

 Prop If f f(erty (Cauchy- Lipschitz) is uniformly Lipschitz w.r.t. t and globally w.r.t. variable x , $(f((t, x) - t, x') \le L x - x')$ in a neigborhood of $(0, x_0)$, then a solution is the solution is unique			
Corc	Jlary			
 If f val 	is continuously differentiable w.r.t. <i>t</i> , <i>x</i> , the solution to the initial ue problem is unique			
Geor	Geometrical interpretation			
So	lution curves for different solutions (initial values) do not intersect			

Pro	operties
Fo	r simplicity we consider one step methods of the form
•	$x_{n+1} = x_n + h_n \phi(t_n, x_n, h_n)$ (2)
• 5	Stability
	Intuition: a perturbation of the initial value and of the ϕ term does not lead to a divergence of the schema
	Property
	□ If there exists $L > 0$ such that $\forall x, x' \in \mathbb{R}^m$, $\forall h \in [0,1]$, $\forall t \in [0,T]$, $\ \phi(t,x,h) - \phi(t,x',h)\ \le L \ x - x'\ $ then the numerical scheme is stable
	\square i.e. ϕ is Lipschitz continuous w.r.t. x , uniformly w.r.t. t and h
	Note: stability is important e.g. for the robustness of NN to adversarial attacks

► II f	nstead of learning maps between vector space, learn maps between unction spaces
►	Images for example are considered as continuous functions
•	The objective is then to learn the operator mapping an input to an output function space
) L	earning operator methods are data driven
•	As usual, one makes use of a training set of input-output pairs in order to learn the operator
►	Generate input/output data using a PDE solver or collect data from sensors
► k	Key ideas
►	Functions and operators are mesh/ resolution invariant
►	Operator learns to interpolate between function spaces
E	xamples presented here
•	Neural Fourier operators a popular families starting in 2020 – with several developments
Þ	Implicit models and CORAL for a recent alternative approach and time discretization free approaches

PEEET Fourieren M. 8 Sarahar Carrelar Alvers Damaria DN/ (2021) Laurier Mach David Simulation with Curch Neurol
Netwoks. ICLR.
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physis-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. <i>Journal of Computational Physics</i> ,
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven discovery of partial differential equations. SCIENCE ADVANCES, 3 no. 4(April).
Sirignano, J. and Spiliopoulos, K. 2018. DGM: A deep learning algorithm for solving partial differential equations. <i>Journal of Computational Physics</i> . 375, Dms 1550918 (2018), 1339–1364.
Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., Wetzstein, G., & University, S. (2020). Implicit Neural Representations with Periodic Activation Functions. <i>Neurips</i> .
Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. <i>Neuri</i> ps.
Um, K., Fei, Y. R., Holl, P., Brand, R., & Thuerey, N. (2020). Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. Neurips.
Wang, S., Wang, H., & Perdikaris, P. (2021). Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. <i>Science Advances</i> , 7(40), 1–10. https://doi.org/10.1126/sciadv.abi8605
Yin,Y., Ayed, I., de Bézenac, E., Baskiotis, N., & Gallinari, P. (2021). LEADS: Learning Dynamical Systems that Generalize Across Environments. <i>Neurips</i> .
Yin,Y., Kirchmeyer, M., Franceschi, JY., Rakotomamonjy, A., & Gallinari, P. (2023). Continuous PDE Dynamics Forecasting with Implicit Neural Representations. ICLR, 1–19. <u>http://arxiv.org/abs/2209.14855</u>
Yin,Y., Le Guen,V., Dona, J., de Bezenac, E., Ayed, I., Thome, N., & Gallinari, P. (2021). Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting. <i>ICLR</i> .