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 Context:  AI4science

 Background: Neural networks and ordinary differential equations
 NNs as numerical schemes for solving ODEs

 Neural ODEs

 Modeling Spatio-temporal dynamics with Neural Networks
 NNs as surrogate models for solving PDEs - Data-driven approaches

 Discrete space models

 Continuous space models

 NNs as surrogate models for solving PDEs – Data free approaches

 Hybrid models
 Incorporating physical knowledge in dynamics models

 Generalization in ML models for dynamics modeling
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Context: AI4Science

Context: AI for Science
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 AI successes mainly concern the numerical world and GAFAs/BATs
applications
 Semantic data: e.g. vision, language, and  virtual worlds, e.g. games
 Availability of massive data collected on the internet (vision, NLP) or 

generated (games) 

 What about applications of AI in the real world for Science and 
Engineering?
 The dominant paradigm is still the classical physics based one

 Classical science and engineering rely on a scientific paradigm involving a deep
understanding of the laws of nature in physics, biology, etc

 With the availability of large amounts of data AI4Science emerged as a new 
paradigm:
 How to make use of AI in scientific domains?
 Is it possible to leverage the classical scientific paradigm together with the more 

recent paradigm of data science?
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Context - AI for Science – ML Challenges - examples
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 In red challenges addressed in this presentation
 Data based approaches to emulate physical phenomena

 Integrating scientific knowledge in ML algorithms
 Discover new scientific knowledge

 Physical plausibility/ interpretability of the solutions provided by ML

 Robustness guaranties/ uncertainty
 Generalization: how can agnostic methods be biased to generalize to 

different conditions/ environments

Context - AI for Science - Weather forecasting and climate

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems6

2022-2024 – Foundation Models for weather prediction (ERA5 
dataset 40 years hourly reanalysis data)
• GraphCast – Google & DeepMind 2022

https://arxiv.org/abs/2212.12794
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-
and-more-accurate-global-weather-
forecasting/#:~:text=Deep%20learning%20offers%20a%20different,the
%20present%20into%20the%20future.
There is an online demo of weather prediction

• ClimaX – Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

• Pangu-Weather – Huawei 2023
http://arxiv.org/abs/2211.02556

• FourCastNet – NVIDIA&Lawrence Berkeley lab.&al.
http://arxiv.org/abs/2202.11214

• Neural General Circulation Model – Google 2023
https://arxiv.org/abs/2311.07222

• Aurora – Microsoft 2024
• https://arxiv.org/abs/2405.13063
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Context - AI for Science - Weather prediction
GraphCast (Lam et al. 2023) Google - https://arxiv.org/abs/2212.12794
Forecasts on ECMWF website

Foundation Models
“Surpass and require only a single GPU, takes less than a minute, 
and consumes a tiny fraction of the energy required for an IFS 

forecast (baseline)”

10 petabytes annually (ERA5)
40 years hourly dataset

Surface & atmospheric variables (temperature, wind speed, …)

Task: predict athmospheric variables 𝑥௧ା଺ from 𝑥௧ି଺, 𝑥௧, 10-day 
prediction horizon

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems

See 
model’s 
forecasts 
on 
ECMWF 
website

More ML 
models

7

Context - AI for Science - beyond weather forecast: Neural 
General Circulation Model (Kochkov et al. 2023) - Google
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• Coupled hybrid Physical GCM and NN components
• Trained on weather forecast
• Downstream climate related tasks: decadal (40 years) global mean

temperature, Cyclones trajectories, etc
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Context - AI for Science - Material science
A foundation model for atomistic materials chemistry, Batatia et al. 2024, 70+ co-
authors, https://arxiv.org/abs/2401.00096

Pre-training
150K inorganic crystals

Predict the potential
energy

Generalizes to multiple 
downstream tasks

Downstream tasks

Prediction
Material properties
Chemical reactions

Material discovery
Superconductors
Battery material

Baselines
Density Functional

Theory
Intensive and costly
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Context - AI for Science - Biology
 Baseline techniques
 Cristalography, magnetic

resonnance, etc

 Alphafold 1 (2018)
 Several modules trained

separately
 Alphafold 2: Evoformer (2020)
 Tertiary protein structure, end-

to-end training
 Alphafold 3: Pairformer (2024)
 Structure of protein with DNA, 

RNA, ligands

 Alphafold server
 Input: list of molecules
 Output: joint 3D structure 

Predicted enzyme structure (blue) and 
experimental structure (gray)
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Credit: Google DeepMind
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Dynamical Systems
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Neural networks and ordinary
differential equations

 NNs as numerical schemes for solving ODEs

NNs as numerical schemes for solving ODEs - summary
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 The dynamics of Neural Networks – explained by ODE
 NNs with an infinite number of layers can be modeled as ordinary

differential equations (ODE)

 Inference and training can be formulated as solving ODEs
 NNs interpretation as numerical schemes for solving ODEs

 Opens the way to the
 Use of numerical ODE solvers for a variety of ML problems

 Use of ODE numerical solvers theory for analyzing NNs dynamics – e.g. 
stability – convergence

 This helped popularize the use of differentiable numerical solvers in the 
ML community
 Implemented in DL libraries, e.g. PyTorch

 Opens the way to integrating physics and ML:
 Physics-aware deep learning
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NNs as numerical schemes for solving ODEs

Advanced Deep Learning - Physics-Aware Deep Learning -
Dynamical Systems
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 Several NNs use skip 
connections, e.g. ResNet

Input 𝑥 is progressively modified by 
a residual 𝑓 𝑥,𝜃

 ODE for initial value problem

  
ௗ௫

ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 ;𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 

𝑥 0 ൌ 𝑥଴
 What is the value of 𝑥 𝑇 ? 

 Equivalent integral formulation

 𝑥 𝑇 ൌ 𝑥 0 ൅ ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡
்
ை

 ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡
்
ை is approximated

via numerical integration

 Exemple: Euler numerical scheme
 𝑥௧ାଵ ൌ 𝑥௧ ൅ ℎ𝑓 𝑥௧,𝜃௧ , 𝑥 0 ൌ 𝑥଴

Forward pass of ResNet is similar to Euler scheme for solving IVP 
(E 2017, Haber 2017, Chang 2018, Lu 2018, …)

𝑥௧ାଵ ൌ 𝑥௧ ൅ 𝑓ሺ𝑥௧,𝜃௧ሻ𝑥௧

Resnet Module

NNs as numerical schemes for solving ODEs – Learning problem
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 Learning problem with ResNets
 𝑀𝑖𝑛ఏ   𝐿 𝐹 𝑥, 𝜃 ,𝑦

𝑠. 𝑡.     𝑥୪ ൌ x୪ିଵ ൅ 𝑓௟ሺ𝑥୪ିଵሻ , 𝑙 ൌ 1 …𝑇, x଴ ൌ x

 𝑥 input, 𝑦 target, 𝜃 parameters, 𝑥௟ layer 𝑙 activation, 𝑇 layers

 Solving this problem requires alternating
 Forward pass – Euler numerical scheme for solving


ௗ௫

ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 ,𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 𝑥 0 ൌ 𝑥଴

 Backward pass – differentiation through Euler scheme for solving


ௗఏ

ௗ௧
ൌ െ𝜖

డ௅ ఏ ௧  
డఏ ,𝜃 0 ൌ 𝜃଴

 Could this idea be generalized?
 Replace Euler with any numerical integration scheme

The constraint describes the 
Forward graph of the Resnet

14
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NNs as numerical schemes for solving ODEs
Euler derivation

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems15

 ODE – IVP problem


ௗ௫

ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 𝑥 0 ൌ 𝑥଴

 Continuous to discrete time
 Divide ሾ0,𝑇ሿ in intervals of size Δ𝑡: 𝑡௡ ൌ 𝑛Δ𝑡
 The objective is to find 𝑥௡ an approximation of 𝑥ሺ𝑡௡ሻ at each 𝑡௡

 Taylor expansion

 𝑥 𝑡௡ାଵ ൎ x t୬ ൅ Δ𝑡
ௗ௫ ௧೙
ௗ௧

 𝑥 𝑡௡ାଵ ൎ x t୬ ൅ Δ𝑡𝑓ሺ𝑥 𝑡୬ ሻ

 Discrete approximation and algorithm
 𝑥଴ ൌ 𝑥ሺ0ሻ
 𝑥௡ାଵ ൎ 𝑥௡ ൅ Δ𝑡𝑓ሺ𝑥௡ሻ

NNs as numerical schemes for solving ODEs
ODE formulation of agradient algorithm

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems16

 Steepest gradient descent
 𝜃௧ାଵ ൌ 𝜃௧ െ 𝜖௧∇𝐿 𝜃௧ , with initial value 𝜃଴

 Continuous formulation
 Let 𝜖௧ ൌ 𝜖 𝑡 Δt
 𝜃 𝑡 ൅ 1 ൌ 𝜃 𝑡 െ 𝜖 𝑡 Δt∇𝐿ሺ𝜃 𝑡 ሻ


ఏ ௧ାଵ ିఏ ௧

୼୲
ൌ െ𝜖 𝑡 Δt∇𝐿ሺ𝜃 𝑡 ሻ


డఏሺ௧ሻ

డ௧
ൌ െ𝜖ሺtሻ∇𝐿ሺ𝜃 𝑡 ሻ

 ODE IVP


డఏሺ௧ሻ

డ௧
ൌ െ𝜖ሺtሻ∇𝐿ሺ𝜃 𝑡 ሻwith 𝜃 0 ൌ 𝜃଴
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NNs as numerical schemes for solving ODEs
Continuous limit

 Continuous limit
 If we let ℎ → 0 in Euler, the ResNet learning problem becomes

 𝑀𝑖𝑛ఏ𝐿 𝐹 𝑥,𝜃 ,𝑦
 𝑠. 𝑡.     డ௫

డ௧
ൌ 𝐹 𝑥 𝑡 ,𝜃 𝑡 , 𝑡 ∈ ሾ0,𝑇ሿ , 𝑥଴ ൌ 𝑥

 Two different families of methods for solving the learning problem:
 Discretize then Optimize

 Discretize in time and then solve
 Leads to back-propagation like algorithms
 The ResNet derivation described before is an example
 This is the framework used in this course

 Optimize then Discretize
 Solves the continuous optimization problem
 Advocated by NeuralODE (Chen 2018)
 Amounts at solving a forward and a backward differential equations

 See notes in the next slides

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems17

Neural ODE (Chen et al. 2018)
A note on optimize then discretize

 learning problem:
 Optimize then Discretize

 Keep the ሺ𝑥,𝜃ሻ continuous in time

 Solve the forward and backward equations using the adjoint method

 The forward and the backward passes are modeled by two different ODEs

 Forward and backward steps are performed via a Black Box differentiable
ODE Solver

 In the NN literature this has been popularized by Neural ODE

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems18
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Neural ODE
A note on optimize then discretize

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems19

 Discretize – optimize (DTO) vs optimize-discretize (OTD)
 OTD opens the way to the use of adaptive solvers and is less demanding

on memory usage – no need to store the state of the system during the 
forward pass, they are recomputed during the backward pass (for the 
backward equation)

 In practice, discretize – optimize (DTO) should be prefered to 
optimize-discretize (OTD)
 The gradient of the backward pass correspond to the function

computed during the forward pass (not the case for OTD)
 Well known in numerical analysis

 By default auto-differentiation performs DTO

 Note: DTO vs ODT is discussed in Gholami et al. 2020, Onken et al. 2020

Neural ODE
A note on optimize then discretize

 Forward pass
 This amounts to solve


డ௫

డ௧
ൌ 𝐹 ሺ𝑥ሺ𝑡ሻ,𝜃ሺሻ, t ∈ ሾ0,𝑇ሿ

 𝑥 0 ൌ 𝑥଴
 Solver call

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems20

𝑥 𝑇 ൌ 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒ሺ𝐹ሺ𝑥 𝑡 , 𝑡,𝜃ሻ, 𝑥 𝑡଴ , 𝑡଴ ൌ 0, 𝑡ଵ ൌ 𝑇ሻ

Fig. Chen et al. 2018
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NNs as numerical schemes for solving ODEs
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 Key ideas
 Training of NNs can be formulated as solving ODEs with a numerical

scheme

 Different numerical schemes could be used
 To be implemented with specific NN architectures

 Allows us using numerical schemes theory for deriving NN properties

 The link between NNs and differential equations will be most relevant 
for modeling dynamical systems

 Note
 ODE are central in several ML contexts involving dynamical processes such as 

generative models (e.g. diffusion models, flow matching models) 

Interlude
Crash notes on ODEs

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

22
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Crash notes on ODEs

Advanced Deep Learning - Physics-Aware Deep Learning -
Dynamical Systems
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 Initial value problem

 ቐ
డ௫

డ௧
ൌ 𝑓 ሺ𝑡, 𝑥ሺ𝑡ሻሻ

𝑥 0 ൌ 𝑥଴
        (1)

 With 𝑓: 0,𝑇 ൈ 𝑅௡ → 𝑅௡

differentiable and 𝑥଴ ∈ 𝑅௡ an 
initial value

 What is the value of 𝑥 𝑇 ? 

 Integral formulation: solution of 
(1)

 𝑥 𝑇 ൌ 𝑥 0 ൅ ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡
்
ை

 Property: the integral formulation 
is equivalent to formulation (1)

Example
𝜕𝑥
𝜕𝑡

ൌ 2𝑡; 𝑥 0 ൌ 1; 𝑥 1 ?

𝑥 1 ൌ 𝑥 0 ൅න 2𝑡𝑑𝑡
ଵ

଴
𝑥 1 ൌ 1 ൅ 1ଶ െ 0ଶ ൌ 2

Crash notes on ODEs
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 Property (Cauchy- Lipschitz)
 If 𝑓is uniformly Lipschitz w.r.t. 𝑡 and globally w.r.t. variable 𝑥, (‖𝑓ሺ 𝑡, 𝑥 െ
𝑓ሺ𝑡, 𝑥ᇱሻ‖ ൑ 𝐿 𝑥 െ 𝑥ᇱ ሻ in a neigborhood of ሺ0, 𝑥଴ሻ, then a solution 
exists and is unique

 Corollary
 If 𝑓 is continuously differentiable w.r.t. 𝑡, 𝑥, the solution to the initial 

value problem is unique

 Geometrical interpretation
 Solution curves for different solutions (initial values) do not intersect
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Crash notes on ODEs

Advanced Deep Learning - Physics-Aware Deep Learning -
Dynamical Systems
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 Trajectories  (solution curves)
 Flow of an ODE

 𝜙 ∶  𝑅 ൈ  𝑅௡  →  𝑅௡ of 𝑓 is 
defined by 𝜙 𝑡, 𝑥଴ ൌ 𝑥 𝑡

 Geometric Interpretation
 The flow traces the trajectory of 

the solution in the state space:
𝜙௧ 𝑥଴ : 𝑡 ∈ 𝑅

 These trajectories are solutions 
of the ODE and follow f the 
vector field 𝑓, satisfying:

𝑑𝜙௧
𝑑𝑡

ൌ 𝑓 𝜙௧ 𝑥଴

i.e. it describes all the trajectories
for different initial conditions

Crash notes on ODEs
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 Numerical solvers

 𝑥 𝑇 ൌ 𝑥 0 ൅ ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡
்
ை

 What if the integral cannot be analytically integrated?

 ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡
்
ை is approximated via numerical integration

 Objective: build a sequence of values 𝑥଴, 𝑥ଵ, … 𝑥ே that approximate the 
solution at the discretization points 𝑥 𝑡଴ , 𝑥 𝑡ଵ , … , 𝑥ሺ𝑡ேሻ

 Exemple: Euler forward
 Step size ℎ

 𝑡௡ାଵ ൌ 𝑡௡ ൅ ℎ

 Update using the gradient at 𝑓ሺ𝑡௡ሻ
 𝑥୬ାଵ ൌ 𝑥௡ ൅ ℎ𝑓 𝑥௡,𝜃௡

26

Note: the same solver can be recovered also via the 
differential formulation through derivative approximations 

e.g.  
డ௫

డ௧
≃

௫ ௧ା௛ ି௫ሺ௧ሻ

௛
leads to 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ𝑓ሺ𝑡௡ , 𝑥௡ሻ
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Crash notes on ODEs
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 One step methods - exemples
 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ௡𝜙ሺ𝑡௡, 𝑥௡ ,ℎ௡ሻ with 𝜙 a function depending on 𝑓
 Euler forward (explicit)

 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ𝑓ሺ𝑡௡,𝑥௡ሻ

 Euler backward (implicit)
 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ𝑓ሺ𝑡௡ାଵ, 𝑥௡ାଵሻ
 Requires solving a fixed point equation

 Runge Kutta e.g. RK2
 (explixit, RK4 often used as a default option) 



𝑥௡,ଵ ൌ 𝑥௡                                                            

𝑥௡,ଶ ൌ 𝑥௡ ൅ ℎ𝑓 𝑡௡, 𝑥௡,ଵ                                  

𝑥௡ାଵ ൌ 𝑥௡ ൅
௛

ଶ
𝑓 𝑡௡, 𝑥௡,ଵ ൅

௛

ଶ
𝑓ሺ𝑡௡ାଵ, 𝑥௡,ଶሻ

Crash notes on ODEs
NNs as numerical schemes for solving ODEs

 NN architectures motivated by ODE numerical schemes
 This link between numerical schemes and NNs has been exploited by 

some authors
 Different discretisation methods used in place of Forward Euler

 Linear multi-step (Lu et al. 2018)
 𝑥௧ାଵ ൌ 1 െ 𝑘௧ 𝑥௧ ൅ 𝑘௧𝑥௧ିଵ ൅ 𝑓 𝑥௧;𝜃௧ , 𝜃௧ are the parameters of 𝑓

 Leapfrog Network (Chang et al. 2018)
 𝑥௧ାଵ ൌ 2𝑥௧ െ 𝑥௧ିଵ െ ℎଶ𝑓ሺ𝑥௧,𝜃௧ሻ

 …
 Implicit schemes

 e.g. backward Euler scheme
 𝑥௧ାଵ ൌ 𝑥௧ ൅ ℎ𝑓 𝑥௧ାଵ;𝜃௧ାଵ
 Note: requires solving a non linear equation at each step

 Each numerical scheme leads to a specific NN architecture (a la ResNet)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems28
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Crash notes on ODEs
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 Summary: using numerical solvers for ODEs
 consider the initial value problem

 ቐ
డ௫

డ௧
ൌ 𝑓 ሺ𝑡, 𝑥ሺ𝑡ሻሻ

𝑥 𝑡଴ ൌ 𝑥଴
        (1)

 What is the value of 𝑥 𝑡ଵ ? 
 Note: we introduced here 𝑡଴ and 𝑡ଵ, lket us use 𝑡଴ ൌ 0 and 𝑡ଵ ൌ 𝑇
 Solver call for the forward pass

𝑥 𝑡ଵ ൌ 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒ሺ𝑓 𝑥 𝑡 , 𝑡,𝜃 , 𝑥 𝑡଴ , 𝑡଴ ൌ 0, 𝑡ଵ ൌ 𝑇ሻ

Numerical solver Differential Initial 
value

Initial 
time

Final 
time

Crash notes on ODEs
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 Properties

 For simplicity we consider one step methods of the form
 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ௡𝜙ሺ𝑡௡, 𝑥௡,ℎ௡ሻ (2)

 Stability
 Intuition: a perturbation of the initial value and of the 𝜙 term does not lead 

to a divergence of the schema

 Property
 If there exists 𝐿 ൐ 0 such that ∀𝑥, 𝑥ᇱ ∈ 𝑅௠,∀ℎ ∈ 0,1 ,∀𝑡 ∈ 0,𝑇 , 

𝜙 𝑡, 𝑥, ℎ െ 𝜙ሺ𝑡, 𝑥ᇱ,ℎሻ ൑ 𝐿 𝑥 െ 𝑥ᇱ then the numerical scheme is
stable

 i.e. 𝜙 is Lipschitz continuous w.r.t. 𝑥, uniformly w.r.t. 𝑡 and ℎ

 Note: stability is important e.g. for the robustness of NN to adversarial
attacks
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Crash notes on ODEs
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 Properties

 For simplicity we consider one step methods of the form
 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ௡𝜙ሺ𝑡௡, 𝑥௡ ,ℎ௡ሻ (2)

 Consistency
 Measures how well the sequence 𝑥଴, 𝑥ଵ, … 𝑥ே approximates 𝑥 𝑡଴ , 𝑥 𝑡ଵ , … , 𝑥ሺ𝑡ேሻ

 Truncation error
 𝜖௡ ൌ 𝑥 𝑡௡ାଵ െ 𝑥 𝑡௡ െ ℎ𝜙ሺ𝑡௡, 𝑥 𝑡௡ ,ℎሻ, with 𝑥ሺ𝑡ሻ a solution of the ODE (1)

 A numerical scheme is consistent if the summation of all the truncation errors, for 
all discretization steps goes to 0 with ℎ

 Convergence
 What are the conditions on 𝜙 for schema (2) to be convergent, i.e. for 𝑥௡ to 

converge to xሺ𝑡௡ሻ when ℎ → 0 ?

 If the scheme (2) is stable and consistent then it is convergent, meaning that

 lim
௛→଴

௫బ→௫ሺ଴ሻ

sup
଴ஸ௡ஸே

𝑥௡ െ 𝑥 𝑡௡
ଶ
ൌ 0

Crash notes on ODEs
Stability of ResNet like architectures (Haber 2017, Chang 2018)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems32

 The properties of ODEs and numerical schemes has been used for 
analyzing the behavior of NNs and suggesting new implementations
 Example from (Haber 2017, Chang 2018), Stability of ResNet like 

architectures 

 They analyze the forward stability of a simplified ResNet
 𝑥௧ାଵ ൌ 𝑥௧ ൅ ℎ𝑓ሺ𝑥௧;𝜃௧ሻ for transformations of the form 𝑓 𝑥௧; 𝜃௧ ൌ
𝜎ሺ𝑊௧𝑥௧ ൅ 𝑏௧ሻ

 And propose to control the stability via the NN architectures and constraints
on weights
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Crash notes on ODEs
Stability of ResNet like architectures (Haber 2017, Chang 2018)
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 Informal description of the ideas
 Stability of the ODE

 The ODE is stable if 𝜃௧ is changing sufficiently slowly and the Jacobian 𝐽௧ ≜
𝛻௫𝑓ሺ𝑥௧ ,𝜃௧ሻ satisfies (sufficient condition):
 max

௜
𝑅𝑒 𝜆௜ 𝐽௧ ൑ 0 ,∀𝑡 ∈ ሾ0,𝑇ሿ with 𝜆௜ 𝐽௧ the ith eigenvalue of 𝐽௧ and 𝑅𝑒ሺሻ the real component

 Stability of the numerical scheme
 Forward Euler is stable if:

 max
௜

1 ൅ ℎ𝜆௜ 𝐽௞ ൑ 1 ∀𝑘 ൌ 0, … , 𝑙 െ 1 (k indexes the layers) with 𝐽௞ ≜ 𝛻௫𝑓ሺ𝑥௞,𝜃௞ሻ 

 Intuition
 The stability conditions of the ODE and of the numerical scheme should be considered in 

the training optimization problem
 max

௜
𝑅𝑒 𝜆௜ 𝐽௧ ൐ 0 amplifies the signal, and may lead to divergence

 max
௜
𝑅𝑒 𝜆௜ 𝐽௧ ≪ 0 may imply signal loss

 They propose architectures for which 𝑅𝑒 𝜆௜ 𝐽௧ , 𝑖 ൌ 1. . 𝑙 is close to 0

 End of the interlude on ODEs

Modeling Spatio-temporal dynamics 
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models

NNs as surrogate models for solving PDEs – Data free approaches
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Modeling Spatio-temporal dynamics with Neural Networks
Motivations

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems35

 Modeling the complex dynamics arising in natural/ physical
processes
 Objective: understanding, predicting, controling

 Physical models
 Mathematical equations of dynamical systems
 Often take the form of PDEs and associated numerical models

 Stem from a deep understanding of the underlying physics

 Data driven modeling
 In many cases data are plentiful (climate, simulations, etc)
 Can we leverage ML for modeling these complex systems?

 Way more complex than current ML successes (vision, language)

 Challenge: Interaction between the physical model based and the 
statistical paradigms

Modeling Spatio-temporal dynamics with Neural Networks
Motivations

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems36

 Applications domains - examples

 Objectives
 Data-driven approaches: reduce computational cost – e.g. CFD: 

Surrogate Models/ Reduced Order Models

 Hybrid Systems: Complement physical models

Computational Fluid Dynamics Earth System Science - Climate Graphical design

Tompson et al. 2017 
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Modeling Spatio-temporal dynamics with Neural Networks
Example: Sea Surface Temperature (SST)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems37



Initial state Successive states 𝑡 ൅ 1, 𝑡 ൅ 3, 𝑡 ൅ 6

Interlude - Crash notes on PDEs

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

38
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Crash notes on PDEs

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems39

 We will consider general PDEs of the form



డ௨ ௧,௫

డ௧
൅ ℒ𝑢 𝑡, 𝑥 ൌ 0,    𝑡, 𝑥 ∈ 0,𝑇 xΩ

𝑢ሺ0, 𝑥 ൌ 𝑢଴ 𝑥 ,                  𝑥 ∈ Ω                 
𝑢 𝑡, 𝑥 ൌ 𝑔 𝑡, 𝑥 ,                 𝑥 ∈ 0,𝑇 x𝜕Ω  

 With 𝑢: 0,𝑇 xΩ → 𝑅௡,𝜕Ω the boundary of domain Ω
 ℒ is a differentiable operator

 Different types of boundary conditions, e.g.
 Dirichlet 𝑢 𝑥 ൌ 𝑔ሺ𝑥ሻ specifies the value at the boundaries

 Neuman
డ௨

డ௡
𝑥 ൌ 𝑔ሺ𝑥ሻ specifies the value of the normal derivative at the 

boundary

 Periodic 𝑢 𝑎 ൌ 𝑢 𝑏 ,
డ௨

డ௫
𝑎 ൌ

డ௨

డ௫
𝑏 , … for example if Ω ൌ ሾa, bሿ

Crash notes on PDEs
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 Example: IBVP for the Heat (Diffusion) equation 1𝐷


డ௨

డ௧
ൌ

డమ௨

డ௫మ
         𝑡 ൐ 0, 𝑥 ∈ 𝑎, 𝑏

 𝑢 𝑎, 𝑡 ൌ 0 and 𝑢 𝑏, 𝑡 ൌ 0 for 𝑡 ൐ 0 
 𝑢 𝑥, 0 ൌ 𝑓ሺ𝑥ሻ

 Heat equation 2D


డ௨

డ௧
ൌ

డమ௨

డ௫మ
൅

డమ௨

డ௬మ

𝜕𝑢
𝜕𝑡

ൌ
𝜕ଶ𝑢
𝜕𝑥ଶ

𝑢ሺ𝑥, 0ሻ ൌ 𝑓ሺ𝑥ሻ
𝑡 ൌ 0

𝑢 ൌ 0 𝑢 ൌ 0

𝑥 ൌ 𝑎 𝑥 ൌ 𝑏

𝑡

Evolution of the temperature in a 
square metal plate -heat equation. 
The height and redness indicate 
the temperature at each point. The 
initial state has a uniformly hot 
hoof-shaped region (red) 
surrounded by uniformly cold 
region (yellow). As time passes 
the heat diffuses into the cold 
region.
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Crash notes on PDEs – method of lines
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 Many applications of NN to PDE proceed as in the method of line 
(Hamdi et al. 2007)
 Replace spatial derivatives in the PDE with algebraic approximations.

 The spatial derivatives don't appear anymore and the only remaining 
independent variable is the time.

 This transforms the PDE into a system of ODE that can be solved with 
classical ODE solvers using a time stepping scheme

 This is the scheme used for most discrete space ML solvers

Crash notes on PDEs – method of lines
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 Example Diffusion (heat) PDE in one dimension


డ௨

డ௧
ൌ c

డమ௨

డ௫మ
with boundary conditions 𝑢 െ𝐿, 𝑡 ൌ 𝑢 𝐿, 𝑡

 Spatial discretization of 𝑢 𝑥, 𝑡 :
 Denote 𝑢ሺെ𝐿, 𝑡ሻ ൌ 𝑢ଵ,𝑢ሺെ𝐿 ൅ Δ 𝑥, 𝑡ሻ ൌ 𝑢ଶ, … , 𝑢ሺ𝐿, 𝑡ሻ ൌ 𝑢௡ାଵ

 Replace spatial derivatives in the PDE with algebraic approximations.
 Discretization of the spatial derivative with a second order scheme :

𝑑𝑢௜
𝑑𝑡

ൌ
𝑐
Δ𝑥ଶ

 𝑢௜ାଵ െ 2𝑢௜ ൅ 𝑢௜ିଵ ,  ∀ 𝑖 ∈  ሼ1,𝑛ሽ

 The spatial derivative do not appear anymore
 We are left with a system of 𝑛 ODEs
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Crash notes on PDEs – method of lines
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 This system of PDE can be solved using appropriate classical ODE 
solvers. 
 Let us derive the ODE integration using an Euler discretization scheme 

for the temporal component:  
ୢ୳౟
ୢ୲
ൎ

௨೔
೙శభି௨೔

೙

୼௧

 The integration scheme for the system of ODEs can be rewritten as:

𝑢௜
௠ାଵ ൌ 𝑢௜

௠ ൅ 𝜆 𝑢௜ାଵ
௠  െ 2𝑢௜

௠ ൅ 𝑢௜ିଵ
௠       ∀𝑖 ∈ ሼ1,𝑛ሽ 

with 𝜆 ൌ  𝑐
୼௧

୼୶మ
  the CFL (Courant-Friedrichs-Lewy ) number that 

conditions the stability of the ODE

 The values of 𝑢 at time step 𝑚 ൅ 1 can be obtained from the values at time 
step 𝑚 using  neighbourhood points at space index 𝑢௜

 Two dimensions, is slightly more complex, but the PDE can be reduced to a 
system of linear ODEs as in the example above

 End Interlude

Modeling Spatio-temporal dynamics
with Neural Networks

 NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models

NNs as surrogate models for solving PDEs – Data free approaches
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Basic NN architectures
Used on discrete grids

Convolutional Neural Networks
Unet

Graph Neural Networks

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

45

Convolutional Neural Networks

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems46

 Convolution of function 𝑢 𝑥 , 𝑥 ∈ 𝑅௡ with kernel 𝑔 𝑥

 ሺ𝑢 ∗ 𝑔ሻ 𝑥 ൌ ׬ 𝑢 𝑦 𝑔 𝑦 െ 𝑥 𝑑𝑦ோ೏

 ሺ𝑢 ∗ 𝑔ሻ 𝑥 ൌ ׬ 𝑢 𝑦 െ x 𝑔 𝑦 𝑑𝑦ோ೏

 Discrete convolution in 2 D of 𝑢ሾ𝑖, 𝑗ሿ with 𝑔 𝑖, 𝑗
 Let us suppose that 𝑔 has a finite support set െ𝑁,െ𝑁 ൅ 1, … ,𝑁 ଶ

 𝑢 ∗ 𝑔 ሾ𝑖, 𝑗ሿ ൌ ∑ ∑ 𝑢 𝑚,𝑛 𝑔ሾ𝑚 െ 𝑖, 𝑛 െ 𝑗ሿ௜ାே
௡ୀ௜ିே

௜ାே
௠ୀ௜ିே

 𝑢 ∗ 𝑔 ሾ𝑖, 𝑗ሿ ൌ ∑ ∑ 𝑢 𝑖 ൅ 𝑚, j ൅ 𝑛 𝑔ሾ𝑚,𝑛ሿே
௡ୀିே

ே
௠ୀିே

 The latter is the convolution used in CNNs

Fig. https://en.wikipedia.org/wiki/Convolution
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Convolutional Neural Networks
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 𝑢 ∗ 𝑔 ሾ𝑖, 𝑗ሿ ൌ ∑ ∑ 𝑢 𝑖 ൅ 𝑚, j ൅ 𝑛 𝑔ሾ𝑚,𝑛ሿே
௡ୀିே

ே
௠ୀିே

𝑢ଵ 𝑢ଶ 𝑢ଷ 𝑢ସ
𝑢ହ 𝑢଺ 𝑢଻ 𝑢଼

𝑢ଽ 𝑢ଵ଴ 𝑢ଵଵ 𝑢ଵଶ

𝑢ଵଷ 𝑢ଵସ 𝑢ଵହ 𝑢ଵ଺

𝑦ଵ 𝑦ଶ
𝑦ଷ 𝑦ସ

Filter 𝑔
indication of the indexing positions

𝑦ଵ ൌ 𝑢 ∗ 𝑔 ሾ2,2ሿ ෍ ෍ 𝑢 2 ൅𝑚, 2 ൅ 𝑛 𝑔ሾ𝑚, 𝑛ሿ

ଵ

௡ୀିଵ

ଵ

௠ୀିଵ

Image 𝑢

Convolutional Neural Networks
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 Relations with finite difference
 Classical stencils used for finite differences can be implemented via NN 

convolution operators
 NNs operating in discrete spaces (CNN, Unet, ResNet, …) have the 

potential to learn differential operators
 Example

 Let 𝑢: Rଶ → R be a function, and 𝑥 ∈ 𝑅ଶ, and ℎ the grid size of a discretized
representation for 𝑥

 Central difference operator for approximating ((i,j) respectively denote the row
and the column)


డ

డ௫భ
𝑢ሺ𝑥ሻ is ௨ ௜ାଵ,௝ ି௨ሾ௜ିଵ,௝ሿ

ଶ௛
implemented as 

ଵ

ଶ୦

0 0 0
െ1 0 1
0 0 0

 


డమ

డ௫భ
మ 𝑢 𝑥 is 

௨ ௜ାଵ,௝ ିଶ௨ ௜,௝ ା௨ሾ௜ିଵ,௝ሿ

௛మ
implemented as 

ଵ

୦మ

0 0 0
1 െ2 1
0 0 0

 

 Note, more on that in Long et al. 2019
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UNets

Advanced Deep Learning - Physics-Aware Deep Learning -
Dynamical Systems
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 Introduced for image to image 
transformations (initially image 
segmentation, could be used to 
associate a source to the solution 
of a PDE)

 Encoder-decoder type 
architecture,  V- Cycle:

 First, upscale the image resolution
and increase the number of 
channels

 Then downscale to the initial 
resolution and reduce the number
of channels

 Close to Multigrid numerical
methods
 Makes use of

 Convolutions
 skip connections combine 

information at the same resolution
 Recent versions incorporate

Attention mechanisms
Fig. Ronneberger net al. 2015

Fig. Badrinarayanan et al. 2015

Graph Neural Networks

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems50

 Extends the CNN ideas to irregular grids (graphs)
 Better adapted to irregular meshes used e.g. in fluid mechanics

 Computational cost high compared to CNNs
 Needs to compute the neighbours for several operations – not so adapted to 

GPUs

 Notations
 𝐺 ൌ ሺ𝑉,𝐸ሻ a graph

 To each 𝑣 ∈ 𝑉, is attached a set of node features 𝑥 ∈ 𝑅ௗ :

 𝒩 𝑣 is the neighborhood of note 𝑣 in the graph

 Alternatively, 𝐺 can be described by its adjacency matrix 𝐴

a
c

b

d

𝐴 ൌ

0 1 0 0
1 0 1 1
0 1 1 0
0 1 1 0
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Graph Neural Networks
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 GNNs are multilayer NNs where each layer has a graph structure
 As for CNNs, nodes in layer 𝑘 ൅ 1 compute their activation from

activations in layer 𝑘.
 The regular CNN convolution is replaced by a message passing 

operation

 Message passing
 Let 𝑥௩௞ the embedding vector associated to node 𝑣 at layer 𝑘
 Message passing operation for nodes has the following general form

 Update 𝑣 state: 𝑥௩௞ାଵ ൌ 𝜎ሺ𝑤௞ ∑ ௫ೠ
ೖ

𝒩 ௩ 𝒩 ௨௨∈𝒩ሺ௩ሻ∪௩ )

 𝒩 𝑣 is the neighborhood of node 𝑣 in the graph


ଵ

𝒩 ௩ 𝒩 ௨
 is a normalization factor 

 ∑ ௫ೠ
ೖ

𝒩 ௩ 𝒩 ௨௨∈𝒩ሺ௩ሻ∪௩ ) is an aggregation operator over 𝒩 𝑣

 𝑤௞ is a matrix of the appropriate dimensions

Graph Neural Networks
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 Message passing operation has the following general form

 Update 𝑣 state: 𝑥௩௞ାଵ ൌ 𝜎ሺ𝑤௞ ∑ ௫ೠ
ೖ

𝒩 ௩ 𝒩 ௨௨∈𝒩ሺ௩ሻ∪௩ )

 Normalization factor  
ଵ

𝒩 ௩ 𝒩 ௨
 introduces a relative independence

w.r.t. the nodes (𝑣) degree compared to a basic aggregation rule s.a.
∑ 𝑥௨௞௨∈𝒩ሺ௩ሻ∪௩ where nodes with high degree would dominate

 Many variants, this one was proposed in the graph convolutional network 
(GCN) by (Kipf et al 2017) – which remains popular GCN approach

 Note: any aggregation operator must be permutation invariant, i.e. 
independent of the node order

 Note: aggregagtion can also be performed on edges

 Note: more on GNNs in Hamilton, 2020
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Graph Neural Networks
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 Attention with GCN

 A popular set aggregation rule relies on neighborhood attention
 Attention was popularized with transformers in NLP

 Example

 Aggregation rule ∑ 𝛼௩,௨𝑥௨௞௨∈𝒩ሺ௩ሻ∪௩

 With coefficients 𝛼௩,௨ denoting the attention on neighbor 𝑢 ∈ 𝒩 𝑣

 𝛼௩,௨ ൌ
ୣ୶୮ ሺ௔೅ ௐ௫ೡ⊕ௐ௫ೠ ሻ

∑ ୣ୶୮ ሺ௔೅ ௐ௫ೡ⊕ௐ௫ೠᇲ ሻೠᇲ∈𝒩ሺೡሻ

, ⊕ concatenation operation

 𝑊a matrix of the appropriate size

 And possible extensions to multiple head attention as in Transformers

NNs as surrogate models for solving PDEs
Discrete space models

 Regular grid: Learning from partial observations – ResNets - UNets

Irregular mesh: passing PDE solvers – Graph NNs

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

54
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Learning from partial observations (Ayed et al. 2019- 2022)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems55

 Forecasting non linear dynamical systems from observations only
 Data-driven approach: without any knowledge of the physics

 The form of the PDE is unknown

 Only assumption
 The underlying system follows a differential equation, but the PDE is unknown

 Objective
 Learn the evolution of this system (observations and state) from scratch 

with a NN
 Discover automatically the relation between states (dynamics)

Learning from partial observations (Ayed et al. 2019- 2022)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems56

 Illustration
 Navier Stokes equations

 Discretised on a spatial 64x64 grid

 State: fluid particle density + 2D velocity field

 Observations: density only 𝑌

 Initial state: true full state 𝑋଴

Forecasting NS – horizon prediction 𝑇 ൌ  30 (in blue
density 𝑌, in color 2D velocity field with color code
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Learning from partial observations (Ayed et al. 2019- 2022)

 Assume an underlying dynamical system with initial conditions



𝑋଴                  Initial state of the system 
ௗ௑೟
ௗ௧

ൌ 𝐹∗ 𝑋௧                    State dynamics

𝑌௧ ൌ 𝐻 𝑋௧                           Observations

 Variables
 𝑋௧ ∈ 𝑅ௗ : state of the system at time 𝑡

 function of time and space, partially observed

 e.g. 3 D dynamics of the Ocean: velocity, pressure of the ocean

 𝑌௧ : observation, i.e. only available data for training ሼ𝑌௧, 0 ൑ 𝑡 ൑ 𝑇ሽ
 e.g. satellite observations: temperature, salinity, ocean color, waves height, …

 𝐻: measurement process linking state to observation is known
 𝐹∗describes the evolution of the state and is unknown

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems57

Learning from partial observations (Ayed et al. 2019- 2022)
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 Objective
 Learn the evolution of the system (observations and state) from scratch 

with a NN

 Learning problem

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
 ிഇ, ௚ഇ

 𝐸௒ሾ∑ 𝑌௧ െ 𝐻 𝑋෠௧ ଶ

ଶ்
௧ୀ଴ learn trajectories from observations

 Subject to ∀𝑡, ௗ௑
෠೟
ௗ௧

ൌ 𝐹ఏ 𝑋෠௧ , learn the state dynamics

 𝑋෠଴ ൌ 𝑔ఏሺ𝑌 ௞, 0 ൏ 𝑘 ൑ 𝐾ሻ learn initial state from previous
observations

 Implementation
 𝐹ఏ is implemented as a ResNet, similar to forward Euler for ODEs

 Solves
ௗ௑෠೟
ௗ௧

ൌ 𝐹ఏ 𝑋෠௧

  𝑋௧ାఋ௧
ఏ ൌ 𝑋௧

ఏ ൅ 𝛿𝑡𝐹ఏሺ𝑋௧
ఏሻ

 𝑔ఏ is a Unet or a ResNet
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Learning from partial observations (Ayed et al. 2019- 2022)
Examples

 NEMO – Nucleus for European Modelling of the Ocean Engine
 State: 7 variables, we make use only of 2 variables corresponding to the 

velocity field

 Observations: Sea Surface Temperature
 Initial state: interpolated from previous observations

 For all test, data are partitioned into a training and a test set
 Horizon of 6 time steps used for the target sequence for training

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems59

Learning from partial observations (Ayed et al. 2019- 2022)
NEMO – Global Ocean Physics Reanalysis
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Targets (𝑌௧)

Targets (𝑋௧)

Predictions (𝑌෠௧)

Predictions (𝑋෠௧)
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NNs as surrogate models for solving PDEs
Discrete space models

Regular grids: Learning from partial observations – ResNets – Unets

 Irregular meshes: Message passing PDE solvers – Graph NNs

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems
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Graph Neural Networks
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 GNN are well adapted to handle irregular meshes
 Several efforts for developing PDE solvers based on graphs

 (Sanchez-Gonzales et al. 2020, Belbute-Peres et al. 2020, Pfaff et al. 2021, …)
 Grid cells/ nodes are mapped to a graph which is processed via message 

passing

 Example used in the course:
 Brandstetter et al. 2022: Message Passing Neural PDE Solvers

 Representative GNN solver 
 Handle multiple situations:
 Multiple resolutions, boundary problems, parametric PDEs, etc

 New improvements for training w.r.t. previous GNN PDE solvers

 Inference
 The mesh (precomputed) is mapped onto a graph
 Objective: forecast spatio-temporal dynamics
 Auto-regressive model 𝑢 𝑥, 𝑡 → 𝑢 𝑥, 𝑡 ൅ Δ𝑡 → 𝑢 𝑥, 𝑡 ൅ 2Δ𝑡 …
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 General framework
 Framework: Encode-Process-Decode (Sanchez-Gomzales 2020)

 Process: message passing on the graph node embeddings

Fig. Bransdtetter et al. 2022

Node 𝒊, step 𝒌

Encoding

Input: last 𝐾 values at each node 𝑖
𝑓௜
଴ ൌEncode(𝑢௜

௞ି௄ , … ,𝑢௜
௞)

Process

M message passing steps
𝑓௜
௠ ,𝑚 ൌ 1 …𝑀

Decode

Output: next 𝐾 values
𝑢௜
௞ାଵ, … ,𝑢௜

௞ା௄

Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Encode
 Compute node embeddings for each node 𝑖

 𝑓௜
଴ ൌ 𝑒𝑚𝑏𝑒𝑑 𝑢௜

௞ି௄:௞ , 𝑥௜ , 𝑡௞ ,𝜃௉஽ா (vector)

 𝑢௜
௞ି௄:௞: 𝐾 last values, 𝑥௜: node position, 𝑡௞: time step 𝑘

 𝜃௉஽ா: parameters of the equation, e.g. PDE coefficient values, boundary
condition indicators etc
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Process
 Compute 𝑀 steps of node update, 𝑓௜

ଵ, … , 𝑓௜
ெ for all nodes 𝑖 via message 

passing

 Step m
 Message for edge 𝑗 → 𝑖 𝑚௜௝

௠ ൌ Φሺ𝑓௜
௠, 𝑓௝

௠,𝑢௜
௞ି௄:௞ െ 𝑢௝

௞ି௄:௞ , 𝑥௜ െ 𝑥௝ ,𝜃௉஽ாሻ

 Update for node 𝑖 𝑓௜
௠ାଵ ൌ 𝜓 𝑓௜

௠,∑ 𝑚௜௝
௠,௝∈𝒩 ௜ 𝜃௉஽ா

 Φ,𝜓 are MLPs

Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Decode
 From the last node embedding 𝑓௜

ெ , compute next 𝐾values 
𝑢௜
௞ାଵ, … ,𝑢௜

௞ା௄ for all nodes 𝑖

 𝑓௜
ெis a vector and is considered as a time contiguous signal and 

processed through a 1𝐷 CNN to compute the next 𝐾 predictions
𝑢௜
௞ାଵ, … ,𝑢௜

௞ା௄
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems67

 Claim
 Able to handle

 parametric PDEs, with the 𝜃௉஽ா coefficients

 Multiple resolutions, message passing allows for multiple resolutions in the 
GNN

 Multiple boundary conditions (Dirichlet, Neuman, mixture)

Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Example
 Generalization : family of PDE equations with different parameters and 

different resolutions


డ௨

డ௧
൅

డ

డ௫
𝛼𝑢ଶ െ 𝛽

డ௨

డ௫
൅ 𝛾

డమ௨

డ௫మ
ൌ 𝑓 𝑥, 𝑡

 𝑢 0, 𝑥 ൌ 𝑢଴ሺ𝑥ሻ
 Encompasses several classical equations

 𝛼,𝛽, 𝛾 ൌ ሺ0, 𝜂, 0ሻ Heat equation

 𝛼,𝛽, 𝛾 ൌ ሺ0.5, 𝜂, 0ሻ Burgers equation (simplified equation for fluid flows)

 Etc

 𝜃௉஽ா ൌ 𝛼,𝛽, 𝛾
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
Example
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 Generalization : to PDE equations with different parameters values for 
𝛼,𝛽, 𝛾  and different resolutions

 Not real generalization but interpolation in the range of training values for 
𝛼,𝛽, 𝛾

 Colours correspond to different times

Fig. Brandstetter et al. 2022

resolutions Parameter values 𝛼,𝛽, 𝛾

Modeling Spatio-temporal dynamics
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
 NNs as surrogate models for solving PDEs – Continuous space models

NNs as surrogate models for solving PDEs – Data free approaches
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Neural operators

Advanced Deep Learning - Physics-Aware Deep Learning -
Dynamical Systems
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 Classical numerical solvers
operate on grids or meshes
(finite differences, finite
elements, finitie volumes)

 Neural solvers operate on 
tensors (grids) or on graphs
(irregular meshes)

 Neural operators is a recent
topic aiming at learning maps
between function spaces
instead of vector spaces
 e.g. images are considered as 

continuous functions

 Key ideas
 Functions and operators are 

mesh/ resolution invariant
 They can be applied for different

geometries, for multiple 
resolutions

 Learning operator methods are 
data driven

Learning operators

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems72

 Instead of learning maps between vector space, learn maps between
function spaces
 Images for example are considered as continuous functions
 The objective is then to learn the operator mapping an input to an output 

function space
 Learning operator methods are data driven

 As usual, one makes use of a training set of input-output pairs in order to 
learn the operator

 Generate input/output data using a PDE solver or collect data from sensors
 Key ideas

 Functions and operators are mesh/ resolution invariant
 Operator learns to interpolate between function spaces

 Examples presented here
 Neural Fourier operators a popular families starting in 2020 – with several

developments
 Implicit models and CORAL for a recent alternative approach and time 

discretization free approaches
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NNs as surrogate models for solving PDEs –
Continuous space models

 Fourier Neural Operators
Implicit models

CORAL: coordinate-based model for operator learning

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems
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NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)                                                                   
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 We consider
 𝒱 ൌ 𝒱 Ω ⊂ 𝑅ௗ;𝑅௡ ,𝒰 ൌ 𝑈ሺΩᇱ ⊂ 𝑅ௗ

ᇲ
; R୫ሻ two function spaces

 𝒢:𝒱 → 𝒰 a non linear unknown mapping between the two function
spaces
 FNO considers mappings 𝒢 that correspond to the solution operator of a 

parametric PDE 
 𝑣 ∈ 𝒱 and u ∈ 𝒰 could correspond respectively to
 an initial condition and a solution for a time dependent PDE
 A parameter function and a solution for a time independent PDE

 Objective
 Learn 𝒢ఏ an approximation of 𝒢 from a finite set of samples
 Samples are provided as p-points discretization of functions 𝑣 ∈ 𝒱 and 

u ∈ 𝒰
 i.e. in practice we learn from discrete spaces, the representation of the 

continuous functions 𝑣 ∈ 𝒱 and 𝑢 ∈ 𝒰
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NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)                                                                   
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 FNO considers mappings 𝒢 that correspond to the solution 
operator of a parametric PDE 
 𝑣 ∈ 𝒱 and u ∈ 𝒰 could correspond respectively to

 An initial condition and a solution for a time dependent PDE
 E.g. Advection-diffusion eq. (Sea Surface Temperature)

 A parameter function and a solution for a time independent PDE
 e.g. elliptic equation (Darcy Flow)
 െ∇. ሺ𝑎 𝑥 ∇u x ൌ f x , x ∈ Ω,𝑢 𝑥 ൌ 0, 𝑥 ∈ 𝜕Ω, 𝑓 piecewise constant 

𝑢ሺ𝑡ሻ 𝑢ሺ𝑡 ൅ Δ𝑡ሻ

𝑎ሺ𝑥ሻ diffusion 
coefficient

𝑢ሺ𝑥ሻ steady
state solution

Fig Li et al. 2022

NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021) 
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 Classical neural network

𝑢 ൌ ሺ𝐾்∘ 𝜎் ∘ ⋯ ∘ 𝜎௧ ∘ 𝐾௧∘ ⋯ ∘ 𝜎ଵ∘ 𝐾଴ሻ𝑣 

 With 𝐾௧ a linear operator, 𝜎௧ a non linearity, 𝑢, 𝑣 vectors

 Neural operators (simplified)
 Follow a similar framework but 𝑢 and 𝑣 are no more vectors but 

functions

𝑣௧ାଵ 𝑥 ൌ 𝜎௧ାଵ 𝐾௧ 𝑣௧ 𝑥  

 With 𝐾௧ 𝑣௧ an integral operator

𝐾௧ 𝑣௧ 𝑥 ൌ න 𝜘௧ 𝑥,𝑦 𝑣௧ 𝑦 𝑑𝑦
ஐ

 𝜘௧ 𝑥,𝑦 is a kernel function

 𝑣௧:Ω → 𝑅௡, 𝑣௧ାଵ:Ω → 𝑅௠, Ω ⊂ 𝑅ௗ a bounded space
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NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021) 
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 How to learn the kernel function 𝜘௧?
 We consider the simplified update rule

𝑢 𝑥 ൌ 𝐾ሺ𝑣ሻሺ𝑥ሻ  ൌ න 𝜘 𝑥, 𝑦 𝑣 𝑦 𝑑𝑦
ஐ

 with 𝑣,𝑢:Ω → 𝑅௡

 FNO works in Fourier space
 Let us make 𝜘 𝑥,𝑦 ൌ 𝜘 𝑥 െ 𝑦

 𝑢 𝑥 ൌ ׬ 𝜘 𝑥 െ 𝑦 𝑣 𝑦 𝑑𝑦ஐ

 𝑢 𝑥 ൌ ׬ 𝜘 𝑥 െ 𝑦 𝑣′ 𝑦 𝑑𝑦
ାஶ
ିஶ with 𝑣ᇱ 𝑦 ൌ 𝟙ஐ 𝑦 𝑣 𝑦 <<<<<< convolution

𝑢 𝑥 ൌ 𝜘 ∗ 𝑣ᇱ 𝑥
 Convolution theorem:

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

 Convolution in space is equivalent to pointwise multiplication in Fourier domain
 ℱ 𝜘 is a linear transformation

NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021) 
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 Fourier transform – Linear Transform – Inverse Fourier 

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

 Findings
 In practice, it is sufficient to take the lower frequency modes
 Fourier filters operate at the global level, different from CNN filters

operating at a local level
 𝑅 is a linear operator – implemented as a tensor

Fig Li et al.,  2021
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NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Whole module

 Fourier Layer works only with periodic conditions
 𝑊 captures non periodic conditions
 𝜎 transforms are performed in the spatial domain

 In practice
 ℱ is implemented via a Fast Fourier Transform (complexity 𝑛𝑙𝑜𝑔𝑛, 𝑛 nb of spatial points)
 Operates on regular grids only
 But FFT is independent of the grid size

 Could be used on resolutions different from the training ones

Fig Li et al. 2021

NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Example: zero shot super-resolution
 2 D Navier Stokes, vorticity form, viscuous incompressible fluid


డ

డ௧
𝑤 𝑥, 𝑡 ൅ 𝑢 𝑥, 𝑡 .𝛻𝑤 𝑥, 𝑡 ൌ 𝜈Δ𝑤 𝑥, 𝑡 ൅ 𝑓 𝑥 , 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ ሺ𝑂,𝑇ሿ

 ∇.𝑢 𝑥, 𝑡 ൌ 0, 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇

 𝑢 𝑥, 𝑡   velocity field, 𝑤 𝑥, 𝑡 vorticity, characterizes local rotation of the 
fluid

 Fig. Illustrates super-resolution: trained at 64x64, test on 256x256

Fig Li et al. 2021
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NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Details on N-S example
 2 D Navier Stokes, vorticity form, viscuous incompressible fluid


డ

డ௧
𝑤 𝑥, 𝑡 ൅ 𝑢 𝑥, 𝑡 .𝛻𝑤 𝑥, 𝑡 ൌ 𝜈Δ𝑤 𝑥, 𝑡 ൅ 𝑓 𝑥 , 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇

 ∇.𝑢 𝑥, 𝑡 ൌ 0, 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇

 𝑤 𝑥, 0 ൌ 𝑤଴ 𝑥 , 𝑥 ∈ 0,1 ଶ

 ∇𝑢 ൌ ሺ
డ௨

డ௫
,
డ௨

డ௬
)

 Δ𝑢 ൌ ∇.∇u

 ∇.vൌ
డ௩ೣ
డ௫

൅
డ௩೤
డ௬

for a 2 D vector 𝑣 – divergence operator

 𝑤 ൌ ∇ x 𝑢 with x the curl operator

NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Many extensions/ variants
 Irregular grids, Physics informed FNO (Li et al. 2022) Transformer FNO, 

large size application to weather forecasting (Pathak 2022)

 Approximation theorem
 Universal property approximation of operator classes by (F)NO e.g. 

Kowachki 2022
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NNs as surrogate models for solving PDEs –
Continuous space models

Fourier Neural Operators
 Implicit models

CORAL: coordinate-based model for operator learning

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems
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NNs as surrogate models for solving PDEs – Continuous space models
Implicit representations

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems84

 Coordinate based approximation of functions
 Continuous representations of  objects as coordinate dependent functions
 Appeared initially as a novel way to represent 3 D shapes in place of discrete

representations
 Example signed distance

 The shape is fully described by the NN parameters
 Mesh free approach – independent of the resolution
 Lower memory requirements than discrete representations

𝒙
 
𝒚

 𝒛

Φሺ𝑥, 𝑦, 𝑧ሻ

Fig. Park et al. 2019
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NNs as surrogate models for solving PDEs – Continuous space models
Implicit representations
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 Memory requirements – motivation

Fig. Dupont et al. 2022

NNs as surrogate models for solving PDEs – Continuous space models
Implicit representations
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 Several authors proposed to use sinusoidal functions in place of 
classical activation functions
 Sitzmann al. 2020, Fathony et al., 2021, Tancik et al. 2020, etc

 Example: SIREN (Sitzmann al. 2020) replaces classical activations in a 
MLP with sin functions

𝒙
 
𝒚

 𝒛

Φሺ𝑥, 𝑦, 𝑧ሻ

Fig. Sitzmann et al. 2020



44

Neural Fields (Implicit Neural Representations)
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 Learning several images
 A neural field model represents one image
 How to represent multiple images using a single model?

 Condition the neural field on a compact code specific of an image

 This code 𝑧௜ could be learned e.g. through auto encoding by gradient descent and 
is specific to an image

 Conditioning is performed through an hypernetwork
 Network weights (in blue) are  shared across images

𝒙
 

 𝒚

Φሺ𝑥, 𝑦; 𝑧௜ሻ

Code 𝑧௜

NNs as surrogate models for solving PDEs –
Continuous space models

Neural Operators
DeepONet

Implicit models
 CORAL: coordinate-based model for operator learning

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

88
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CORAL : COordinate-based model for opeRAtor Learning

 Tasks

 Objective
 Learn on geometries (e.g. NACA meshes), generalize on new geometries

 Handle general geometries

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems89

CORAL : COordinate-based model for opeRAtor Learning

 Model (Inference)

DecodeEncode

Process

Input Output

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems90
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CORAL : COordinate-based model for opeRAtor Learning

 Model (Inference)

DecodeEncode

Process

Input Output

INR + 
Hypernework

INR + 
Hypernework

MLP → ODE solver
Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems91

CORAL : COordinate-based model for opeRAtor Learning

 Example: IVP on Airfoil (predict pressure, density, velocity)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems92



47

CORAL : COordinate-based model for opeRAtor Learning

 Example: forecasting on Shallow-Water (vorticity)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems93

CORAL : COordinate-based model for opeRAtor Learning

 Geometry aware inference: NACA-Euler (Mach number)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems94
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CORAL : COordinate-based model for opeRAtor Learning

 Geometry aware inference: Pipe (horizontal velocity)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems95

CORAL : COordinate-based model for opeRAtor Learning

 Design – by solving inverse problem on NACA Euler – minimize
drag, maximize lift

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems96
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Modeling Spatio-temporal dynamics 
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models
 NNs as surrogate models for solving PDEs – Data free approaches

NNs as surrogate models for solving PDEs – Data free approaches
(Lagaris 1998, Sirignano 2018, Raissi 2019)
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 Objective
 Build a reduced order (parametric) model, implemented by a NN, to 

offer a cheap approximate solution of a PDE

 Assumption: the form of the PDE is known as for classical solvers
 Data free approach: no need for simulated data/ observations as 

required by all the other approaches seen before

 Results
 The algorithm solves the PDE using a single parametric function, for all 

space and time conditions

 The original algorithm solves a unique IBVP – and shall be re-trained for 
a new IBVP
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NNs as surrogate models for solving PDEs – Data free approaches
(Lagaris 1998 , Sirignano 2018, Raissi 2019)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems

 Problem
 Parabolic PDE with 𝑑 spatial dimensions



డ௨ ௧,௫

డ௧
൅ ℒ𝑢 𝑡, 𝑥 ൌ 0, 𝑡, 𝑥 ∈ 0,𝑇 ൈ Ω,Ω ⊂ 𝑅ௗ                PDE 

𝑢 𝑡 ൌ 0, 𝑥 ൌ 𝑢଴ 𝑥  , 𝑥 ∈ Ω                               Initial condition𝑠
𝑢 𝑡, 𝑥 ൌ 𝑔 𝑡, 𝑥  , 𝑥 ∈ 𝜕Ω                            Boundary conditions

 𝑢 𝑡, 𝑥 is the spatio-temporal quantity of interest
 ℒ𝑢 𝑡, 𝑥 is the differential term of the PDE

 e.g. Burgers 1𝐷: 
డ௨ ௧,௫

డ௧
ൌ െu

డ௨ ௧,௫

డ௫
൅ 𝑣

డమ௨ ௧,௫

డ௫మ

 Objective
 Approximate 𝑢ሺ𝑡, 𝑥ሻ with a NN 𝑓ሺ𝑡, 𝑥;𝜃ሻ, 𝜃 ∈ 𝑅௄are the network 

parameters

99

NNs as surrogate models for solving PDEs – Data free approaches
(Lagaris 1998 , Sirignano 2018, Raissi 2019)
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 Formulate the problem as minimizing an objective function
 Foe simplification we only consider initial conditions (remove BC)

 𝐽 𝑓 ൌ 𝑓 0, 𝑥;𝜃 െ 𝑢଴ 𝑥 ஐ,ఔభ
ଶ ൅

డ௙ ௧,௫;ఏ

డ௧
െ ℒ𝑓 𝑡, 𝑥;𝜃

଴,் ൈஐ,ఔమ

ଶ

 Solved using stochastic gradient descent
 Several extensions, e.g. sampling from data from the PDE loss, etc

Initial condition loss PDE loss: constraint

• Learn 𝑓ሺ𝑂, 𝑥; 𝜃ሻ by sampling from Ω, 
the initial condition

• This is a regression problem
• This provides a parametric 

approximation of target 𝑢ሺ𝑥, 𝑡 ൌ 0ሻ

• Constrains 𝑓ሺ𝑡, 𝑥;𝜃ሻ to follow the PDE 
expression by sampling uniformly
from 0,𝑇 ൈ Ω

•
డ௙

డ௧
and ℒ𝑢 𝑡, 𝑥 computed by 

automatic differentiation

𝑢଴ሺሻ:
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NNs as surrogate models for solving PDEs – Data free approaches
Sirignano 2018, Raissi 2019
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 Algorithm
 Iterate

 Sample ሺ𝑡௡, 𝑥௡ሻ from 0,𝑇 ൈ Ω, 𝜈ଶ; sample the initial condition point 𝑧௡ from 
Ω, 𝜈ଵ

 Calculate the squared error 𝐺ሺ𝜃௡, 𝑠௡ሻ at the sampled points 𝑠௡ ൌ
ሼ 𝑡௡, 𝑥௡ , 𝜏௡, 𝑦௡ , 𝑧௡ሽ with:

 𝐺 𝜃௡, 𝑠௡ ൌ ሺ
డ௙ ௧೙,௫೙;ఏ೙

డ௧
െ ℒ𝑓 𝑡௡, 𝑥௡;𝜃௡ ሻଶ ൅ 𝑓 0, 𝑧௡;𝜃௡ െ 𝑢଴ 𝑧௡

ଶ

 Take a gradient step
 𝜃௡ାଵ ൌ 𝜃௡ െ 𝜖௡𝛻ఏ𝐺ሺ𝜃௡, 𝑠௡ሻ 

NNs as surrogate models for solving PDEs – Data free approaches
Sirignano 2018, Raissi 2019
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 Comments
 Mesh free approach, similar in that to INR

 Several extensions (Karniadakis et al. 2021)
 Popularized the idea of approximatin a differential equation via a 

parametric function

 Still much slower than classical solvers

 Requires learning a solver for each specific equation/ initial & boundary
conditions
 More on that later

 No extrapolation in time
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NNs as surrogate models for solving PDEs – Data free approaches
(Sirignano 2018, Raissi 2019)
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 Example: Burger equation

Fig: Raissy 2019

Hybrids and generalization

 Incorporating physical knowledge in dynamics
models – hybrid systems

Generalization in ML models for dynamics modeling
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Incorporating physical knowledge in dynamics models – hybrid
systems

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems105

 Motivations
 Accelerate computations

 Approximate the high-precision simulation at a lower computational cost

 Belbute-Peres et al. 2020, Kochkov et al. 2021

 Incorporate physical prior knowledge/constraints in ML models
 Bias the model towards physically plausible solutions

 Better generalization

 De Bezenac et al. 2018

 Complement physical models
 Incomplete physics prior

 Model the effects of dynamics not considered in the physical model, e.g. 
closure modeling

Incorporating physical knowledge in dynamics models – hybrid
systems

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems106

 Modeling approaches
 Rely on the close integration of physical and ML components inside

numerical solvers

 Made possible by the availability of differentiable solvers and/or adjoint 
models developed for numerical models
 Physical simulators are then considered as a differentiable component that

can be easily integrated with ML differentiable components

 Allows end to end training of the whole system

 Question
 How to build dynamics models that incorporate physical knowledge and 

ML so that they can be trained from data?
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Incorporating physical knowledge in 
dynamics models – hybrid systems

 Incorporate physical prior knowledge
Accelerate computations

Complement physical models-incomplete physical prior

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

107

Accelerate computations

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems108

 Objective
 Approximate the accuracy of a high resolution (Direct Numerical

Simulation) DNS by augmenting a low resolution DNS with a ML 
component
 The hybrid model then combines low resolution solver and ML components

 One wants the surrogate model be: faster than e.g. DNS, reach a similar
accuracy, generalize to new situations (e.g. forcings Reynolds nb for fluids, etc)

 Method
 Learn this hybrid model from high resolution trajectories i.e. generated

by a high resolution DNS, with different physical configurations
 Requires the expensive generation of high resolution data

 Generalize with the hybrid model to unseen conditions
 This is where the gain is obtained w.r.t. DNS



55

Accelerate computations

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems109

 Assumptions
 Consider 2 different discrete versions of the same PDE

 High resolution simulation 𝑢௧
௛௜௚௛ e.g. 𝑅ଵ଴଴଴

 Low resolution simulation 𝑢௧
௟௢௪e.g. 𝑅ଵ଴଴

 Learned Correction term 𝐿𝐶ሺ𝑢௧
௟௢௪;𝜃ሻ

 Obtained via the ML component

 Prediction by the hybrid model 𝑢௧
௣௥௘ௗ ൌ 𝑢௧

௟௢௪ ൅ 𝐿𝐶 𝑢௧
௟௢௪;𝜃

 Training
 Loss criterion ∑ 𝑀𝑆𝐸ሺ𝑢௧

௛௜௚௛,்
௧ୀଵ 𝑢௧

௣௥௘ௗሻ
 with 𝑇 the training horizon (or training rollout)

 𝑢௧
௛௜௚௛ ,𝑢௧

௣௥௘ௗ are not of the same size
 The MSE is computed between a downsampled version of 𝑢௧

௛௜௚௛ and 𝑢௧
௣௥௘ௗ

 (Kochkov and Um examples – see later)
 Alternatively it can be computed between an upsampled version of 𝑢௧

௣௥௘ௗ

and 𝑢௧
௛௜௚௛ (Belbute-Perez example – see later)

Accelerate computations
Kochkov et al. 2021
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 Objective: solve incompressible Navier-Stokes equations


డ௨౮
డ௧

൅ u.∇𝑢௫ ൌ െ
ଵ

ఘ
∇𝑝 ൅ 𝜈∇.∇u୶ ൅ 𝑓௫


డ௨౯
డ௧

൅ u.∇𝑢௬ ൌ െ
ଵ

ఘ
∇𝑝 ൅ 𝜈∇.∇u୷ ൅ 𝑓௬

 ∇.𝑢 ൌ 0: divergence free, i.e. volume preserving motion
 𝑢 velocity field, 𝑓 external forcing, density 𝜌 is a constant, 𝑝 pressure, 𝜈

viscosity, periodic BC

 Using a ML component to complement a CFD solver running on a 
coarse grid

 Expected to generalize to multiple conditions
 This is where the gain is obtained

 Proposes different implementations for combining the solver and an ML 
component
 We consider herethe following model 𝑢௧

௣௥௘ௗ ൌ 𝑢௧
௟௢௪ ൅ 𝐿𝐶 𝑢௧

௟௢௪;𝜃
 Requires high fidelity data for training
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Accelerate computations
Kochkov et al. 2021
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 Example – Turbulent flows

 Figure represents scalar vorticity: 𝜔 ൌ
డ

డ௫
𝑢௬ െ

డ

డ௬
𝑢௫

 Top: high fidelity reference, middle learned correction, bottom low fidelity, 
boxes: evolution of a single vortex

 Learned interpolation close to high fidelity

Fig. Kochkov et al. 2021

DNS 1024x1024

DNS 64x64

Learned
Interpolation 
64x64

Incorporating physical knowledge in 
dynamics models – hybrid systems

Incorporate physical prior knowledge
Accelerate computations

 Complement physical models-incomplete physical prior

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

112
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Complement physical models-incomplete physical prior
APHYNITY:  Augmenting Physical Models with Deep Networks for 
Complex Dynamics Forecasting (Yin et al. 2021)

 Context
 Incomplete background knowledge is available, e.g. PDE that only

explains partially the phenomenon

 Complement the physical model with a statistical component
 Provide a principled framework to make model based and data based

framework cooperate

 Objective
 Identify correctly the physical parameters (inverse problem)

 The NN component should learn to describe the information that cannot be
captured by the physics (direct problem)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems113

Complement physical models-incomplete physical prior
APHYNITY:  Augmenting Physical Models with Deep Networks for 
Complex Dynamics Forecasting (Yin et al. 2021)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems114

 Illustration: damped pendulum
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Complement physical models-incomplete physical prior
APHYNITY:  Augmenting Physical Models with Deep Networks for 
Complex Dynamics Forecasting (Yin et al. 2021)

 We consider

 dynamics of the form
ௗ௑೟
ௗ௧

ൌ 𝐹ሺ𝑋௧ሻ

 two families of functions
 ℱ௣: parametric set of functions for prior knowledge (physics)

 ℱ௔: parametric set of functions with high approximation power (NNs)

 We study decompositions of the form


ௗ௑೟
ௗ௧

ൌ 𝐹 𝑋௧ ൌ 𝐹௣ 𝑋௧ ൅ 𝐹௔ሺ𝑋௧ሻ , with 𝐹௣ ∈ ℱ௣ and 𝐹௔ ∈ ℱ௔

 Problem
 We want to solve both the forward and inverse problem
 The decomposition 𝐹௣ 𝑋௧ ൅ 𝐹௔ሺ𝑋௧ሻ is usually not unique

 Ill posed problem

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems115

Complement physical models-incomplete physical prior
APHYNITY:  Augmenting Physical Models with Deep Networks for 
Complex Dynamics Forecasting (Yin et al. 2021)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems116

 Turning the learning problem to a well posed problem
 Intuition
 By hypothesis 𝐹௣ is a good approximation of reality, but incomplete
 𝐹௣ should explain as much of the dynamics as possible
 𝐹௣ ൅ 𝐹௔ should explain perfectly the dynamics
 Learn 𝐹௔ and 𝐹௣ so that 𝐹௔ explains only the residual unexplained by 𝐹௣

 Formalization: training objective
 Given a normed vector space (ℱ, . ሻ

 𝑀𝑖𝑛ி೛∈ℱ೛,ிೌ ∈ℱೌ 𝐹௔ , s.t. ∀𝑋 ∈ 𝐷,
ௗ௑೟
ௗ௧

ൌ 𝐹௣ 𝑋௧ ൅ 𝐹௔ሺ𝑋௧ሻ

 Theoretical insights
 If ℱ௣ is a proximinal set, there exists a minimizing decomposition.
 If ℱ௣ is a Chebyshev set, the optimization problem admits a unique 

minimizer, hence identifiability is guaranteed.
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Complement physical models-incomplete physical prior
APHYNITY:  Augmenting Physical Models with Deep Networks for 
Complex Dynamics Forecasting (Yin et al. 2021)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems117

 Practical instantiation

 ℱ௣ is parameterized with a differential equation 𝐹௣
ఏ೛

 ℱ௔ is parameterized by a NN 𝐹௔
ఏೌ

 We fit trajectories instead of derivatives
ௗ௑೟
ௗ௧

 The problem is solved in the trajectory space:
 Suppose available sequences of size 𝑛: ሺX୲బ

୧ , … , X୲౤
୧ ሻ

 Solve:

  𝑀𝑖𝑛 ఏೌ,ఏ೛ 𝐹௔
ఏೌ ൅ 𝜆∑ ∑ ||𝑋෠௧ೖ

௜௡
௞ୀଵ െ 𝑋୲ౡ

୧ ||௜

 with prediction 𝑋෠௧ೖ
௜ obtained by a differentiable solver (RK4 in practice) 

 𝑋෠௧ೖ
௜ ൌ X୲ౡషభ

୧ ൅ ׬ 𝐹௣
ఏ೛ ൅ 𝐹௔

ఏೌ 𝑋෠௜ 𝜏 𝑑𝜏
௧ೖ
௧ೖషభ

Complement physical models-incomplete physical prior
APHYNITY:  Augmenting Physical Models with Deep Networks for 
Complex Dynamics Forecasting (Yin et al. 2021)

 Summary

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems118
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Complement physical models-incomplete physical prior
APHYNITY:  Augmenting Physical Models with Deep Networks for 
Complex Dynamics Forecasting (Yin et al. 2021)

 Example: reaction diffusion equation


డ௨

డ௧
ൌ 𝑎Δ𝑢 ൅ 𝑅௨ሺ𝑢, 𝑣, 𝑘ሻ, డ௩

డ௧
ൌ bΔ𝑣 ൅ 𝑅௩ሺ𝑢, 𝑣ሻ

 𝑎,𝑏, diffusion coefficients; 𝑅௨,𝑅௩ reaction terms; Δ Laplace operator

 Background physical knowledge
 Diffusion with coefficients to be estimated

 Reaction terms are ignored and shall be estimated by 𝐹௔

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems119

Combining NN and differential solvers – APHYN-EP
Cardiac electrophysiology (Kashtanova et al. 2022)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems120

 Objective
 Modeling the dynamics of cardiac electrical activity

 Normal and pathological conditions

 Variable of interest: Action Potential (mVolts) wave propagation

Fig. Wikipedia
Fig. drawittoknowit.com
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Complement physical models-incomplete physical prior
Cardiac electrophysiology (Kashtanova et al. 2022)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems121

 Objective
 Modeling the dynamics of cardiac electrical activity

 Models
 Complex models

 e.g. Ten Tusscher-Panfilov 2004
 # hidden variables and parameters, computationally expensive (43 variables)

 Surrogate low fidelity models
 e.g.  Mitchell Schaeffer 2003 (2 variables)

 Rapid prototyping, less precise
 Reaction-diffusion model

 Objective
 Learn to simulate real data (here TenTusscher) using a combination of low fidelity

model and residual neural network – similar to the APHYNITY framework
 Idendify from examples the low fidelity parameters and provide good forecasts

of the dynamics
 Limited to the polarization phase

Combining NN and differential solvers – APHYN-EP
Cardiac electrophysiology (Kashtanova et al. 2022)
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 In silico data - Example: polarization phase
 Slab of 2D cardiac tissue of 24x24 elements

 Ex-vivo data
 Optical data from swine hearts
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Hybrids and generalization

Incorporating physical knowledge in dynamics models – hybrid
systems

 Tackling the generalization problem for dynamical systems

Tackling the generalization problem for dynamical systems
Illustrative examples



Modelling epidemics in different 
countries

Modeling heart electrical diffusion 
from different patients, Fig. Fresca 
et al. 2020

Predictions of sea 
surface temperature 
from satellite data, Fig. 
Pajot et al. 2018

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems124
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Tackling the generalization problem for dynamical systems
Approaches

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems125

 Objective
 learn solutions than can handle/ adapt to different contexts/ 

environments
 Learn an operator from the context space to the space of solutions

 Solutions
 Learn from a distribution of environments and condition the operator

on the environment ‘s characteristics
 Learn so as to adapt rapidly to a new environment

 Two families of methods
 Pure ML – data based - equation free
 Learn from samples from different environments
 Potentially infer the environment characteristics from new observed

data
 Physics informed (PINNs like) – data free – known parametric equation
 Learn from different parameters settings 

Tackling the generalization problem for 
dynamical systems

 Equation Free formulation

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

126
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Tackling the generalization problem for dynamical systems
Domain Generalization

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems127

 Problem setting
 Assumption: there exists a set of environments 𝐸 ൌ ሼ𝑒௜ሽ, each governed

by a differential equation
ௗ௫೟

೐

ௗ௧
ൌ 𝑓௘ 𝑥௧

௘

 Sharing commonalities e.g. general form of the dynamics (shared parameters
𝜃௖)

 With specificities, e.g. coefficients of the PDE, initial & boundary conditions, 
forcings, spatio-temporal domains, etc (Specific parameters 𝜃௘)

 Challenge
 How to leverage this setting in order to generalize to unseen situations 

and new environments?

Tackling the generalization problem for dynamical systems
Domain Generalization

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems128

 Usual practice in ML (Empirical Risk Minimization)
 Training dataset: sample environment distribution and for each

environmen sample the trajectory distribution

 Expect this will generalize to new environments
 This assumes:

 i.i.d. distribution, dataset large enough to cover the data distribution and 
represent the diversity of situations

 Not realistic

 Claim
 The models should leverage adaptive conditioning to the environment
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Tackling the generalization problem for dynamical systems
Domain Generalization (Kassai et al. 2024)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems129

ERM baselines vs environment adaptive conditioning

Gray-Scott Burgers

ERM baselines
ERM baselines

Adaptive conditioning Adaptive conditioning

Foundation model

Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022, Kassai et al. 2024
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 How to – Intuition: Meta-learning for fast adaptation to new 
environments
 Training

 Learn on a sample of the domains’ distribution (i.e. different environments)
 𝜃௘ ൌ 𝜃௖ ൅ 𝛿𝜃௘

 𝜃௖ shared parameters across environments, 𝛿𝜃௘environment specific
parameters

 So that it could adapt fast and with a few shots to a new environment

 Inference: for a new environment fast adaptation with a few samples
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems131

 Dynamical function for environment 𝑒
 𝑓ఏ౛  ,𝜃௘ ൌ 𝜃௖ ൅ 𝛿𝜃௘

 Training objective

 min
ఏ೎,ఋఏ೐;௘∈ா

∑ 𝛿𝜃௘ ଶ
௘∈ா s.t. ∀𝑥௘ ∈ 𝐷௘ ,∀𝑡,

ௗ௫೐ ௧

ௗ௧
ൌ 𝑓ఏ೎ାఋఏ೐ 𝑥௘ 𝑡

 𝜃௖ learned over a training set sampled from a family of environments 𝐸

 𝛿𝜃௘ conditionned on environment 𝑒

 Locality constraint min
ୣ

𝛿𝜃௘ ଶ: 𝜃௘ should lie in the neighborhood of 𝜃௖ : 𝛿𝜃௘

lies on a low dimensional manifold -> fast adaptation to environments

• Lotka-Voltera ODE
• Loss landscape for 3 environments
• Centered on the shared 𝜽𝒄

• Local min 𝜽𝒆 indicated by arrow

Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 Conditioning to an environment
 𝜃௘ ൌ 𝜃௖ ൅ 𝛿𝜃௘

 Environment specific parameters: Implementation via a hypernetwork
 𝛿𝜃௘ ൌ W𝜉௘with 𝑊 weight matrix and 𝜉௘learned code

 Code 𝜉௘is infered from a few observations for each new environment

 𝜃௖ and 𝑊 are shared parameters learned on the training set

 Inference: for a new environment, learn code 𝜉௘ from a few 
observations and infer 𝜃௘

(1) Environment
encoding 𝜉௘(learned)

(2) Hypernetwork: generates
the parameters of the neural 
network predictor, conditionned
on the environment 𝜉௘

Neural network predictor: 
forecast next frames via 
numerical integration
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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

• Four parameters, two fixed (𝛼, 𝛾) and two
(𝛽, 𝛿) change accross environments

• Training on 9 environments (yellow)
• Top: Evaluation on 2600 new 

environments
• Bottom: phase portraits for 4 new 

environments 𝒆𝟏to 𝒆𝟒
• Blue trajectories: ground truth
• Green trajectories: predicted
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