mass displacement to transform one 

distribution to the other
 Wassertein distance is defined as

 𝑊 𝑝𝒳 ,𝑝ఏ ൌ inf
ఊ∈ஈሺ𝒳 ,ഇሻ

𝐸ሺ௫,௫ᇲሻ~ఊሾ∥ 𝑥 െ 𝑥′ ∥ሿ

 where Πሺ𝑝𝒳 , 𝑝ఏሻ is the set of distributions over 𝑋ଶ , with 𝑋 ⊂ 𝑅 the space of 
data, whose marginals are respectively 𝑝𝒳ሺ𝑥ሻ and 𝑝ఏሺ𝑥ሻ, ∥ 𝑥 െ 𝑥′ ∥ is the 
Euclidean norm.

 Intuitively,
 𝑊ሺ, ሻ is the minimum amount of work required to transform 𝑝𝒳ሺ𝑥ሻ to 𝑝ఏሺ𝑥ሻ –

see next slide
 it makes sense to learn a generator 𝑔 minimizing this metric

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ீ𝑊ሺ𝑝𝒳 , 𝑝ఏሻ



Wasserstein GANs (Arjovski et al. 2017)
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 Earth Mover distance illustration
 2 distributions (pink (𝜇) and blue (𝜇′))
 An elementary rectangle weights ¼
 The figure illustrates the computation of 𝑊 𝜇, 𝜇ᇱ , the Wasserstein

distance between pink and blue: this is the earth mover distance to 
transport pink on blue. This is denoted as 𝜇ᇱ ൌ #𝜇, 𝜇ᇱ is the push 
forward of 𝜇

Fig. from F. Fleuret 2018



Objective functions – Wasserstein GANs (Arjovski et al. 2017)
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 Let 𝑥 and 𝑦 respectively denote the variables from the source and 
the target distributions

 𝑝𝒳 𝑥 ൌ  𝛾 𝑥,𝑦 𝑑𝑦௬ is the amount of mass to move from 𝑥, 

𝑝ఏ 𝑦 ൌ  𝛾 𝑥,𝑦 𝑑𝑥௬ is the amount of mass to move to 𝑦

 Transport is defined as the amont of mass multiplied by the distance 
it moves, then the transport cost is: 𝛾 𝑥, 𝑦 . ∥ 𝑥 െ 𝑦 ∥ and the 
minimum transport cost is inf

ఊ∈ஈሺ𝒳 ,ഇሻ
𝐸ሺ௫,௫ᇲሻ~ఊሾ∥ 𝑥 െ 𝑥′ ∥ሿ



Wasserstein GANs (Arjovski et al. 2017)
Optimal Transport interpretation
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 Left: standard ways to compute distance between functions (point distance)
 Right: Optimal Transport way

 Seek the best map 𝑇 which transports the blue distribution on the red one.
 The smaller 𝑇 , the closest 𝑓 and 𝑔.

 Wasserstein distance is defined as  𝑊ሺ𝑓,𝑔ሻ ൌ inf
்|்#ୀ

 |𝑇ሺ𝑥ሻ െ 𝑥|𝑑𝑥 ௫

 Which can be translated in:
 “You look at all the ways to transport 𝑓 on 𝑔 with a map 𝑇 (denoted 𝑇#𝑓 ൌ 𝑔 ).
 For a given such transport map 𝑇, you look at the total distance you traveled on the 

𝑥 axis , that is  |𝑇ሺ𝑥ሻ െ 𝑥|𝑑𝑥௫ . 
 Among all these transport maps, you look at the one which achieves the optimal (i.e. 

minimal) distance traveled. This minimal distance is called the Wasserstein distance 
between 𝑓 and 𝑔.”

Fig. Santambrogio, 2015



Wasserstein GANs (Arjovsky et al. 2017)
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 The 𝑊ሺ, ሻ definition does not provide an operational way for learning 𝐺
 Arjovsky uses a duality theorem from Kantorovitch and Rubinstein, stating the 

following result:
 𝑊 𝑝𝒳 , 𝑝ఏ ൌ sup

∥∥ಽஸଵ
𝐸௫∼𝒳 𝑓 𝑥 െ𝐸௫∼ഇ 𝑓 𝑥

 Where 𝑓:𝑋 → 𝑅 is 1-Lipchitz, i.e. 𝑓 𝑥 െ 𝑓ሺ𝑦ሻ ൏ 1 ∥ 𝑥 െ 𝑦 ∥,∀ 𝑥, 𝑦 ∈ 𝑋
 i.e. ∥ 𝑓 ∥ 1 denotes the 1-Lipchitz functions

 Implementation
 Using this result, one can look for a generator 𝑔 and a critic 𝑓௪:

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛𝑊 𝑝𝒳 , 𝑝ఏ
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛 sup

∥∥ಽ
𝐸௫∼𝒳 𝑓௪ 𝑥  െ 𝐸௫∼ഇ 𝑓௪ 𝑥

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛 sup
∥∥ಽ

𝐸௫∼𝒳 𝑓௪ 𝑥  െ 𝐸௭∼ 𝑓௪ 𝐺ሺ𝑧ሻ

 𝑓௪is implemented via a NN with parameters 𝑤, it is called a critic because it does not classify
but scores its inputs

 In the original WGAN,𝑓௪is made 1-Lipchitz by clipping the weights (Arjovski et al. 2017)
 Better solutions were developed later



Wasserstein GANs (Arjovski et al. 2017)
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 Algorithm

 Alternate
 Optimize 𝑓௪
 Optimize 𝑔ఏ

From Arjovski 2017



GANs examples
Deep Convolutional GANs (Radford 2015) - Image generation
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 LSUN bedrooms dataset - over 3 million training examples

Fig. Radford 2015



Gan example
MULTI-VIEW DATA GENERATION WITHOUT VIEW
SUPERVISION (Chen 2018 - Sorbonne)
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 Objective
 Generate images by disantangling content and view

 Eg. Content 1 person, View: position, illumination, etc
 2 latent spaces: view and content

 Generate image pairs: same item with 2 different views
 Learn to discriminate between generated and real pairs



1 row = 1 content

Column = view Column = view

Fig. Chen 2018



Conditional GANs (Mirza 2014) 
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 The initial GAN models distributions by sampling from the latent 𝑍
space

 Many applications require to condition the generation on some data
 e.g.: text generation from images, in-painting, super-resolution, etc

 (Mirza 2014) proposed a simple extension of the original GAN 
formulation to a conditional setting:
 Both the generator and the discriminator are conditioned on variable 𝑦

– corresponding to the conditioning data

min


max


𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥|𝑦 ሿ 𝐸~ሺ௭ሻሾlog 1 െ 𝐷 𝑔 𝑧|𝑦 ሿ



Conditional GANs (Mirza 2014) 
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min


max


𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥|𝑦 ሿ 𝐸~ሺ௭ሻሾlog 1 െ 𝐷 𝑔 𝑧|𝑦 ሿ

Fig. (Mirza 2014)



Conditional GANs example
Generating images from text (Reed 2016)
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 Objective
 Generate images from text caption
 Model: GAN conditioned on text input

 Compare different GAN variants on image generation
 Image size 64x64

Fig. from Reed 2016



Conditional GANs example – Pix2Pix
Image translation with cGANs (Isola 2016)
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 Objective
 Learn to « translate » images for a variety of tasks using a common

framework
 i.e. no task specific loss, but only adversarial training + conditioning

 Tasks: semantic labels -> photos, edges -> photos, (inpainting) photo and 
missing pixels -> photos, etc



Conditional GANs example – Pix2Pix
Image translation with cGANs (Isola 2016)
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 Loss function
 Conditional GAN

 min


max


𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~𝒳 ௫
௬~ ௬

ሾ𝑙𝑜𝑔𝐷 𝑥,𝑦 ሿ 𝐸~ሺ௭ሻ
௬~ ௬

ሾlog 1 െ 𝐷 𝑔 𝑧,𝑦 ,𝑦 ሿ

 Note: the formulation is slightly different from the conditional GAN model of (Mirza 
2014):  it makes explicit the sampling on 𝑦 , but this is the same loss.

 This loss alone does not insure a correspondance between the conditioning
variable 𝑦 and the input data 𝑥
 They add a loss term, its role is to keep the generated data g 𝑧,𝑦 « close » to the 

conditioning variable 𝑦
 𝐿భ 𝑔 ൌ 𝐸௫,௬,௭ 𝑥 െ 𝑔 𝑦, 𝑧 ଵ

 Where . ଵ is the 𝐿ଵ norm

 Final loss
 min


ሺmax


𝐿ሺ𝐷,𝑔ሻ  𝜆𝐿భ 𝑔 ሻ



Conditional GANs example – Pix2Pix
Image translation with cGANs – Examples (Isola 2016)
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Fig. (Isola 2016)



Conditional GANs example – Pix2Pix
Image translation with cGANs - Examples - (Isola 2016)
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Fig. (Isola 2016)



Conditional GANs example – Pix2Pix
Image translation with cGANs – Examples - (Isola 2016)
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 Failure examples

Fig. (Isola 2016)



Cycle GANs (Zhu 2017)
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 Objective
 Learn to « translate » images without aligned corpora

 2 corpora available with input and output samples, but no pair alignment between
images

 Given two unaligned corpora, a conditional GAN can learn a 
correspondance between the two distributions (by sampling the two
distributions), however this does not guaranty a correspondance between
input and output

 Approach
 (Zhu 2017) proposed to add a « consistency » constraint similar to back 

translation in language
 This idea has been already used for vision tasks in different contexts
 Learn two generative mappings

 𝑔:𝑋 → 𝑌 and 𝑓:𝑌 → 𝑋 such that:
 𝑓 ∘ 𝑔ሺ𝑥ሻ ≃ 𝑥 and g ∘ 𝑓ሺ𝑦ሻ ≃y 

 and two discriminant functions 𝐷 and 𝐷



Cycle GANs (Zhu 2017)
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Fig (Zhu 2017)



Cycle GANs (Zhu 2017)
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 Training
 The loss combines two conditional GAN losses ሺ𝑔,𝐷ሻ and ሺ𝑓,𝐷ሻ and 

a cycle consistency loss

 𝐿௬ 𝑓,𝑔 ൌ 𝐸𝒳ሺ௫ሻሾ 𝑓 𝑔 𝑥 െ 𝑥ሻ ଵሿ  𝐸ೌೌ ௬ ሾฮ𝑔 𝑓 𝑦 െ
𝑦ሻฮଵሿ

 𝐿ሺ𝑔,𝐷, 𝑓,𝐷ሻ ൌ 𝐿 𝑔,𝐷  𝐿 𝑓,𝐷  𝐿௬ 𝑓,𝑔
 Note: they replaced the usual 𝐿 𝑔,𝐷  and 𝐿 𝑓,𝐷 term by a mean

square error term, e.g.:
 𝐿 𝑔,𝐷 ൌ 𝐸𝒴ሺ௬ሻ ሺ𝐷 𝑦 െ 1 ଶሿ  𝐸𝒳ሺ௫ሻሾ𝐷ሺ𝐺 𝑥 ሻሿ



Cycle GANs (Zhu 2017)
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 Examples

 Failures
Fig (Zhu 2017)



(Karras et al. 2019) – Style GAN 

 (Karras et al. 2019) – Style GAN
 Noyte: now (2020) StyleGAN3: https://nvlabs.github.io/stylegan3/
 https://nvlabs.github.io/stylegan2/versions.html 
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Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 Recall batch normalization

 𝐵𝑁 𝑥 ൌ 𝛾 ௫ିఓ ௫
ఙ ௫

 𝛽, here all the quantities are vectors (or tensors) 

of the appropriate size
 The mean for channel 𝑐 is computed as:

 𝜇 𝑥 ൌ ଵ
ேுௐ

∑ ∑ ∑ 𝑥௪ௐ
௪ୀଵ

ு
ୀଵ

ே
ୀଵ

 With 𝑁 the number of images in the batch, 𝐻 the height and 𝑊 the width, i.e. 
𝑥 is of shape [𝑁,𝐶,𝐻,𝑊]

 𝛾 and 𝛽 are trainable parameters that are different for each channel
 BN averages over all the images in the batch 
 i.e. all the images in the batch are averaged around a single « style »



Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 Adaptive Instance Normalization (Huang 2017)
 Idea: inject through the linear transformation defined by 𝛾, 𝛽 the feature

statistics from another image (e.g. its style)
 Let 𝑥 (content) and 𝑦 (style) two images or image transformations

 𝐴𝑑𝑎𝐼𝑁 𝑥, 𝑦 ൌ 𝜎 𝑦 ௫ିఓ ௫
ఙ ௫

 𝜇ሺ𝑦ሻ

 This simply replaces the the channel-wise statistics of 𝑥 by those of 𝑦
 AdaIN can normalize the style of each individual sample to a target style

(Huang 2017)



Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 (Huang 2017) examples



Architecture of Style Gan
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Karras et al. 2019

• A mapping network 
generates a 
representation vector 𝑤

• Affine transformations 
(A) are trained to 
compute 𝜆 and 𝛽
vectors for different
resolution of the image 
generator from 𝑤 – this
induces different styles 
for each resolution

• Noise input are single 
channel images 
consisting of 
uncorrelated Gaussian
noise – a single noise 
image is broadcasted
to all the feature maps
– this induces
stochastic variations



Architecture of Style Gan

Advanced Deep learning79

• Affine transformations computed from 𝑤

https://towardsdatascience.com/explained-a-style-
based-generator-architecture-for-gans-generating-
and-tuning-realistic-6cb2be0f431



Architecture of Style Gan
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• Global architecture of StyleGAN

https://towardsdatascience.com/explained-a-style-based-generator-
architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431



GANs
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 Making GANs work is usually hard
 All papers are full of technical details, choices (architecture, 

optimization, etc.), tricks, not easy to reproduce.



Diffusion models



Diffusion models
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 Diffusion models emerged in 2019, gained momentum in 2021
 As in 2023, diffusion models are used in several popular large scale

models for text to image generation
 e.g. Imagen https://imagen.research.google/, stable diffusion 

https://stablediffusionweb.com/, Dall-e-2 https://openai.com/dall-e-2/
 Generative modeling tasks

 Continuous space models: Image generation, super resolution, image editing, 
segmentation; etc.

 Discrete space models, e.g. applications to text generation

 Several approaches including
 Discrete time models

 Denoising Diffusion Probabilistic Models (DDPMs)
 Score based Generative Models (SGM)

 Time continuous models
 Score Based Models with Differential Equations (SGMdiffeq)



Diffusion models
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 Diffusion models implement the following idea
 Forward diffusion

Gradually add noise to an input image until one get a fully noisy image
 Reverse denoising

 Generate data from the target distribution
 Sample from the noise space and reverse the forward process 

 Forward and reverse processes are used for training
 At inference, generation is performed via the rewverse process

Fig.  Kreis et al. 2022



Denoising Diffusion Probabilistic Models
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Denoising Diffusion Probabilistic Models - DDPM
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 DDPM are based on two Markov chains
 A forward chain that adds noise to data െ Forward process

 Hand designed: transforms any data distribution into a simple prior
distribution – here we will use a standard Gaussian for the prior

 A reverse chain that converts noise to data െ Reverse process
 The forward chain is reversed by learning transition kernels parameterized

by neural networks
 New data are generated by sampling from the simple prior, followed by 

ancestral sampling through the reverse Markov chain



Denoising Diffusion Probabilistic Models
Forward (diffusion) process
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 Data distribution 𝑥~𝑞 𝑥
 The forward MC generates a sequence of random variables 
𝑥ଵ, 𝑥ଶ, … , 𝑥் starting at 𝑥 with transition kernel 𝑞ሺ𝑥௧|𝑥௧ିଵሻ

 Given sufficient steps, 𝑞ሺ𝑥்ሻ will be close to a prior distribution 𝜋ሺ𝑥ሻ, e.g. 
gaussian distribution with fixed mean and variance

 A typical design for the kernel is a gaussian perturbation 𝑞 𝑥௧ 𝑥௧ିଵ ൌ
𝒩 𝑥௧; 1 െ 𝛽௧𝑥௧ିଵ;𝛽௧𝐼  ∀𝑡 ∈ 1, … ,𝑇
 𝐼 is the identity matrix, with the same size as image 𝑥,  𝛽௧ ∈ ሺ0,1ሻ is a variance 

parameter hand fixed or learned, we consider it hand fixed here.
 𝛽௧ is chosen so that 𝛽௧ ൏ ⋯ ൏ 𝛽் , e. g. 𝑇 ൌ 2000, 𝛽ଵ ൌ 10ିସ,𝛽் ൌ 10ିଶ with a linear

increase
 Other types of kernels (than gaussians) could be used

Fig.  Kreis et al. 2022



Denoising Diffusion Probabilistic Models
Forward (diffusion) process
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 The forward diffusion process is then defined as

• 𝐱𝟎~𝐪 𝐱𝟎 ,
• 𝒒 𝒙𝟏, … ,𝒙𝑻|𝒙𝟎 ൌ ∏ 𝒒ሺ𝒙𝒕|𝒙𝒕ି𝟏ሻ𝑻

𝒕ୀ𝟏 ,
• 𝐪 𝐱𝐭 𝐱𝐭ି𝟏 ൌ 𝓝 𝐱𝐭; 𝟏 െ 𝛃𝐭𝐱𝐭ି𝟏;𝛃𝐭𝐈  ∀𝒕 ∈ 𝟏, … ,𝑻

• 𝑥௧ ൌ 𝟏 െ 𝛃𝐭𝐱𝐭ି𝟏  𝛃𝐭𝝐 with 𝜖~𝓝ሺ0, Iሻ
• 𝛽௧ ∈ ሾ0,1ሿ is a variance hyperparemeter, 𝛽௧ ൏ ⋯ ൏ 𝛽்



Denoising Diffusion Probabilistic Models
Forward process – Diffusion kernel
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 Property: the forward process can be sampled at any time 𝑡 in closed
form (derivation next slides)
 For the gaussian transition kernel

 𝑞 𝑥௧ 𝑥 ൌ 𝒩ሺ𝑥௧; 𝛼ത௧𝑥ை, ሺ1 െ 𝛼ത௧)I) – this is called the diffusion kernel

 with 𝛼௧ ൌ 1 െ 𝛽௧,𝛼ത௧ ൌ ∏ 𝛼௦௧
௦ୀଵ

 This allows us to sample 𝑥௧~𝑝ሺ𝑥௧ሻ using the reparametrization trick
 Sample 𝑥~𝑞 𝑥 and then sample x୲~𝑞 𝑥௧ 𝑥 (this is called ancestral 

sampling)

 𝑥௧ ൌ 𝛼ത௧𝑥ை  ሺ1 െ  𝛼ത௧)𝜖, with 𝜖~𝒩ሺ0, 𝐼ሻ, ∀𝑡~𝒰 1, … ,𝑇
 The schedule for 𝛽௧ is defined so that 𝑞 𝑥் 𝑥 ൎ 𝒩ሺ𝑥்; 0, 𝐼ሻ

Fig.  Kreis et al. 2022



Denoising Diffusion Probabilistic Models
Forward process - Illustration
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 Illustration of the forward diffusion process – discrete trajectories in 
the 𝑥 space

Fig. Ayan Das 2021

Samples 
𝑥~𝑞ሺ𝑥ሻ

Samples 
𝑥்~𝑞ሺ𝑥்|𝑥ሻ



Denoising Difusion Probabilistic Models – forward process
Diffusion kernel 𝑞 𝑥௧ 𝑥  - derivations
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 Closed form for 𝑞 𝑥௧ 𝑥
 𝑞ሺ𝑥௧│𝑥 ሻ ൌ 𝑁ሺ𝑥௧;√  𝛼ത௧ 𝑥ை, ሺ1 െ  𝛼ത௧ሻ𝐼ሻ with 𝛼௧ ൌ 1 െ 𝛽௧,𝛼ത௧ ൌ ∏ 𝛼௦௧

௦ୀଵ

 𝑥௧ ൌ 𝛼௧𝑥௧ିଵ  1 െ 𝛼௧𝜖

 𝑥௧ିଵ ൌ 𝛼௧ିଵ𝑥௧ିଶ  1 െ 𝛼௧ିଵ𝜖

 𝑥௧ ൌ  𝛼௧ሺ 𝛼௧ିଵ𝑥௧ିଶ  1 െ 𝛼௧ିଵ𝜖ሻ  1 െ 𝛼௧𝜖

 𝑥௧ ൌ  𝛼௧𝛼௧ିଵ𝑥௧ିଶ  𝛼௧ሺ1 െ 𝛼௧ିଵሻ𝜖  1 െ 𝛼௧𝜖

 𝑥௧ ൌ  𝛼௧𝛼௧ିଵ𝑥௧ିଶ  1 െ 𝛼௧𝛼௧ିଵ𝜖 (*)

 ……

 𝑥௧ ൌ 𝛼ത௧𝑥ை  1 െ  𝛼ത௧𝜖

 (*) Sum of two Gaussians
 Let 𝑥 and 𝑦 two Gaussian random variables with the same dimensionality, 𝑝ሺ𝑥ሻ ൌ
𝒩ሺ𝜇௫ , Σ௫ሻ and 𝑝ሺ𝑦ሻ ൌ 𝒩ሺ𝜇௬ , Σ௬ሻ, then their sum is also Gaussian: p x  y ൌ
𝒩ሺ𝜇௫  𝜇௬ , Σ௫  Σ௬ሻ



Denoising Diffusion Probabilistic Models
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 Other quantities related to the forward process
 Marginal distribution 𝑞 𝑥௧
 𝑞 𝑥௧ ൌ 𝑞 𝑥௧ 𝑥 𝑞 𝑥 𝑑𝑥

 Cannot be written in closed form but can be sampled by ancestral 
sampling: sample from 𝑞 𝑥 and then trasform by the diffusion kernel 
𝑞 𝑥௧ 𝑥

 Conditional distribution 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ
 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ is intractable

 Conditional diffusion distribution 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥
 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥  is amenable to a closed form – and will be used for 

training the decoder – see later



Denoising Diffusion Probabilistic Models
Reverse denoising process
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 The reverse MC requires the inversion of the Markov chain
 Sample 𝑥் from a prior distribution x~𝑝 𝑥் ൌ 𝒩ሺ𝑥்; 0, 𝐼ሻ
 Iteratively sample x୲~𝑞 𝑥௧ିଵ 𝑥௧

 In general, 𝑞 𝑥௧ିଵ 𝑥௧ is untractable
 One will learn 𝑝ఏ 𝑥௧ିଵ 𝑥௧  a parametric approximation of 𝑞 𝑥௧ିଵ 𝑥௧



Denoising Diffusion Probabilistic Models
Reverse denoising process
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 The true reverse distribution 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ are complex multimodal 
distributions, they are approximated as normal disctributions

 The reverse MC is then parameterized by
 A prior distribution 𝑝 𝑥் ൌ 𝒩ሺ𝑥்; 0, 𝐼ሻ
 A learnable transition kernel 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ൌ 𝒩ሺ𝑥௧ିଵ; 𝜇ఏ 𝑥௧, 𝑡 ,𝜎௧ଶ𝐼ሻ

 𝜇ఏ 𝑥௧ , 𝑡 is typically implemented via a U-Net, 𝜇ఏ 𝑥௧ , 𝑡 is the same size as 𝑥௧
  𝜎௧ଶ can be learned, but in (Ho et al. 2020) it is set to 𝛽௧

 Reverse factorization: 𝑝ఏ 𝑥, … , 𝑥் ൌ 𝑝ఏ 𝑥:் ൌ 𝑝ሺ𝑥்ሻ∏ 𝑝ఏሺ𝑥௧ିଵ|𝑥௧ሻ்
௧ୀଵ

 We can then generate a data sample 𝑥 by first sampling a noise vector 𝑥்~𝑝ሺ𝑥்ሻ
and then iteratively sampling from the learnable transition kernel 
𝑥௧ିଵ~𝑝ఏሺ𝑥௧ିଵ|𝑥௧ሻ until 𝑡 ൌ 1 where we get 𝑝ఏሺ𝑥 |𝑥ଵሻ

Fig.  Kreis et 
al. 2022
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 Training amounts at learning the 𝜃 parameters:
 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ൌ 𝒩ሺ𝑥௧ିଵ; 𝜇ఏ 𝑥௧ , 𝑡 ,𝜎௧ଶ𝐼ሻ 𝑡 ൌ 𝑇, … , 1
 Ideally, we would like 𝜃 so that the probability assigned by the model to 

each training sample 𝑝ఏሺ𝑥ሻ is maximized, a.k.a. by maximizing the 
likelihood 𝐸 ௫బ ሾ𝑝ఏ 𝑥 ሿ
 However this would require marginalizing over all possible (reverse) 

trajectories to compute it

 𝑝ఏ 𝑥 ൌ 𝐸ഇሺ௫భ,…,௫ሻሾ𝑝ఏ 𝑥ை, 𝑥ଵ, … , 𝑥் ሿ
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 Instead, one adjusts the parameter 𝜃 so that
 the joint distribution of the reverse MC:

 𝑝ఏ 𝑥, … , 𝑥் ൌ 𝑝 𝑥் ∏ 𝑝ఏ 𝑥௧ିଵ 𝑥௧்
௧ୀଵ

 matches the distribution of the forward process:
 𝑞 𝑥, … , 𝑥் ൌ 𝑞ሺ𝑥ሻ∏ 𝑞ሺ𝑥௧|𝑥௧ିଵሻ்

௧ୀଵ

 This is achieved by minimizing the Kullback-Leibler divergence between
the two distributions
 𝐷ሺ𝑞 𝑥, … , 𝑥் ||𝑝ఏ 𝑥, … , 𝑥் ሻ

 Note:
 This is similar to variational auto-encoders, i.e. this amounts at maximizing a 

lower bound of the log-likelihood (ELBO)
 But here this operates on the decoder (reverse diffusion process) and not on 

the encoder like for VAEs



Denoising Diffusion Probabilistic Models
Training – variational lower bound

Advanced Deep learning97

 Let us examine the three terms of the lower bound 𝐿
 𝐷 𝑝 𝑥் 𝑥 ∥ 𝑝 𝑥்

 does not depend on parameters 𝜃 and can be ignored during training
 𝑝ఏ 𝑥 𝑥ଵ

 is modeled (Ho et al. 2020) as a separate discrete decoder (not detailed here)
 𝐷 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ - (proofs next slides)

 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 is a tractable gaussian distribution

 𝑝ఏ 𝑥௧ିଵ 𝑥௧ is also a gaussian distribution

 𝐷 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ can then be computed in a closed form

 It reduces to a simple form

𝐸 ௫బ െ𝑙𝑜𝑔𝑝ఏ 𝑥  𝐿
with the lower bound ሺELBOሻ 𝐿

𝐿 ൌ 𝐸 ௫బ ሺ௫భ:|௫బሻሾെ log 𝑝ఏ 𝑥 𝑥ଵ  𝐷 𝑞 𝑥் 𝑥 ∥ 𝑝 𝑥் 𝐷ሺ𝑞 𝑥௧ିଵ 𝑥௧, 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ
௧வଵ
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 Let us consider the KL term 𝐷 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧
 It can be shown that 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥 ൌ 𝒩 𝑥௧ିଵ; 𝜇 𝑥௧, 𝑥 ,𝛽෨௧𝐼 , with:

 𝜇 𝑥௧, 𝑥 ൌ ఈഥషభఉ
ଵିఈഥ

𝑥 
ଵିఉሺଵିఈഥషభሻ

ଵିఈഥ
𝑥௧ and 𝛽෨௧ ൌ

ଵିఈഥషభ
ଵିఈഥ

𝛽௧

 Recall that 𝑥௧ ൌ 𝛼ത௧𝑥ை  ሺ1 െ  𝛼ത௧)𝜖 for 𝜖~𝒩ሺ0, 𝐼ሻ
 and 𝛼௧ ൌ 1 െ 𝛽௧,𝛼ത௧ ൌ ∏ 𝛼௦௧

௦ୀଵ

 Then 𝜇 𝑥௧ , 𝑥 can be rewriten in a simplified form as:

 𝜇 𝑥௧, 𝑥 ൌ ଵ
ఈ
ሺ𝑥௧ െ

ଵିఈ
ଵିఈഥ

𝜖ሻ
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 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ൌ 𝒩ሺ𝑥௧ିଵ; 𝜇ఏ 𝑥௧ , 𝑡 ,𝜎௧ଶ𝐼ሻ
 Both 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥 and 𝑝ఏ 𝑥௧ିଵ 𝑥௧ being Gaussian, the KL divergence 

writes as

 We would like to train 𝜇ఏ 𝑥௧, 𝑡  to approximate 𝜇 𝑥௧, 𝑥
 How to do that: next slide

𝐸 ௫బ ,ሺ௫|௫బሻሾ𝐷 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሿ

ൌ 𝐸 ௫బ ,ሺ௫|௫బሻ
1

2𝜎ଶ 𝜇 𝑥௧ , 𝑥 െ 𝜇ఏ 𝑥௧ , 𝑡 ଶ  𝑐𝑡𝑒
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 We would like to train 𝜇ఏ 𝑥௧ , 𝑡  to approximate 𝜇 𝑥௧ , 𝑥
 i.e. 𝜇ఏ 𝑥௧, 𝑡 must approximate 𝜇 𝑥௧, 𝑥 ൌ ଵ

ఈ
ሺ𝑥௧ െ

ଵିఈ
ଵିఈഥ

𝜖ሻ

 𝑥௧ is available as input at training time, (Ho et al. 2020) propose the following noise 
prediction parametrization

 𝜇ఏ 𝑥௧, 𝑡 ൌ ଵ
ఈ
ሺ𝑥௧ െ

ଵିఈ
ଵିఈഥ

𝜖ఏ 𝑥௧, 𝑡 ሻ

 i.e. parametrize the gaussian noise term 𝜖ఏ 𝑥௧, 𝑡 to make it predict 𝜖 from the input 𝑥௧ at 
time 𝑡
 Note: parametrizing 𝜖ఏ 𝑥௧ , 𝑡 is just another way to parametrize 𝜇ఏ 𝑥௧ , 𝑡 , but it has been found

more efficient experimentally

 With this parametrization, the loss term
  𝐿௧ିଵ ൌ 𝐸 ௫బ ,ሺ௫|௫బሻሾ𝐷 𝑞 𝑥௧ିଵ 𝑥௧, 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሿ writes

 𝐿௧ିଵ ൌ 𝐸௫బ~ ௫బ ,ఢ~𝒩ሺ,ଵሻሾ
ఉమ

ଶఙమ ଵିఉ ଵିఈ
𝜖 െ 𝜖ఏ 𝛼ത௧𝑥ை  ሺ1 െ  𝛼ത௧)𝜖 , 𝑡

ଶ
ሿ+Cte

 This is simplified in Ho et al. 2020 (heuristic), so that the global loss 𝐿 writes as

 with 𝒰ሺ1,𝑇ሻ a uniform distribution

𝐿 ൌ 𝐸௫బ~ ௫బ ,ఢ~𝒩 ,ଵ ,௧~𝒰ሺଵ,்ሻሾ 𝜖 െ 𝜖ఏ 𝛼ത௧𝑥ை  ሺ1 െ  𝛼ത௧)𝜖 , 𝑡
ଶ
ሿ



Denoising Diffusion Probabilistic Models
Training and sampling algorithms

Advanced Deep learning101



Fig. Ho et al 2020



Denoising Diffusion Probabilistic Models
Implementation

Advanced Deep learning102

 𝜖ఏ 𝑥௧, 𝑡 is often implemented with a U-Net with ResNet blocks and self 
attention layers (recent implementations have been proposed with
transformers)

 Time features are fed to residual blocks, time encoding follows the 
transformers sinusoidal position embedding

 The parameters are shared for all the time steps, only the time 
representation makes the difference between the time steps

Fig.  Kreis et 
al. 2022
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 In Ho et al. 2020
 𝑇 ൌ 1000, 𝛽ଵ ൌ 10ିସ,𝛽் ൌ 0.02 with a linear schedule
 The pixel values are normalized in ሾെ1,1ሿ
 As usual, lots of influential architecture/ algorithmic parameters conditioning

the good behavior of the model
 The process of generation is extremely slow  (the original model takes up 

to 20 h to generate 50k images of size 32x32)
 Several variants/ improvements proposed since the Ho et al. 2020 paper

 Conditional models allow to generate e.g. images conditionned on text
 Latent diffusion models (Rombach et al. 2022) perform diffusion in a latent 

space, accelarating the generation (used e.g. in stable diffusion)
 The image is first encoded in a smaller diemensional latent space and decoded in 

order to produce the generated image in the original space
 Diffusion and denoising happen in the latent space
 The model allows for conditioning image generation (on text, classes, …)

 Faster models, such as DDIM (Denoising Diffusion Implicit Models,  Song et 
al. 2021)
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 We first show

 െ𝐸 ௫బ ሾlog𝑝ఏ 𝑥 ሿ  𝐸 ௫బ:் ሾlog  𝑥ଵ:்  𝑥
ഇ ௫బ:

ሿ ≜ 𝐿

 and then
 𝐿 ൌ 𝐸ሾെ𝑙𝑜𝑔𝑝ఏ 𝑥 𝑥ଵ  𝐷 𝑞 𝑥் 𝑥 ∥ 𝑝 𝑥் 
∑ 𝐷ሺ𝑞 𝑥௧ିଵ 𝑥௧, 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ௧வଵ
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 െ𝐸 ௫బ ሾlog𝑝ఏ 𝑥 ሿ  𝐸 ௫బ:் ሾlog  𝑥ଵ:்  𝑥
ഇ ௫బ:

ሿ ≜ 𝐿

 Proof
 െ log𝑝ఏ 𝑥  െ log𝑝ఏ 𝑥  𝐷ሺ𝑞 𝑥ଵ:் 𝑥 ∥ 𝑝ఏ 𝑥ଵ:்|𝑥 ሻ

 െ log𝑝ఏ 𝑥  െ log𝑝ఏ 𝑥  𝐸௫భ:~ 𝑥ଵ:் 𝑥 ሾlog  𝑥ଵ:் 𝑥
ഇ ௫బ: /ഇ ௫బ

ሿ 

 െ log𝑝ఏ 𝑥  െ log𝑝ఏ 𝑥  𝐸௫భ:~ 𝑥ଵ:் 𝑥 ሾlog  𝑥ଵ:் 𝑥
ഇ ௫బ:

 log 𝑝ఏ 𝑥 ሿ 

 െ log𝑝ఏ 𝑥  𝐸௫భ:~ 𝑥ଵ:் 𝑥 ሾlog  𝑥ଵ:் 𝑥
ഇ ௫బ:

ሿ

 െ𝐸 ௫బ log𝑝ఏ 𝑥  𝐸௫బ:~ሺ௫బ:ሻሾlog  𝑥ଵ:் 𝑥
ഇ ௫బ:

ሿ
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 𝐿 ൌ 𝐸 ௫బ:் ሾെ log 𝑝ఏ 𝑥 𝑥ଵ  𝐷 𝑞 𝑥் 𝑥 ∥ 𝑝 𝑥் 
∑ 𝐷ሺ𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ௧வଵ

 Proof

 𝐿 ൌ 𝐸 ௫బ:் ሾlog  𝑥ଵ:் 𝑥
ഇ ௫బ:

ሿ

 𝐿 ൌ 𝐸 ௫బ:் ሾെ log𝑝 𝑥்  ∑ log  𝑥௧ 𝑥௧ିଵ
ഇ 𝑥௧ିଵ 𝑥௧

்
௧ୀଵ ሿ

 𝐿 ൌ 𝐸 ௫బ:் െ log𝑝 𝑥்  ∑ log  𝑥௧ 𝑥௧ିଵ
ഇ 𝑥௧ିଵ 𝑥௧

்
௧ୀଶ  log  𝑥ଵ 𝑥

ഇ 𝑥 𝑥ଵ

 𝐿 ൌ 𝐸 ௫బ:் ሾെ log𝑝 𝑥்  ∑ logሺ  𝑥௧ିଵ 𝑥௧ , 𝑥
ഇ 𝑥௧ିଵ 𝑥௧

.  𝑥௧ 𝑥
 𝑥௧ିଵ 𝑥

்
௧ୀଶ ሻ  log  𝑥ଵ 𝑥

ഇ 𝑥 𝑥ଵ
ሿ

 𝐿 ൌ 𝐸 ௫బ:் ሾെ log𝑝 𝑥்  ∑ log  𝑥௧ିଵ 𝑥௧ , 𝑥
ഇ 𝑥௧ିଵ 𝑥௧

 ்
௧ୀଶ  ∑ log  𝑥௧ 𝑥

 𝑥௧ିଵ 𝑥
்
௧ୀଶ  log  𝑥ଵ 𝑥

ഇ 𝑥 𝑥ଵ
ሿ

 𝐿 ൌ 𝐸 ௫బ:் ሾെ log𝑝 𝑥்  ∑ log  𝑥௧ିଵ 𝑥௧ , 𝑥
ഇ 𝑥௧ିଵ 𝑥௧

 ்
௧ୀଶ  log  𝑥் 𝑥

 𝑥ଵ 𝑥
 log  𝑥ଵ 𝑥

ഇ 𝑥 𝑥ଵ
ሿ

 𝐿 ൌ 𝐸 ௫బ:் log  𝑥் 𝑥
 ௫

 ∑ log  𝑥௧ିଵ 𝑥௧ , 𝑥
ഇ 𝑥௧ିଵ 𝑥௧

 ்
௧ୀଶ െ log𝑝ఏ 𝑥 𝑥ଵ

 𝐿 ൌ 𝐸 ௫బ:் ሾെ log𝑝ఏ 𝑥 𝑥ଵ  𝐷 𝑞 𝑥் 𝑥 ∥ 𝑝 𝑥்  ∑ 𝐷ሺ𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 ∥ 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ሻሿ௧வଵ
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 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 ൌ 𝒩 𝑥௧ିଵ;𝜇 𝑥௧ , 𝑥 ,𝛽෨௧𝐼 with

 𝜇 𝑥௧ , 𝑥 ൌ ଵ
ఈ
ሺ𝑥௧ െ

ଵିఈ
ଵିఈഥ

𝜖ሻ

 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 ൌ 𝑞 𝑥௧ 𝑥௧ିଵ, 𝑥
 𝑥௧ିଵ 𝑥
 𝑥௧ 𝑥

 𝑞 𝑥௧ିଵ 𝑥௧ , 𝑥 ∝ expെଵ
ଶ
ሺ ௫ି ఈ௫షభ మ

ఉ
 ௫షభି ఈഥషభ௫బ

మ

ଵିఈഥషభ
െ ௫ି ఈഥ௫బ

మ

ଵିఈഥ
ሻ

 … to be completed
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 The Score function of a data distribution 𝑞 𝑥 , 𝑥 ∈ 𝑅 is:
∇௫ log 𝑞ሺ𝑥ሻ  ∈ 𝑅

 Interpretation
 Given a point 𝑥 in data space, the score tells us which direction to move 

towards a region with higher likelihood
 How to use this information for generating data from the distribution 𝑞ሺ. ሻ?

 Sample 𝑥 from a prior (e.g. Gaussian) distribution 𝜋ሺ𝑥ሻ in 𝑅 and 
iterate 𝑥ାଵ ൌ 𝑥  ∇௫ log 𝑞ሺ𝑥ሻ

 Warning: indexes are in the reverse order compared to DDPM
 This is similar to the reverse process in DDPMs

Fig. Song 2022
illustrates the score 
function (arrows) and 
the density for a 
mixture of two
gaussians

High density
region

Low density
region
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 Score based model (SBM) sఏ .
 ∇௫ log 𝑞ሺ𝑥ሻ is usually intractable, one will learn a score based model, i.e. 

a parametric model sఏ x to be implemented by a NN
 sఏሺxሻ ൎ ∇௫ log 𝑞ሺ𝑥ሻ, 𝑠ఏ:𝑅 → 𝑅

 sఏሺxሻ will be learned from a sample of the target distribution 𝑞ሺ𝑥ሻ

 Score matching
 SBM can be trained by minimizing the following loss between the model 

sఏ . and the data distribution ∇௫ log 𝑞 𝑥
 𝐸 ௫ ∇௫ log 𝑞 𝑥 െ sఏ x ଶ

ଶ ൌ  ∇௫ log 𝑞 𝑥 െ sఏ x ଶ
ଶ𝑞 𝑥 𝑑𝑥

 Summary
 A distribution can be represented by its score function ∇௫ log 𝑞ሺ𝑥ሻ
 The score function can be estimated by training a score based model 

sఏ x using samples from the target distribution with score matching
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 Langevin dynamics
 Once trained, sఏ x can be used by starting from a prior distribution 
𝑥~𝜋ሺ𝑥ሻ (e.g. a Gaussian) and iterating a Markov chain for generating
samples
 𝑥ାଵ ൌ 𝑥  𝜖𝑠ఏ 𝑥  2𝜖𝑧 , 𝑖 ൌ 0, … ,𝐾, with 𝑧~𝒩ሺ0, 𝐼ሻ, 𝜖 is a small

constant
 This is similar to the reverse process in DDPM
 When 𝜖 → 0 and 𝐾 →  ∞, 𝑥 converges to a sample from 𝑞ሺ𝑥ሻ under some

regularity conditions
 In practice take 𝜖 small and 𝐾 large (100 to 1000)

Fig. Song 2022
Langevin dynamics for sampling from a mixture 
of 2 gaussians, arrows indicate the score vector
values, the animated Gif shows the 
convergence of the dynamics towards the target
distribution
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Fig. Song 
2022



Score based models
Training: Noise conditionned score network (NCSN)

Advanced Deep learning113

 let us come back to the score matching training formulation
 𝑎𝑟𝑔𝑚𝑖𝑛ఏ𝐸 ௫ ሾ ∇௫ log 𝑞 𝑥 െ sఏ x ଶ

ଶሿ

 This formulation leaves us with 2 problems (Song et al. 2020)
 (1) 𝑞ሺ𝑥ሻ is unknown
 (2) In low density regions, there are only a few data points available so

that 𝑠ఏ 𝑥 will be inaccurate.
 (Song et al. 2020) propose different solutions to this problem, let us 

describe one of them:
 Noise conditionned score network (NCSN)



Score based models
Training: Noise conditionned score network (NCSN)

Advanced Deep learning114

 Noise conditionned score network (NCSN)
 Intuition

 Instead of training on the data distribution directly, train on noisy data
 Perturb data points with noise 𝒩 0,𝜎𝐼 , train score based models on the 

noisy points using score matching.
 If the noise magnitude is large enough this should help populating the low

density regions, i.e. helps solving pb (2) (sఏ x innaccurate in low density
regions)

 What should be the noise scale?
 Large noise populate the space but alters the original distribution
 Small noise does not cover low density regions
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 Noise conditionned score network (NCSN)
 This idea is then refined as follows

 Use multiple and increasing scales of noise 𝒩 0,𝜎𝐼 , 𝑖 ൌ 1 … ,𝑇 with 𝜎ଵ ൏
𝜎ଶ ൏ ⋯ ൏ 𝜎் in order to obtain 𝑇 noise-perturbed distributions 𝑞ఙሺ𝑥ሻ ≜
𝑞ఙ 𝑥 𝑥 𝑞 𝑥 𝑑𝑥

 In practice this is achieved by drawing samples from 𝑞ఙሺ𝑥ሻ by sampling 
𝑥~𝑞ሺ𝑥ሻ and computing 𝑥 ൌ 𝑥  𝜎𝑧 with 𝑧~𝒩ሺ𝑂, 𝐼ሻ

 Use a unique (𝜽) score function paramaterized by 𝜎, sఏሺx;𝜎ሻ for all the 
noise scales and train it with the different noise scales using score matching
so that sఏሺx;𝜎୧ሻ ൎ ∇௫ log 𝑞ఙ 𝑥
 sఏሺx;𝜎ሻ is called a noise conditional score-based model

 Noise schedule: for example geometric schedule between two extreme
values 𝜎ଵto 𝜎்

 Note
 This is similar to the forward process in DDPMs
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 Noise conditionned score network (NCSN)
 Let 𝑥 a perturbation of 𝑥 generated according to the transition kernel 𝑞ఙ 𝑥 𝑥 ൌ 𝒩ሺ𝑥; x,𝜎ଶ𝐼ሻ

 i.e. 𝑥 is a noisy version of 𝑥
 𝑥 can be generated as 𝑥 ൌ 𝑥  𝜎ଶ𝜖, 𝜖~𝒩ሺ𝑂, 𝐼ሻ
 Let us define 𝑞ఙሺ𝑥ሻ ≜  𝑞ఙ 𝑥 𝑥 𝑞 𝑥 𝑑𝑥

 The proposed loss function is


ଵ
்
∑ 𝜆 𝜎 𝐸ሺ௫ሻ ∇௫log𝑞ఙ 𝑥 െ 𝑠ఏ 𝑥,𝜎 ଶ

ଶ்
ୀଵ

 This is a weighted sum of score matching losses, 𝜆 𝑖 ∈ 𝑅, 0, often chosen as 𝜆 𝑖 ൌ 𝜎ଶ

 This can be rewriten up to a constant as


ଵ
்
∑ 𝜆 𝜎 𝐸௫~ ௫ ,௫~ 𝑥 𝑥

௫ି௫
ఙ
మ 𝑠ఏ 𝑥,𝜎

ଶ

ଶ
்
ୀଵ

 𝑞ఙ 𝑥 𝑥 ൌ 𝒩ሺ𝑥; x,𝜎ଶ𝐼ሻ ⇒ ∇௫log𝑞ఙ 𝑥 ൌ െ௫ି௫
ఙమ

 𝜆 𝜎 is set for example to 𝜎ଶ - so that all the components inside the summation have the same order
of magnitude and do not depend on 𝜎


ଵ
்
∑ 𝐸௫~ ௫ ,௫~ 𝑥 𝑥

௫ି௫
ఙ

 𝜎  𝑠ఏ 𝑥,𝜎
ଶ

ଶ
்
ୀଵ

 After training 𝜎 , 𝑠ఏ 𝑥,𝜎 will return an estimate of the score ∇௫log𝑞ఙ 𝑥
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 For the generation, it is proposed to use an annealed form of the 
Langevin dynamics

Fig. Song –
Blog 2021

Remark: at each
annealing iteration, one 
starts from the final 
sample of the previous
iteration

Initialize 𝑥 ~𝒩ሺ𝑂, 𝐼ሻ (prior distribution)
For 𝑡 ൌ 𝑇 to 1 (annealing iterations)

set 𝛼௧ the step size e.g. 𝛼௧ ൌ 𝜖 ఙ
మ

ఙభమ
with 𝜖 a small positive constant

For 𝑖 ൌ 1 to 𝑁 െ 1 (N steps of Langevin dynamics)
Draw 𝑧~𝒩ሺ0, 𝐼ሻ
𝑥ାଵ ൌ 𝑥  𝛼௧𝑠ఏ 𝑥 ,𝜎௧  2𝛼௧𝑧

𝑥 ൌ 𝑥ே
Return 𝑥
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 𝑠ఏ 𝑥 , 𝑡  is parametrized with U-Nets with residual connections as 
for DDPMs

 Equivalence with DDPM
 The two training objectives (DDPM and SGM) are equivalent once we

set
 𝜖ఏ 𝑥, 𝑡 ൌ െ𝜎௧ሺ𝑥, 𝑡ሻ
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Fig. Song et al 
2020
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 Generalizes the discrete diffusion and score based formulations to 
time continuous dynamics
 i.e. one considers the limit when the time step 𝛼௧in score based

methods goes to 0

 Both DDPM and Score based approaches can be formulated as 
discretizations of SDE formulations
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 Stochastic differential equations (SDE)
 𝑑𝑥ሺ𝑡ሻ ൌ 𝑓 𝑥, 𝑡 𝑑𝑡  𝑔 𝑡 𝑑𝜔

 𝑓 𝑥, 𝑡 is a vector valued drift function, 𝑓:𝑅 → 𝑅
 𝑔ሺ𝑡ሻ is a scalar valued diffusion function, 𝑔:𝑅 → 𝑅

 𝑔 is considered scalar and independent of 𝑥 for simplification,
but could be a vector valued fonction and dependent of x too
 𝜔 is a Wiener process (Brownian motion), 𝑑𝜔~𝒩ሺ𝑂, dtሻ
 Under some conditions, the SDE has a unique solution

 Time discretization
 𝑥௧ା௧ ൌ 𝑥௧  𝑓 𝑥௧, 𝑡 Δt  g x୲, t Δ𝜔, with Δ𝜔~𝒩ሺ0,Δ𝑡ሻ

 Note
 Langevin dynamics 𝑥௧ାଵ ൌ 𝑥௧  𝛼௧𝑠ఏ 𝑥௧, 𝑡  2𝛼௧𝑧௧ appears as a special

case of the discrete equation with:

 Δ𝑡 ൌ 1, 𝑓 𝑥௧ , 𝑡 ൌ  𝛼௧𝑠ఏ 𝑥௧ , 𝑡 , g x୲, t ൌ 2𝛼௧ ,Δ𝜔 ൌ 𝑧௧
 As for the discrete case, the forward diffusion process does not depend on 

the data

Fig. Kreis et al. 2022
Sample from a SDE 
trajectory
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 Diffusion processes can be modeled as solutions of SDEs
 The solution of a SDE is a continous collection of random variables 

𝑥 𝑡 ௧∈ ,்

 These variables trace stochastic trajectories when 𝑡 grows from 0 to 𝑇
 Let us denote 𝑞௧ሺ𝑥ሻ the probability density of 𝑥ሺ𝑡ሻ, and 
𝑞ሺ𝑥ሺ𝑡ሻ|𝑥 𝑠 ሻ the transition kernel from 𝑥 𝑠 to 𝑥 𝑡 with 𝑠 ൏ 𝑡

 The objective is to construct a forward diffusion process 
𝑥 𝑡 ௧∈ ,் , indexed by the continuous variable 𝑡 so that 𝑥ሺ0ሻ~𝑝, 

the data distribution and 𝑥ሺ𝑇ሻ~𝑞் is a tractable distribution that
can be easily sampled, i.e. a prior 𝜋, e.g. a gaussian with fixed mean
and variance
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 Illustration: stochastic trajectories for the forward diffusion process

Fig. Kreis et al. 2022
Samples: SDE trajectories from different initial 
points
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 Illustration: stochastic trajectories for the forward diffusion process

Fig. Song 2021 - https://yang-
song.net/blog/2021/score/



Score stochastic differential equation

Advanced Deep learning126

 DDPMs and SGMs are both special cases of the SDE discretization

 >>>>>>>>>>>>>>>to be completed <<<<<<<<<<<<<<<<<<<
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 For samples generation, one needs to reverse the SDE
 Any diffusion process modeled as a SDE can be reversed by solving the 

reverse SDE backward, i.e. from 𝑡 ൌ 𝑇 to 𝑡 ൌ 0
 i.e. one starts at 𝑥ሺ𝑇ሻ~𝑞் and reversing the process we obtain samples
𝑥ሺ0ሻ~𝑞

 The reverse SDE writes as
 𝑑𝑥 ൌ 𝑓 𝑥, 𝑡 െ 𝑔 𝑡 ଶ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 𝑑𝑡  𝑔 𝑡 𝑑𝑤, with 𝑑𝑡 an infinitesimal

negative time step
 𝑞௧ 𝑥 is the distribution of 𝑥 at time 𝑡 ∈  ሾ0,𝑇ሿ
 Once ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 is known for all t, we can use this equation and simulate

it by sampling from 𝑞்ሺ𝑥ሻ to generate a sample from 𝑞

Fig. Song et 
al. 2021
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 Reverse process illustration
 One starts from noisy samples to generate target data samples

Fig. Song 2021 - https://yang-
song.net/blog/2021/score/
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 With this formulation, we are then left with two problems
 The training problem: how to estimate ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 the score function of 
𝑞௧ሺ𝑥ሻ? 

 How to solve the reverse SDE?
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 Solving the reverse SDE requires to know the terminal distribution 𝑝்ሺ𝑥ሻ and 
the score function ∇௫𝑙𝑜𝑔𝑞௧ 𝑥
 For the former one uses a prior distribution 𝜋ሺ𝑥ሻ, typically a gaussian
 For the latter, one trains a time-dependent score-based model 𝑠ఏሺ𝑥, 𝑡ሻ such that

𝑠ఏሺ𝑥, 𝑡ሻ ൎ ∇௫𝑙𝑜𝑔𝑞௧ 𝑥
 Note: this is analogous to the discrete case 𝑠ఏሺ𝑥, 𝑖ሻ ൎ ∇௫𝑙𝑜𝑔𝑞ఙ 𝑥

 The training objective is a continuous extension of the one used with SGMs:
 𝐸௧~𝒰ሺ,்ሻ𝐸ሺ௫ሻ 𝜆 𝑡 ∇௫𝑙𝑜𝑔𝑞௧ 𝑥 െ 𝑠ఏሺ𝑥, 𝑡ሻ ଶ

ଶ 
 𝒰ሺ0,𝑇ሻ is a uniform distribution over ሾ0,𝑇ሿ and 𝜆:𝑅 → 𝑅 is a positive weighting function

 As for the discrete case, 𝜆 𝑡 will be set so as to balance the magintude of the different
score matching losses across time

 Generation
 Once trained, one can simulate from 𝑑𝑥 ൌ 𝑓 𝑥, 𝑡 െ 𝑔 𝑡 ଶ𝑠ఏሺ𝑥, 𝑡ሻ 𝑑𝑡  𝑔 𝑡 𝑑𝑤

 Practical training
 Use a score matching method e.g. denoising score matching
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 Denoising score matching
 As in the discrete case, diffuse individual data points using diffusion kernels 
𝑞௧ 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ
 𝑀𝑖𝑛ఏ𝐸௧~𝒰ሺ,்ሻ𝐸௫ሺሻ~బሺ௫ሻ𝐸௫ሺ௧ሻ~ ௫ሺ௧ሻ|௫ሺሻሻ ቂ𝜆 𝑡 ฮ∇௫𝑙𝑜𝑔𝑞௧ 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ െ

𝑠ఏሺ𝑥ሺ𝑡ሻ, 𝑡ሻฮଶ
ଶ
 ቃ

 diffusion kernels 𝑞 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ are chosen Gaussian for linear SDEs (this means𝑓is 
affine): 

𝑞 𝑥ሺ𝑡ሻ|𝑥ሺ0ሻ ൌ 𝒩 𝑥 𝑡 ; 𝛾௧𝑥 0 ,𝜎௧ଶ𝐼
 Objective: as in the discrete case, the loss function can be derived as

 𝑀𝑖𝑛ఏ𝐸௧~𝒰ሺ,்ሻ𝐸௫~ሺ௫ሻ𝐸ఢ~𝒩ሺை,ூሻ
ఒ ௧
ఙమ

𝜖 െ 𝜖ఏሺ𝑥௧ , 𝑡ሻ ଶ
ଶ 

 Practice
 Different loss weightings are proposed, e.g. 𝜆 𝑡 ൌ 𝜎௧ଶ for the simplest case
 𝑠ఏሺ𝑥ሺ𝑡ሻ, 𝑡ሻ or 𝜖ఏሺ𝑥௧, 𝑡ሻ implemented with U-Nets
 For the time integration, one could use Fourier features on t or replace t by 
𝜎௧
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 Once 𝑠ఏሺ𝑥, 𝑡ሻ is learned, it can be plugged in the reverse SDE
 𝑑𝑥 ൌ 𝑓 𝑥, 𝑡 െ 𝑔 𝑡 ଶ𝑠ఏሺ𝑥, 𝑡ሻ 𝑑𝑡  𝑔 𝑡 𝑑𝑤
 Starting with 𝑥ሺ𝑇ሻ~𝜋, one can solve this reverse SDE to obtain a sample
𝑥ሺ0ሻ from the target distribution 𝑞ሺ𝑥ሻ – or at least a sample from the 
approximate distribution 𝑞ఏሺ𝑥ሻ ൎ 𝑞ሺ𝑥ሻ

 How to solve the reverse SDE
 Learning free methods

 SDE solvers – a variety of SDE solvers is available from the numerical analysis
literature
 Discretize the SDE in time and use a SDE solver

 ODE solvers – this is detailed in the next slides – Faster that SDE solvers

 Learning methods
 Take benefit from the special for of the SDE in order to optimize the reverse 

solver
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 (Song et al 2021) show that it is possible to associate an ODE to 
any SDE without changing the marginal distribution 𝑞௧ 𝑥 ௧∈ሾ,்ሿ. 
i.e. both the ODE and the SDE share the same set of marginal 
distributions 𝑞௧ 𝑥 ௧∈ሾ,்ሿ
 The ODE associated to the reverse SDE is:


ௗ௫
ௗ௧
ൌ 𝑓 𝑥, 𝑡 െ ଵ

ଶ
𝑔ଶ 𝑡 ∇୶log q୲ሺxሻ

 This is called the probability flow ODE associated to the SDE
 It is then possible to sample from the same distribution as the 

reverse SDE by solving the ODE using classical ODE solvers (e.g. 
Runge Kutta)

 Note
 When ∇୶log q୲ሺxሻ is replaced by 𝑠ఏሺ𝑥, 𝑡ሻ the ODE becomes a special

case of Neural ODE (see later in the course) – more precisely it is a 
continuous normalizing flow
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 Current practice
 Solve the forward process using the sde formulation (easy, no training)
 Solve the reverse process using the ODE formulation
 Note: the ODE could be used for the forward and reverse diffusion since

(simply change the integration direction i.e. consider 𝑡   0 for one 
direction and and 𝑡 ൏  0 for the other direction), however the forward
process is simpler with the fixed SDE formulation.

Fig. Kreis et 
al. 2021
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 ODE trajectories are smoother that SDE trajectories, however they
allow to sample the same marginals 𝑝௧ 𝑥 ௧∈ሾ,்ሿ

Fig. Song et 
al. 2021
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 Several applications imply conditional generation
 Text to image: DALL-E, IMAGEN
 Class conditional generation
 Super resolution, colorization, panorama etc (Saharia et al. 2020)

Fig from Saharia et 
al. 2020
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 Conditional setting
 Include the condition as input to the reverse process
 The condition is input to the U-Net or whateverNet used for denoising
 Class conditioning

 Encode a scalar or class indicator as a vector embedding

 Text conditioning
 Vector embedding or sequence of vector embeddings, cross attetion, …

 Image conditioning
 Channel wise concatenation of the conditional image

 How to perform class conditioning
 Several possibilities have been proposed

 We detail here classifier guidance and classifier free guidance



Score based models
Conditional setting

Advanced Deep learning138

 Classifier guidance
 Instead of 𝑞௧ሺ𝑥ሻ, one will attempt to compute 𝑞௧ 𝑥 𝑦 with 𝑦 a 

conditioning variable
 For simplification let us consider that 𝑦 is a class indicator

 ∇ log 𝑞௧ 𝑥 𝑦 ൌ ∇ log  ௫  𝑦 𝑥௧
 ௬

 ∇ log 𝑞௧ 𝑥 𝑦 ൌ ∇ log 𝑞௧ 𝑥  ∇ log 𝑞 𝑦 𝑥௧ െ log 𝑞 𝑦
 ∇ log 𝑞௧ 𝑥 𝑦 ൌ ∇ log 𝑞௧ 𝑥  ∇ log 𝑞 𝑦 𝑥௧

 To be completed
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 Pro
 performance competitive with the best generative models

 Cons
 extremely slow – due to the large number of sampling steps

 Several improvements – more to come
 Sampling process
 Training dynamics
 Noise level parametrization
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