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Advanced Deep learning

» Generative models
» Variational Auto-Encoders
» Generative Adversarial Networks

» Diffusion models

» Al4Science - Physics Based Deep Learning
» Neural Nets and Ordinary Differential Equation
» Neural Networks for modeling spatio-temporal dynamics
- NN as surrogate models for solving Partial Differential Equations
- Incorporating physical knowledge in statistical dynamics models
- Generalization for agnostic ML models for dynamics modeling

- Foundation models for science
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Generative models

Variational Auto-Encoders
Generative Adversarial Networks
Diffusion models

Generative models

» Objective
» Learn a probability distribution model from data samples
Given x1,...,x¥ € R™ learn to approximate their underlying distribution X

For complex distributions, there is no analytical form, and for large size spaces
(R™) approximate methods (e.g. MCMC) might fail

Deep generative models recently attacked this problem with the objective of
handling large dimensions and complex distributions

De Bezenac et al. 2021
https://en.wikipedia.org/wiki/Edmond_de_Belamy Xie et al. 2019 Generating female images from
432 k$ Christies in 2018 artificial smoke male ones
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Generative models

» Objective
» General setup of deep generative models

Learn a generator network gg: R? — R™ that transforms a latent distribution
Z < RYto match a target distribution X’

O Z is usually a simple distribution e.g. Gaussian from which it is easy to
sample,g <n

O This is unlike traditional statistics where an analytic expression for the
distribution is sought

Once trained the generator can be used for:
O Sampling from the latent space:

0O z € R7~Z and then generate synthetic data via gg(.), gg(z) € R"
0 When possible, density estimation pg(x) = [ pg(x|2)pz(2)dz

0 with pg(x|2z) a function of gg

Advanced Deep learning

Generative models intuition

» Let {z%,...,z"},z" € R9 and {x1, ..., x"}, x' € R™, two sets of points
in different spaces

» Provided a sufficiently powerful model g(x), it should be possible to
learn complex deterministic mappings associating the two sets:
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Generative models intuition

» Given distributions on a latent space p,(z), and on the data space
Px (%), it is possible to map p,(z) onto p,(x)?
» ge defines a distribution on the target space p, (g (2)) = po(x)
pg(x) is the generated data distribution, objective: pg (x) = p,(x)
» Data generation: sample z~Z, transform with gg, gg(2)

Generative models intuition

» Data generation: sample z~Z, transform with gg, gg(2)

latent d

generator, gg : RZ —+ R™

» Important issue

» How to compare predicted distribution pg(x) and target distribution
px(x)?
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Course objective

» Introduce three popular families of generative models
Joint requirements
O Learn a generator gg from samples so that distribution gg(Z ) is close to data
distribution X, pg (x) = py(x)
0O This requires measuring the similarity between gg(Z ) and X
0 Different similarities are used for each family
» Three families
O Variational autoencoders
0 ge:RT > RN qg<Kn
0 Trained to maximize a lower bound of the samples’ likelihood
0 Assumption: a density function explains the data
0 Generative Adversarial Networks
0 ge:RT >R q<Kn
0 Can approximate any distribution (no density assumption)

0 Similarity between generated and target distribution is measured via a
discriminator or transport cost in the data space

O Diffusion models
0 gg:RY = R™, q K n is an iterative process based on a Markov chain
0 Assumption: a density function explains the data
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Variational Auto-Encoders

After Kingma D.,Welling M., Auto-EncodingVariational Bayes,
ICLR 2014

Plus some blogs — see the references




Prerequisite KL divergence

» Kullback Leibler divergence
» Measure of the difference between two distributions p and g
» Continuous variables

D (@Mla®) = J, (log%)p(y)dy

» Discrete variables

D (PWNIa®) = Zi (ogZ2p(yy)

» Property

» Dr(pMlla(y)) =0
» D (pWIlg(y) =01iffp=gq

_ ) a»| _
D @A) = —Epey) [log @] 2 —logEp(y) [@] =0
O the first inequality is obtained via Jensen inequality:

0 For a convex function f, f(E[x]) < E[f(x)],and —logx is a convex function

» note: Dg; is asymmetric, symmetric versions exist, e.g. Jensen-Shannon
divergence
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Preliminaries — Variational methods

» Generative latent variable model

» Let us suppose available a joint model on the observed and latent variables
pe (x,2) g

—0

» The observations x are generated by the following process
» Sample from z ~py(2) - pg(2) is the prior
» generate pg(x|z) - pg(x|z) is the likelihood

» Training objective
» We want to optimize the likelihood of the observed data
p(x) = [p(x|2)p(2)dz - p(x)is called the evidence
Computing the integral requires evaluating over all the configurations of latent variables,
This is often intractable

In order to narrow the sampling space, one may use importance sampling, i.e. sampling
important z instead of sampling blindly from the prior

Let us introduce a sampling function g4, (z|x)
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VAEs - Intuition
» Intuitively, z might correspond to the factors conditioning the
generation of the data

MNIST: Frey Face dataset:
22
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Generative models intuition

» What we want: organize the latent space according to some
characteristics of the observations (images)

An Oversimplified Example of a Cat/Dog Image Latent Space
o 7
hd .
time of day of the . .
image .
‘ /u
D « °
ight t . ]
night time . P
—

More dog-like

daytime

More catke

o dogie veraus catike an image i Fig.: https://ml.berkeley.edu/blog/posts/vg-vae/

» See also the demos @

» https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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VAE
Loss criterion —summary

» The log likelihood for data point x can be decomposed as

» logpe (x) = Di1(q¢ (z|2)11pe (2|%)) + VL,(6, $; x)
» with
» V(0,95 x) = —Dgp (4 (210)11p(2)) + Eqy(z1x)[log po (x]2)]
» Why is it useful?
» Dgi(-|.) = 0,then V, (0, $; x) is a lower bound of log pg (x)
» in order to maximize logpy (x), we will maximize V; (6, ¢; x)
» V.(60,¢; x) is called the ELBO: Evidence Lower Bound
» With an appropriate choice of g4 (z|x) this is amenable to a computationable form
» q¢(z|x) approximates the intractable posterior pg(z|x)
» This method is called variational inference

In general inference denotes the computations of hidden variables given observed ones (e.g.
infering the class of an object)

» Note

» Because each representation z is associated to a unique x, the loss likelihood can be
decomposed for each point — this is what we do here

» The global log likelihood is then the summation of these individual losses
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VAE
Loss criterion — summary

» Variational lower bound:
» V1.(6, ;%) = —Di1(q¢ (2|X)|Ip(2)) + Eqy(z1x) [l0g Po (x]2)]
» Remarks
Eq¢(z|x) [log pg(x|2z)] is a reconstruction term

O Measures how well the datum x can be reconstructed from latent
representation z

Dy1 (a4 (z]x)|Ip(2)) is a regularization term:

0 Forces the learned distribution g4 (z|x) to stay close to the prior p(z)
0 Otherwise a trivial solution would be to learn a Dirac distribution for

q¢(z]x)

O We want the z to be close in the latent space for similar xs

0 p(2) has usually a simple form e.g. V'(0, 1), then g4 (z]x) is also forced to
remain simple
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VAE details
Derivation of the loss function

» logpg (x) = Dk (qe(2|X)||Pe(z|X)) + V(8 d;X)
Proof

»

»

»

17

logpe (x) = J, (logp(x))q(z|x) dz (J, aGzlx)dz=1)

logpg(x) = [, (log
logpe(x) = [, (log

logpg(x) = J, (log

p(x.2)
i) 1(z1x) dz

p(x,z) q(z|x)
a0 paie) 11X) 42

pCe) atzlx)
s 110 dz + [, (log- =" 0q(z]x) dz

logpg (x) = Eq(z1x)[log p(x, 2) — log q(z]x)] + D1 (q(z]x)Ip(z]x))

logpg(x) =V(8, §; x) + D1, (94 (2|%)|Ipg (2|x))

VL (9' qb; X)

with

= Eq(z1x)[log pa(x,2) — logqy(z|x)]

Maximizing log pg (x) is equivalent to maximizing V; (6, ¢; x) (and minimizing
D1 (q¢ (z]X)1Ipe (z1x))
V1 (0, ¢; x) is called an Evidence Lower Bound (ELBO)
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VAE details
Derivation of the loss function

» Vi(6,¢;x) = —Di1(q4(z1X)|IP(2)) + Eq 4 z1x)[log Po(x]2)]
Proof:
» Vi(6, ;%) = Eqz1x) [logpe (x, 2) — log q (z]x)]
» Vi(6, ;%) = Eq 21 [logpe (x]2) + logpg(2) — log gy (z]x)]
» V1.(6, ;%) = —Dk1(q¢ (z10)[|pe (2)) + Eq,y(z1x) [LogPe (x]2)]
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VAE
Loss criterion —summary

» Variational lower bound:
» V,(6,¢;x) = —DKL(CI¢(Z|x)||P(Z)) + Eq¢(z|x)[logp9(xlz)]

» This form provides a link with a NN implementation

The generative pg(x|z) and inference g4 (z|x) modules are implemented by
NNs

They will be trained to maximize the reconstruction error for each (z, x):
Eq4 @10 [l0gpg(x]2)] term

The inference module g4 (z|x) will be constrained to remain close to the
prior p(z): —Dk1,(q¢ (2|x)|Ipe(2)) = 0
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VAE
Loss - summary

» Loss function in the NN model

Regularization loss Reconstruction loss
—KL(q¢ (z10)|Ipe (2)) Eq, 10 [logpe(x|2)]
x g(x) = q¢(zlx) z f(2) =pe(x|2) x

Decoder - NN [--=>

; —>{ Encoder - NN [==%>

» Training performed via Stochastic gradient

» This requires an analytical expression for the loss functions and for gradient
computations
===>  Sampling
—>  deterministic

20 Advanced Deep learning
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VAE- reparametrization trick

» Training with stochastic units: reparametrization trick
» Not possible to propagate the gradient through stochastic units (the zs
and xs are generated via sampling)

» Solution
Parametrize z as a deterministic transformation of a random variable €: z =
J¢ (x, €) with e~p(€) independent of ¢, e.g. e~N(0,1)
Example
O If z~N (u, 0), it can be reparameterized by z = p + 0 ®¢€, with e~N'(0,1),

with © pointwise multiplication (u, o are vectors here)

O For the NN implementation we have: z = pu,(x) + 0,(x)Qe¢,
This will allow the derivatives to « pass » through the z

O With this expression, one may compute the gradients of the ELBO with to
the NN parameters of u,(x) and o,(x)

O For the derivative, the sampling operation is regarded as a deterministic
operation with an extra input €,, whose distribution does not involve
variables needed in the derivation
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VAE - reparametrization trick

» Reparametrization (fig. from D. Kingma)

;’M_'_\, ). 2NN DNl Dewder}

Sample = from N

Encoder Encoder Sample ¢ from .\
@) ()
= X |

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
29 only to the right network.

D e e s
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VAE
Exemple: Gaussian priors and posteriors

» Special case: gaussian priors and posteriors

» Hyp:
» p(2) =N(0,D)
» po(x|z) = N(u(2),0(2)),0(z) diagonal matrix, x € RP
¥ q¢(zlx) = N (u(x), o(x)), o(x) diagonal matrix, z € R’

23 Advanced Deep learning

VAE
Exemple: Gaussian priors and posteriors - illustration

» Decoder:

» in the example z is 1 dimensional and x is 2 dimensional, f is a 1 hidden
layer MLP with gaussian output units and tanh hidden units

» full arrows: deterministic me—)y
» dashed arrows: sampling

O
O Gaxz (2)

24 Advanced Deep learning
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VAE
Gaussian priors and posteriors - illustration

» Encoder

» in the example z is 1 dimensional and x is 2 dimensional, g is a 1 hidden
layer MLP with gaussian output units and tanh hidden units

» full arrows: deterministic sl

» dashed arrows: sampling

-
-
-
-
-
-
-
i
-
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VAE
Gaussian priors and posteriors

» Putting it all together

26 Advanced Deep learning
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VAE
Gaussian priors and posteriors

» Additional illustration

Input +------ooooooe e Ideally they are identical. ~ -----------=-=--------~ Reco.nStructEd
: input
X~X
Probabilistic Encoder
g¢(z(x)
Mean Sampled
K latent vector
Probabilistic
x > ;—. Decoder xf
po(x|z)
o
Std. dev
_ An compressed low dimensional
z=ptoQe representation of the input.
e~ N(0,I)
https://lilianweng.github.io/posts/2018-08-12-vae/
27 Advanced Deep learning

VAE details
for Gaussian priors and posteriors
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VAE — instanciation example

Gaussian priors and posteriors

»  Special case: gaussian priors and posteriors

» Hyp:
» p@=N(0OD
»  pe(x|z) = N (u(z),0(2)), o(2)diagonal matrix, x € RP
» qe(zlx) = N (u(x), 0(x)), 0(x) diagonal matrix, z € R/

»  Variational lower bound

» Vi(0,¢;%) = =Dip(qq (210)11p(2)) + Eq,yz1x) [log Po (x]2)]
» I this case, Dk, (¢ (2|x)||p(2)) has an analytic expression (see next slide)

D @p(@llp(@) = 22,1 + log((az,.)z) (1) = (@)

» Eq¢(Z\X) [logpg(x|2)] is estimated using Monte Carlo sampling

Eqyziy[108Po (x12)] = 7 Bty log(pe (x|2®)

1 Cej=tax; (20))?
log(pg (x|2©) = ~(Z2L, log (o2, () + ~——L—)
20;%]-(2(’))

i.e. L samples with z® = 9o (x, e(l))
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VAE - instanciation example
Gaussian priors and posteriors (demos on next slides)

12 € R =Dy (g (10l Ip(@) = 15,1 +10g ((9)°) = ()" = (9)")
» proof

» Deap@lp@) = g2 log 22 dz

» Consider the 1 dimensional case
v [ qp(@)logp(2)dz = [ N'(z; p,0) log V' (z;0,1)dz

1 1
v Jqp(2)logp(2)dz = — Elog(Zn’) -3 (u? + 0?)
Property of 2" order moment of a Gaussian

v [a¢(2)logqy(2)dz = [ N'(z; u,0) log N (z; p, 0)dz
v [ qp(2)logqy(z)dz = —%log(er) —%(1 +loga?)

» Since both ddps are diagonal, extension to J dimensions is straightforward,
hence the result
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VAE - instanciation example
Gaussian priors and posteriors — demos for the 1 dimensional case
» Remember g4 (z]x) = NV (u(x), o(x))
» Then [ qy(2)logp(2)dz = [ N (z; u,0) log N'(2; 0,1)dz
> = Eqe[log V'(z;0,1)]
1 2
= B, llog(a=exp (— 5 )]
1 z?
= Eqq, |—5log2m — 7]
1 1
= —>log2m — S Eq,, [2%]
» What is the value of E,[2z?]?
b Equl(z— w)?] = o?
» E%[ZZ] —2Eq,[zu] + u? =o?
Eq,lzu] = p?
» Eq,[2%] = pu? +0?

v

Then [ q4(2) log p(z)dz = — 3 log 2m — 5 (u? + 0?)

31 Advanced Deep learning

VAE - instanciation example
Gaussian priors and posteriors — demos for the 1 dimensional case

» [ q¢(2)logqy(2)dz = [ N'(z; p,0) log NV (z; u, 0)dz
1 52
= Eqq [log(5= exp <— (22:2) ))]
(Z_ll)z]

202

1
= —Elog2n—loga—Eq®[

_1 _1 2_1
2log27r 2logcf >

= —%1og2n—%(log02 +1)

32 Advanced Deep learning
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VAE - instanciation example
Gaussian priors and posteriors

» Loss
» Regularization term

b =D (apIDlIp() = 22,1 +10g((5)7) - (1) = (5)")
» Reproduction term
1 :(2))?
» og(p(x|2) = 2.4 3108(0 () + “L LIS
» Training
» Mini batch or pure stochastic
Repeat
0O x<«— random point or minibatch
O € « sample from p(€) for each x
0 60— VVy,(6,9;x,9(€, ¢))
0 o= VgV (6,9;x,9(€, ¢))
Until convergence
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Learning discrete distributions: VQ-VAE (highlights)

» So far we considered continuous latent distributions

» There are several instances were discrete distributions are more
appropriate
» Text data, objects in images (color, size, orientation,...), etc

» There are several algorithms, e.g. transformers designed to work with
discrete data

» Teaser: Dall-e — makes use of a discrete VAE together with transformers
in order to generate diverse images

https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/

https://gpt3demo.com/apps/openai-dall-e

https://www.craiyon.com/ (mini version of Dall-e)

34 Advanced Deep learning
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Learning discrete distributions: VQ-VAE

» What is a discrete latent distribution?

Encoder Decoder

|56|73‘67|23‘81|19|...

discrete codes
to image

image to ‘
discrete codes

|£|73|67‘23‘81‘19|...

Fig: https://ml.berkeley.edu/blog/posts/vg-vae/
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Learning discrete distributions: VQ-VAE

» VQ-VAE modifies the vanilla VAE by adding a discrete codebook of
vectors to the VAE - It is used to quantize the VAE bottleneck

» General scheme:VQ-VAE paper - https://arxiv.org/pdf/1711.00937 .pdf
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Learning discrete distributions: VQ-VAE

4

Loss function
» L=|lx—Dec (zq(x)) 1241 59 (26 () = 24 () I + 1l o (x) — sg (zq(x)) 112
»  With sg(z) stop gradient, i.e. do not back-propagate through z
Il x — Dec (zq (x)) I2: train decoder and encoder
Il sg (ze(x)) -2 (x) II: train the codebook e = 24(%)
Il ze(x) — sg (zq (X)) I2: train encoder, forces z,(x) to stay close to e = 24(%)

0O This is because the codebook does not train as fast as the encoder and the decoder
O Prevents the encoder values to diverge

Gradients

» Since it is not possible to compute the gradient through the VQ component, it is proposed to simply
copy the gradient w.r.t. z; to z,

b Vaoll ¥ = Dec (24(0) 1= Vol x = Dec (24(x)) I

»  This is called straight-through gradient

Note

»  This is an incomplete description, the model requires additional steps

» Dall-e makes use of a slightly different discrete VAE (called dVAE)

37 Advanced Deep learning

» References

» Nice blogs explaining VAEs
https:/lilianweng.github.io/posts/2018-08-12-vae/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://www.fenghz.xyz/vector-quantization-based-generative-model/

Luo, C. (2022). Understanding Diffusion Models: A Unified Perspective.
http://arxiv.org/abs/2208.1 1970 - positions hierarchical VAEs w.r.t diffusion
models

» Blogs introducing variational inference
https://blog.evjang.com/20 | 6/08/variational-bayes.html

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-
variational-inference-25a8aa9bce29

» Papers

Kingma, D. P, & Welling, M. (2014). Auto-Encoding Variational Bayes. ICLR
(2014), MI, 1-14. htep://arxiv.org/abs/1312.61 14

38 Advanced Deep learning
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Generative Adversial Networks - GANs

lan J. Goodfellow, et al. 2014

There has been a strong hype for GANs for several years - O(10000) GAN papers on
Arxiv

GANs

» Generative latent variable model 0

0—0

» Given Samples x1, ..., xV € R™, with x~X, latent space distribution z~Z e.g z~N(0, 1),
use a NN to learn a possibly complex mapping gg: RY = R™ such that:

z Px(96(2)) = P (x) = px(x) x
go(2)
----- > NN —

» Different solutions for measuring the similarity between pg(x) and p,(x)
» In this course: binary classification
» Note:
» Once trained, sample from z directly generates the samples gg(z)
» Different from VAEs and Flows where the NN gg(.) generate distribution parameters

40 Advanced Deep learning
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GANs — Adversarial training as binary classification

» Principle
» A generative network generates data after sampling from a latent
distribution
» A discriminant network tells if the data comes from the generative
network or from real samples

The discriminator will be used to measure the distance between the distributions
Pg(x) and py(x)
» The two networks are trained together

The generative network tries to fool the discriminator, while the discriminator
tries to distinguish between true and artificially generated data

The problem is formulated as a MinMax game

The Discriminator will force the Generator to be « clever » and learn the data
distribution

» Note
» No hypothesis on the existence of a density function
i.e. no density estimate (Flows), no lower bound (VAEs)

41 Advanced Deep learning

GANs — Adversarial training as binary classification
Intuition - Training

» Discriminator is presented alternatively with true (x) and fake
(X = go(2))data

O Real data
X
x~Dx () 5
5 Discriminator 1if
Network — 0 If{
if X
Latent Dy (x)
variable 1)
z~p,(2) Ps £
) Generator Network
. — —> S
é%’» 9o(2)
: Generated
data
Dy and g are typically
MLPs/Deep CNNs/...
42 Advanced Deep learning
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GAN — Adversarial training as binary classification
Intuition - Training

» Algorithm alternates between optimizing Dy, (separate true and
generated data) and gg (generate data as close as possible to true
examples) — Once trained, G should be able to generate data witha
distribution close to the ground truth

.
2

5 Train Dy, 5 //' Train gg

Train D¢ // g Traingg

/' _—

> >
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GANSs - Adversarial training as binary classification
Loss function (Goodfellow et al. 2014)

» x~py(x) distribution over data x
» z~p,(z) prior on z, usually a simple distribution (e.g. Normal distribution)
» Loss

» min max L(Dg,98) = Ex~p,(x)[l0gDy ()] + Ezep,(z)[log (1 — Dy (g0 (Z)))]
Jo: R1 = R™ mapping from the latent (z) space to the data (x) space

Dg: R™ - [0,1] probability that x comes from the data rather than from the
generator gy

If gg is fixed, L(Dg, gg) is 2 classical binary cross entropy for Dy, distinguishing
real and fake examples

» Note:
Training is equivalent to find D+, gg+ such that
O Dy € arg mdz}xL(Dd,,gg*) and gy € arg mgin L(Dg*, go)
0 Saddle point problem
O instability
» Practical training algorithm
Alternates optimizing (maximizing) w.r.t. Dy optimizing (minimizing) w.r.t. ge

44 Advanced Deep learning
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Adversarial training as binary classification
Training GANs

» Training alternates optimization (SGD) on Dy and gg
» In the alternating scheme, gg usually requires more steps than Dy +
different batch sizes
» It is known to be highly unstable with two pathological problems
» Oscillation: no convergence

» Mode collapse: g collapses on a few modes only of the target
distribution (produces the same few patterns for all z samplings)

» Low dimensional supports (Arjovsky 2017): p,and pg may lie on low
dimensional manifold that do not intersect.

It is then easy to find a discriminator, without py close to p,
» Lots of heuristics, lots of theory, but

Behavior is still largely unexplained, best practice is based on heuristics

45 Advanced Deep learning

GAN- Adversarial training as binary classification
Equilibrium analysis (Goodfellow et al. 2014)

» The seminal GAN paper provides an analysis of the solution that could be
obtained at equilibrium

» Let us define

b LDy, 96) = Expy([10gDg (9] + Expyiyllog (1= Dy ()]

0 with p,(x) the true data distribution and pg (x) the distribution of generated data

0 Note that this is equivalent to the L(D, G) definition on the slide before
» If gg and Dy have sufficient capacity
» Computing argmin g* = argmin m(glx L(D¢,g9)
0 0
» Is equivalent to compute

0 g* = argmingD;s(py, pg) With Djs(,) the Jenson-Shannon dissimilarity measure
between distributions

O The loss function of a GAN quantifies the similarity between the real sample

distribution and the generative data distribution by JSD when the discriminator is

optimal
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GAN- Adversarial training as binary classification
Equilibrium analysis (Goodfellow et al. 2014)

» If the optimum is reached

0 Dy (x) = %for all x - Equilibrium
» In practice equilibrium is never reached
» Note

Maximize log (D¢ (g0 (z))) instead of minimizing log (1 — Dy (g0 (z)))
provides stronger gradients and is used in practice, i.e.log(l - D¢(g9(z)))

is replaced by —log (D¢ (ge (z)))
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GAN equilibrium analysis (Goodfellow et al. 2014)
Prerequisite KL divergence
» Kullback Leibler divergence

» Measure of the difference between two distributions p and g
» Continuous variables

DI = [, (ogZp()dy

» Discrete variables

D (PWIIa®) = Zi (ogZp(yy)

» Property

» D (pWIlg(») =0
» Drk(pWllg(y)) =0iffp=gq
W) 5 g

_ a)
D @WI|4()) = ~Epy) [log@ > —logEp(y) [p(y) >
O where the first inequality is obtained via Jensen inequality

» note: Dg; is asymmetric, symmetric versions exist, e.g. Jensen-Shannon
divergence
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GAN equilibrium analysis (Goodfellow et al. 2014) - proof

» For a given generator g, the optimal discriminator is
> D* x) = px(x)

() px(x)+pg (x)
Let f(y) = alog(y) + blog(1l—y),witha,b,y >0
o _a_ b df _
day y 1-y'dy
Maxp L(D,G) = Ex_p, () [10gD ()] + Ex-p, (x)[log(1 — D(x))] is then
obtained for:

* — pX(x)
0D () = e @

a ..
0<:>y=mandth|5|samax
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GAN equilibrium analysis (Goodfellow et al. 2014) - proof
» LetC(g) = mng(g,D) = L(g,D")
» It si easily verified that:

> C(g) — _10g4 + KL (px(x); PX(X);'PG(X)) + KL (p@(x); PX(X);pG(X))
» Since KL(p;q) = 0and KL(p;q) =0iffp =gq
C(g) is minimum for pg = pyx with D*(x) = %
/lkt equilit;)l;i;lm, GlAN trair;ifq optimises Jenson-Shannon Divergence, JSD (p; q) =
EKL (p; T) + EKL (q;7g> between pg and py
» Summary

» The loss function of a GAN quantifies the similarity between the real sample
distribution and the generative data distribution by |SD when the
discriminator is optimal

» Note
px(x) _ p(xly=1) _ , py=1lx) _ , D*'(x) . _ p(y=0)
po(x)  p(xly=0) p(y=0lx) " 1-D*(x) with ke = p(y=1)

» The discriminator is used to implicitely measure the discrepancy between
the distributions
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Training GANs

» Training alternates optimization on D and G
» In the alternating scheme, G usually requires more steps than D

» It is known to be highly unstable with two pathological problems
» Oscillation: no convergence

» Mode collapse: G collapses on a few modes only of the distribution (produces the
same few patterns for all z samplings)

» Low dimensional supports (Arjovsky 2017): pga¢qand p, may lie on low dimensional
manifold that do not intersect. It is then easy to find a discriminator; without training
pg to be close to pyqrqa

» Very large number of papers offering tentative solutions to these problems
e.g. recent developments concerning Wasserstein GANs (Arjovsky 2017)

» This remain difficult and heuristic although various explanation heve been developped
(e.g. stability of the generator — related to optimal transport or dynamics of the
network — see course on ODE)

» Evaluation
»  What could we evaluate?
» No natural criterion
Very often beauty of the generated patterns!
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Objective functions

» A large number of alternative objective functions have been
proposed, we will present two examples
» Least Square GANs
» Wasserstein GANs
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Objective functions — Least Square GANS (Mao et al. 2017)

» If a generated sample is well classified but far from the real data
distribution, there is no reason for the generator to be updated

» LS-GAN replaces the cross entropy loss with a LS loss which
penalizes generated examples by moving them close to the real data
distribution.

» The objective becomes
» L(D) = Ex~px(x)[(D(x) - b)z] + Ez~pz(z)[(D(g(Z)) - a)Z]
b L) = Eropyn [(P(9@) )]

» Where a, b are constants respectively associated to generated and real
data and c is a value that g wants D to believe for the generated data.

» They use for examplea =0,b=c=1
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Objective functions — Wasserstein GANs (Arjovski et al. 2017)

» Arjovski advocates that Dy, (or Djs) might not be appropriate
» They suggest using the Wasserstein distance between the real and
generated distributions (also known as Earth Moving Distance or EMD)
» Intuitively, this is the minimum mass displacement to transform one
distribution to the other

» Wassertein distance is defined as
» W(px,pe) = yen%g;pg) E (e xry~y [l X — X" 1]

where I1(py, pg) is the set of distributions over X2, with X © R™ the space of
data, whose marginals are respectively py (x) and pg(x), Il x — x' || is the
Euclidean norm.

» Intuitively,

W (,) is the minimum amount of work required to transform py(x) to pg(x) —
see next slide

it makes sense to learn a generator g minimizing this metric
0 g* = argmingW (px, pe)
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Wasserstein GANs (Arjovski et al. 2017)

» Earth Mover distance illustration

» 2 distributions (pink (1) and blue (1))
» An elementary rectangle weights %4

» The figure illustrates the computation of W (u, u"), the Wasserstein
distance between pink and blue: this is the earth mover distance to
transport pink on blue.This is denoted as ' = #pu, y' is the push

forward of u

1 1 1
H 21“‘3} + Zl-“' + 2

Wi, u') =4 x

55
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Fig. from F. Fleuret 2018

Objective functions — Wasserstein GANs (Arjovski et al. 2017)

» Let x and y respectively denote the variables from the source and
the target distributions

» px(x) = fy y(x,y)dy is the amount of mass to move from x,

pe(y) = fy y(x,y)dx is the amount of mass to move to y

» Transport is defined as the amount of mass multiplied by the
distance it moves, then the transport cost is: y(x,y).ll x — y Il and
inf  E(y o [l x —x" 1]

the minimum transport cost is

56

YE(px,pg)
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Wasserstein GANs (Arjovski et al. 2017)
Optimal Transport interpretation

T g Fig. Santambrogio, 2015

» Left: standard ways to compute distance between functions (point distance)
» Right: Optimal Transport way

» Seek the best map T which transports the blue distribution on the red one.

» The smaller T, the closest f and g.

» Wasserstein distance is definedas W(f,g) = T|Ti¢?ff fx [T (x) — x|dx
=9
»  Which can be translated in:
» “You look at all the ways to transport f on g with a map T (denoted T#f = g ).
» For a given such transport map T, you look at the total distance you traveled on the
x axis , that is [ |T(x) — x|dx.

» Among all these transport maps, you look at the one which achieves the optimal (i.e.
minimal) distance traveled. This minimal distance is called the Wasserstein distance
between f and g.”
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Wasserstein GANs (Arjovsky et al. 2017)

» The W(,) definition does not provide an operational way for learning G

» Arjovsky uses a duality theorem from Kantorovitch and Rubinstein, stating the
following result:

4 W(px, p@) = sup Ex~px|f(x)| _Ex~p5|f(x)|

s
lIflL =1
» Where f: X = R is 1-Lipchitz,i.e. [f(x) = f()| <1llx—yILVx,y €X
ie. |l f lI,< 1 denotes the 1-Lipchitz functions
» Implementation
» Using this result, one can look for a generator g and a critic f;,:
g = argmingW (px, po)

g* = argming ﬁ}'l”pEx~px|fw(x)| - Ex~pg |fw(x)|
L

g = argming ﬁ}lanx~px|fw(x)| - Ez~pz|fw(G(Z))|
L

fwis implemented via a NN with parameters w;, it is called a critic because it does not classify
but scores its inputs

In the original WGAN,f,,is made 1-Lipchitz by clipping the weights (Arjovski et al. 2017)
O Better solutions were developed later
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Wasserstein GANs (Arjovski et al. 2017)

» Algorithm

» Alternate
Optimize f,,
Optimize gg

From Arjovski 2017

59

Algorithm 1 WGAN, our proposed algorithm. All exper-
iments in the paper used the default values a = 0.00005,
¢ = 0.01, m = 64, neghic = 5.

Require: : a. the learning rate. ¢, the clipping parameter.
m, the batch size. 1.c. the number of iterations of the
critic per generator iteration.

Require: : wy, initial critic parameters. fy, initial genera-
tor’s parameters.

1: while ¢ has not converged do
2 fort=0.... Neritic dO
3 Sample {xV}7 | ~ P, a batch from the real data.
4 Sample {zV}™ | ~ p(z) a batch of priors.
5: Gw + Vo[ T2, fu(a®)
— o iy fulge(z))]
6: w 4 w + o - RMSProp(w. g,,)
T w + clip(w, —e. c)
52 end for

9:  Sample {z(V}7, ~ p(2) a batch of prior samples.
10: gy + *Vn,lj Z:i,f"‘(,‘m(:“)])

11: 0« 0 —a-RMSProp(f. gs)
12: end while

Advanced Deep learning

GANs examples

Deep Convolutional GANs (Radford 2015) - Image generation

» LSUN bedrooms dataset - over 3 million training examples

Figure 3. Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise lextures across multiple samples such as the base boards of some of

the beds.

Fig. Radford 2015
60
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Gan example
MULTI-VIEW DATA GENERATION WITHOUT VIEW n ﬂ
SUPERVISION (Chen 2018 - Sorbonne)

» Objective
» Generate images by disantangling content and view
Eg. Content 1 person,View: position, illumination, etc
» 2 latent spaces: view and content
Generate image pairs: same item with 2 different views
Learn to discriminate between generated and real pairs

Fig. Chen 2014
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Conditional GANs (Mirza 2014)

» The initial GAN models distributions by sampling from the latent Z
space

» Many applications require to condition the generation on some data
» e.g.:text generation from images, in-painting, super-resolution, etc

» (Mirza 2014) proposed a simple extension of the original GAN
formulation to a conditional setting:

» Both the generator and the discriminator are conditioned on variable y
— corresponding to the conditioning data

minmax L(D, 9) = Ex-p.(x)[10gD(x1y)] + Expizllog (1 = D(g1y)))]
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Conditional GANs (Mirza 2014)

minmax L(D, 9) = Ex-p.,(x)[10gD (1)) + E-piz llog (1 = D9 21»)))]

63
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Fig. (Mirza 2014)
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Conditional GANs example
Generating images from text (Reed 2016)

» Objective

» Generate images from text caption

» Model: GAN conditioned on text input

» Compare different GAN variants on image generation

» Image size 64x64

64

. : 5 1 .
\ [ ™ 1 . P«

st o WL mR A B IS _
Figure 4. Zeto-shot generated flower images using GAN, GAN-CLS, GAN-INT and GAN-INT-CLS. All variants generated plausible

images. Although some shapes of test categories were not seen during training (e.g. columns 3 and 4), the color information is preserved.
AuvaliuGu LSS Isaliny
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Conditional GANs example — Pix2Pix
Image translation with cGANs (Isola 2016)

» Objective
» Learn to « translate » images for a variety of tasks using a common
framework
i.e. no task specific loss, but only adversarial training + conditioning
» Tasks: semantic labels -> photos, edges -> photos, (inpainting) photo and
missing pixels -> photos, etc

Edges to Proto Input

65 Advanced Deep learning

Conditional GANs example — Pix2Pix
Image translation with cGANs (Isola 2016)

» Loss function
» Conditional GAN
» min max L(D,g) = Exp,ollogD(x,y)] + Ez-p(z) [log(l —D(g(z,y), y))]
g y~p(¥) y~p(¥)

» Note: the formulation is slightly different from the conditional GAN model of (Mirza
2014): it makes explicit the sampling on y , but this is the same loss.

» This loss alone does not insure a correspondance between the conditioning
variable y and the input data x

» They add a loss term, its role is to keep the generated data g(z,y) « close » to the
conditioning variable y

» La(g) = Exyllx— g 2l
Where ||. || is the L! norm

» Final loss
» min(mDaxL(D,g) + AL;1(9))
g

66 Advanced Deep learning

33



Conditional GANs example — Pix2Pix
Image translation with cGANs — Examples (Isola 2016)

} lnr_vul Ground truth Output Ground truth Output
¥ \ f —
\'.:"". i
p ﬁ“ i ‘: V %
N ~ @ @

Figure 15: Example results of our method on automatically detected edges—handbags. compared to ground truth.

Fig. (Isola 2016)
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Conditional GANs example — Pix2Pix
Image translation with cGANs - Examples - (Isola 2016)

Ground truth Output Input Ground truth Output
4
)
.
I
1 u‘-ﬂ‘i‘l
-
"
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na
Figure 13: Example results of our method on facades labels—photo, compared to ground truth.
Fig. (Isola 2016)
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Conditional GANs example — Pix2Pix
Image translation with cGANs — Examples - (Isola 2016)

» Failure examples

Day Night Labels

Edges Handbag Sketch Sketch

Figure 20: Example failure cases. Each pair of images shows input on the left and output on the right. These examples are selected as some
of the worst results on our tasks. Common failures include artifacts in regions where the input image is sparse, and difficulty in handling
unusual inputs. Please see https://phillipi.github.io/pix2pix/ for more comprehensive results.

Fig. (Isola 2016)
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Cycle GANs (Zhu 2017)

» Objective
» Learn to « translate » images without aligned corpora

2 corpora available with input and output samples, but no pair alignment between
images

» Given two unaligned corpora, a conditional GAN can learn a
correspondance between the two distributions (by sampling the two
distributions), however this does not guaranty a correspondance between
input and output

» Approach
» (Zhu 2017) proposed to add a « consistency » constraint similar to back
translation in language
This idea has been already used for vision tasks in different contexts
Learn two generative mappings
0 g:X —>Yandf:Y - X such that:
0 feg) =xandge f(y) =y
and two discriminant functions Dy and Dy

70 Advanced Deep learning
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Cycle GANs (Zhu 2017)

14

o Dy Dx .
by o O E A
; " )l. X ol Y X Y| cvcio-cousistancy

(a) () (e)

Figure 3: (a) Our model contains two mapping functions G : X — ¥ and F : ¥ — X, and associated adversarial discriminators Dy and Dy . Dy
encourages G 1o translate X into outputs indistinguishable from domain Y, and vice versa for Dy, F, and X. To further regularize the mappings, we
introduce two “cycle consistency losses™ that capture the intuition that if we translate from one domain to the other and back again we should arrive where we
started: (b) forward cycle-consistency loss: * — G(x) = F(G(x)) = x. and (c) backward cycle-consistency loss: y — F(y) = G(F(y)) =y

Fig (Zhu 2017)
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Cycle GANs (Zhu 2017)

» Training

» The loss combines two conditional GAN losses (g, Dy) and (f, Dy) and
a cycle consistency loss

» Leyere(f,9) = pr(x)[”f(g(x)) - x)||1] + Epdam(y)[||9(f(Y)) -
21N
» L(g, DY'f' DX) = L(g' DY) + L(f' DX) + Lcycle(f: g)

» Note: they replaced the usual L(g, Dy) and L(f, Dyx) term by a mean
square error term, e.g.:

L(g, Dy) = Epy)[(Dy ) = 1?] + Ep () [Dy (G ()]
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Cycle GANs (Zhu 2017)

» Examples
Input Output Input Output __ Output Input Output

horse — zebra

. FSa _ g
[— f‘*.qf_”“ ey

'
m -
]
winfer Yosenule — summer Yosenute

orange — apple

apple — orange

Figure 7: Results on several translation problems. These images are relatively successful results - please see our website for more comprehensive results
Ukiyo-e

Input Monet Van Gogh Cezanne

» Failures

Fig (Zhu 2017)

apple — orange

llmse —~zebra. :
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(Karras et al. 2019) — Style GAN

» (Karras et al.2019) — Style GAN
» Noyte: now (2020) StyleGANS3: https://nvlabs.github.io/stylegan3/

» https://nvlabs.github.io/stylegan2/versions.html

destination

o
[
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S
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Style Gan
Preliminary: Adaptive Instance Normalization (AdalN)

» Recall batch normalization

» BN(x) =y (%&) + B, here all the quantities are vectors (or tensors)

of the appropriate size
» The mean for channel c is computed as:
() = e SN TR T X
With N the number of images in the batch, H the height and W the width, i.e.
x is of shape [N, C, H, W]
y and [ are trainable parameters that are different for each channel

BN averages over all the images in the batch
O i.e. all the images in the batch are averaged around a single « style »
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Style Gan
Preliminary: Adaptive Instance Normalization (AdalN)

» Adaptive Instance Normalization (Huang 2017)
» Idea:inject through the linear transformation defined by y, § the feature
statistics from another image (e.g. its style)
» Let x (content) and y (style) two images or image transformations

AdalN(x,y) = o(y) (x_” (X)) +u)

a(x)

This simply replaces the the channel-wise statistics of x by those of y
AdalN can normalize the style of each individual sample to a target style

. ' % (Huang 2017)
&

Style Transfer Network

Figure 2. An overview of our style transfer algorithm. We use the
first few layers of a fixed VGG-19 network to encode the content
and style images. An AdalN layer is used to perform style transfer
in the feature space. A decoder is leamed to invert the AdalN

output to the image spaces. We use the same VGG encoder to
compute a content loss £ (Equ. 12) and a style loss £, (Equ. 13).
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Style Gan
Preliminary: Adaptive Instance Normalization (AdalN)

» (Huang 2017) examples

Style Content Ours
77 Advanced Deep learning
* A mapping network
Architecture of Style Gan generates a
Karras et al. 2019 representation vector w
Latent zZ Latent Z Noi i i
atent z © atent z C o Affine tran_sformatlons
[Nomie) (A) are trained to
Mapping compute 4 and
Fully-connected network f vectors for different
e ] resolution of the imagg
Conv 3x3 [ fc ] generator from w — this
FC induces different styles
4x4 FC for each resolution
FC
| + Noise input are single
[ Conv3x3 ] [ Fc ] .
: = channel images
consisting of
uncorrelated Gaussian
noise — a single noise
8x8 image is broadcasted
to all the feature maps
(a) Traditional (b) Style-based generator — this induces

_stochastic variations
78 Advanced Deep learning




Architecture of Style Gan

Synthesis
Network B
Latent ! ____ nchannels
Code rA—> axd] o
— 2 c9
' % g2
‘ &
FA—> g w 1512 ]
AdalN_| i
§ " o e v
g AdaiN ot transformation (by its mean and variance) a
- .
™, 2xn . P ~ b=
16%16 Ysi Scale and bias
¥ N Yb,i channel
X = p(xi)

AdalN(x;.y) =y, + Yb.is

FA—> 1024x1024 o (xi )

» Affine transformations computed from w

https://towardsdatascience.com/explained-a-style-
based-generator-architecture-for-gans-generating-
79 and-tuning-realistic-6cb2bedf434ed Deep learing

Architecture of Style Gan

Generator
Synthesis network g T\
Random vector [Normaize |
(Latent Code) Mapping @
— network f
e OSSN Training-------3
C @
FC S{AaN]
FC
. C [ Upsample |
% —
] FC_ ProGAN
£ Discriminator
— .
g [
2 t Loss
H N | (e.g. WGAN-GP)
1024x1024
Real Sample
—
. Training---------
Eal —>  Downscaling

p—
——————
» Global architecture of StyleGAN

80 https://towardsdatascience.com/explaii8di3s&tfd Fased-generator-

it 4 £ 45 Latic Lol anfdnd
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GANs
» Making GANs work is usually hard

» All papers are full of technical details, choices (architecture,
optimization, etc.), tricks, not easy to reproduce.

81 Advanced Deep learning
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Diffusion models

» Diffusion models emerged in 2019, gained momentum in 2021
» As in 2023, diffusion models are used in several popular large scale
models for text to image generation
» e.g.Imagen https://imagen.research.google/, stable diffusion
https://stablediffusionweb.com/, Dall-e-2 https://openai.com/dall-e-2/
» Generative modeling tasks

Continuous space models: Image generation, super resolution, image editing,
segmentation; etc.

Discrete space models, e.g. applications to text generation
» Several approaches including
» Discrete time models
Denoising Diffusion Probabilistic Models (DDPMs)
Score based Generative Models (SGM)
» Time continuous models
Score Based Models with Differential Equations (SGMdiffeq)
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Diffusion models

» Diffusion models implement the following idea
» Forward diffusion
Gradually add noise to an input image until one get a fully noisy image
» Reverse denoising
Generate data from the target distribution
Sample from the noise space and reverse the forward process

Forward diffusion process (fixed)

- A0S

Reverse denoising process (generative)

» Forward and reverse processes are used for training Fig. Kreis et al. 2022

» At inference, generation is performed via the reverse process

84 Advanced Deep learning
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Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models - DDPM

» DDPM are based on two Markov chains

» A forward chain that adds noise to data —> Forward process

Hand designed: transforms any data distribution into a simple prior
distribution — here we will use a standard Gaussian for the prior

» A reverse chain that converts noise to data —> Reverse process

The forward chain is reversed by learning transition kernels parameterized
by neural networks

New data are generated by sampling from the simple prior, followed by
ancestral sampling through the reverse Markov chain

86
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Denoising Diffusion Probabilistic Models
Forward (diffusion) process

»
»

Data distribution x,~q(x,)

The forward MC generates a sequence of random variables x4, x,, ..., X7 starting at x,
with transition kernel q(x;|x;_1)

Given sufficient steps, q(x1) will be close to a prior distribution 7(x), e.g. gaussian
distribution with fixed mean and variance

Forward diffusion process (fixed) Fig. Kreis et al. 2022

2 »
Data 4 ) Noise
b
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» (xt;,/l - tht_l;ﬁtl) vt efl,..,T}
yoiexy =+1—Bexeqt \/Ee, with e~N (0, 1)

» [ is the identity matrix, with the same size as image x,, f; € (0,1) is a variance parameter
hand fixed or learned, we consider it hand fixed here.

By is chosen so that f; < - < fir,e.g.T = 2000, 8; = 107%, B; = 1072 with a linear increase
» Other types of kernels (than gaussians) could be used
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Denoising Diffusion Probabilistic Models
Forward (diffusion) process

» The forward diffusion process is then defined as

* X0~9q(Xo),

o q(xq, o, xr]%0) = [TH1 q(xel X)),

* qXelxe-1) =NV (Xti V1- 5txt—1iﬁtl) vte{l,..,T}
* Xy = Jl——ﬁtxt_l + \/Ee with e~N'(0,1)

* B €[0,1] is a variance hyperparameter, ; < --- < fr

88 Advanced Deep learning
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Denoising Diffusion Probabilistic Models
Forward process — Diffusion kernel

» Property: the forward process can be sampled at any time t in closed
form (derivation next slides)

For the gaussian transition kernel
q(xelxg) = N (xs; \/aTtxo, (1 — @;)l) — this is called the diffusion kernel
with @, = 1= B, @ =[5 a5

» This allows us to sample x;~p(x;) using the reparametrization trick:
Sample xy~q(x) and then sample x~q(x;|x,) (this is called ancestral
sampling)
0 x = J@xo + /(1 — @)e, with e~N'(0,1), Ve~U({L, ..., T}
The schedule for B, is defined so that q(xr|xo ) = N (x7;0,1)

Forward diffusion process (fixed)
2 2 > .

Data ] . & Noise

X X X, XT

e L e —

—_
Fig. Kreis et al. 2022
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Denoising Diffusion Probabilistic Models
Forward process - lllustration

» lllustration of the forward diffusion process — discrete trajectories in
the x space

Fig. Ayan Das 2021

b abelx) éq(m\xn 1) ‘

S e S Sl
Samples % ; :
xOqu(xO) H 5 T | Samples
H o ;
. i . xr~q(xr|xo)
X X x’z X3 Xt Xr
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Denoising Difusion Probabilistic Models — forward process
Diffusion kernel q(x¢|x,) - derivations

» Closed form for q(x;:|x,)
¥ q(x; | Xo) = N(xg; V(@ )xo, (1 — @)D with ap = 1 — By, @ =[5 as
X = \[UXe_q + \/1——ate
O Xpoq = /Qp_1Xe—p + me
X = Jar(VA—1 X2 + \/1 — Q¢_1€) +\/1 — €
Xe = @@ % + Jar(1 — ap_1ye +/1 - ae
Xe = A1 xe—p + me *)

Xe = JAxg +4/1— ae

» (*) Sum of two Gaussians

Let x and y two Gaussian random variables with the same dimensionality, p(x) =
N (U, Z) and p(y) = N (iy, Zy), then their sum is also Gaussian: p(x +y) =
N (p + ty 2 +Zy)
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» Other quantities related to the forward process
» Marginal distribution q(x;)
q(xe) = [ q(xclxo)qo(x)dx

» Cannot be written in closed form but can be sampled by ancestral
sampling: sample from qy(x) and then transform by the diffusion kernel

q(x¢|xo)
» Conditional distribution q(x;_1]|x¢)

v

» q(x¢_q1|x¢) is intractable
» Conditional diffusion distribution q(x;_q|x;, Xo)

» q(xt—1]x¢, %) is amenable to a closed form — and will be used for
training the decoder — see later
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Denoising Diffusion Probabilistic Models
Reverse denoising process

» The reverse MC requires the inversion of the Markov chain
» Sample x; from a prior distribution xr~p(x7) = N (x7;0,1)
» lteratively sample x¢~q(x¢_1|x¢)

» In general, q(x;_1|x;) is untractable

» One will learn pg(x;_1|x¢) a parametric approximation of q(x;_1|x;)
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Reverse denoising process

» The true reverse distributions q(x;_1|x;) are complex multimodal
distributions, they are approximated as normal distributions

» The reverse MC is then parameterized by
» A prior distribution p(x7) = N (x7;0,1)
» A learnable transition kernel pg(x;_1|x.) = N (x¢_1; g (x¢, t), 621)

g (x¢, t) is typically implemented via a U-Net, ug (x;, t) is the same size as x;

o# can be learned, but in (Ho et al. 2020) it is set to S,

' " Fig. Kreis et

al. 2022

Reverse denoising process (generative)

- B3I

— e e e

» Reverse factorization: pg (xg, ..., X7) = pg(Xo.r) = p(xr) [1F=1 Po (Xe—1]%r)
We can then generate a data sample x by first sampling a noise vector from a
prior distribution x;~p(x7) and then iteratively sampling from the learnable
transition kernel x;_;~pg (X¢—1|x;) until t = 1 where we get pg(xo|x1)
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Denoising Diffusion Probabilistic Models
Training

» Training amounts at learning the 8 parameters:
» po(xeoqlx) = N(xe—i; e (xp t),0f Dt =T, ..., 1
» Ideally, we would like 6 so that the probability assigned by the model to
each training sample pg (x() is maximized, a.k.a. by maximizing the
likelihood Eq(xo) [pg (xo)]

However this would require marginalizing over all possible (reverse)
trajectories to compute the likelihood

0 pe (xo) = Epg(xl,...,xT) [pG (xO' X1y ey xT)]
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Training

» Instead, one adjusts the parameter 8 so that
» the joint distribution of the reverse MC:
Po(Xo, -, x7) = p(xr) [Ti=1 Po (xe—1 %)
» matches the distribution of the forward process:
q(xo, -, x7) = q(x0) [T{=1 q(x¢|x¢—1)
» This is achieved by minimizing the Kullback-Leibler divergence between
the two distributions
D1 (q(xo, ., x7)IPg (X0, o, X7))
» Note:

One observes a similarity with VAEs where q(.) is the encoder and pg(.) is
the decoder

Training is similar to training for variational auto-encoders, i.e. this amounts at
maximizing a lower bound of the log-likelihood (ELBO)

But here this operates on the decoder (reverse diffusion process) and not on
the encoder like for VAEs
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Denoising Diffusion Probabilistic Models
Training — variational lower bound

Eq(xo) [—logpg(xo)] < L
with the lower bound (ELBO) L

L = Eq(xy)qCerrlxg) [ 10810 (Xolx1) + DKL(CI(XHXO) I P(XT)) + Z D1, (q(xe—1lxe, x0) Il poCxe—11x:))]

t>1

» Let us examine the three terms of the lower bound L

4 DKL(P(XHXO) I p(xr))

does not depend on parameters 6 and can be ignored during training
» po(xolxy)

is modeled (Ho et al. 2020) as a separate discrete decoder (not detailed here)
» DKL(q(xt_llxt, x0) Il po (xt_llxt)) - (proofs next slides)

q(x¢_1lx¢, xg) is a tractable gaussian distribution

Do (X¢_11x¢) is also a gaussian distribution

Dk (q (ee—qlxe x0) I po(xe—q Ixt)) can then be computed in a closed form

It reduces to a simple form
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Training

» Let us consider the KL term Dy (q(x¢—11%¢, X0) | po (xe—11%¢))
» q(x¢_q|x¢, xg) is a tractable gaussian distribution

» It can be shown that q(x;_1|x;, xg) = N(xt_l; A(xe, x0), B}I),with:

ACxe, x0) = ?t__ﬁltﬁt Xo + \/1_—%(_15:&“1) x¢and B = 11—17_;1‘&
O Recall that
0 x, = Ja@xo + /(1 = @)e for e~ (0,1)
Oar=1-ppa =TIl as
» Then fi(x;, xo) can be rewriten in a simplified form as:

1-a;

i = (x, —
.U(xt'xo) _\/a_t(xt Jl——ﬁte)
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Training
» po(xr_q1lxs) = N(xt_l; g (x¢, 1), atzl)by assumption

» Both q(x;_q|x¢, x0) and pg(x¢_1|x;) being Gaussian, the KL divergence
writes as

try

q(x0),q(x¢]x0) [Dir,(q(xe—1lxe, x0) I Do (Xe—11x:)])

1
= Eqo)a(xe|xo) [F A Cee, x0) — po (xt, t)IIZl + constant term

We would like to train pg(x¢, t) to approximate fi(x;, )
O How to do that: next slide
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Training

»  We would like to train pg(x;, t) to approximate fi(x;, xq)
1 1-a;
—(x¢ — €
=& =9
» X is available as input at training time, (Ho et al. 2020) propose the following noise
prediction parametrization
1 1-a;
> X t) = — (X — —=€g(x¢, t
MB(t) \/a_t(t me(t))
» i.e.parametrize the gaussian noise term €q(x;, t) to make it predict € from the input x, at
time t
Note: parametrizing €4 (X, t) is just another way to parametrize pig (x;, t), but it has been found
more efficient experimentally
»  With this parametrization, the loss term

¥ L1 = Eqeeg)qaeixo) [Pre (@(ee—1xe, X0) 1| po (xe—q1x,)]) writes

2 _ _ 2
y Ly, = Exo~q(xu),E~N(0r1)[m €—€p (Jatxo +./(1 - a)e, t)” ]+Cte

» This is simplified in Ho et al. 2020 (heuristic), so that the global loss L writes as

» ie. pg(xe, t) must approximate fi(xg, xo) =

L= Exo~q(x0),E~N(0,1),t~U(1,T)[”6 — €g (\/a_txo + (1 - 67:)6 ,t) ||2]

» with u@,m a uniform distribution
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Denoising Diffusion Probabilistic Models
Training and sampling algorithms

» Training and inference (generation) take the following simple forms

Algorithm 1 Training Algorithm 2 Sampling
5 weow xa) I: xr ~N(0,I)

e} 2: fort="T,...,1d
3: t~ Uniform({1,...,T}) A i
& e~N(©OI) 3 z~N(0I
5: Take grad}enl descent step on 4 x1 = ﬁ (x: = ﬁee(x..t)) + oz

Vo ||c—ngrT,xl)+\/1 — ay€ 1)||2 5: end for
6: until converged 6: return xg
Fig. Ho et al 2020
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Implementation

oo, | | ILASLINS WS
Time Representation

Fully-connected

Layers Flg Kreis et

al. 2022
» €g(x;:,t) is often implemented with a U-Net with ResNet blocks and self
attention layers (recent implementations have been proposed with
transformers)

» Time features are fed to residual blocks, time encoding follows the
transformers sinusoidal position embedding

» The parameters are shared for all the time steps, only the time
representation makes the difference between the time steps
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Comments

> In
>
>
»

»

Ho et al. 2020

T = 1000, 8, = 1074, 7 = 0.02, 3, increases with a linear schedule

The pixel values are normalized in [—1,1]

As usual, lots of influential architecture/ algorithmic parameters conditioning
the good behavior of the model

The process of generation is extremely slow (the original model takes up
to 20 h to generate 50k images of size 32x32)

» Several variants/ improvements proposed since the Ho et al. 2020 paper

»
»

103

Conditional models allow to generate e.g. images conditionned on text
Latent diffusion models (Rombach et al. 2022) perform diffusion in a latent
space, accelarating the generation (used e.g. in stable diffusion)

The image is first encoded in a smaller dimensional latent space and decoded in
order to produce the generated image in the original space

Diffusion and denoising happen in the latent space
The model allows for conditioning image generation (on text, classes, ...)

Faster models, such as DDIM (Denoising Diffusion Implicit Models, Song et
al.2021)

Advanced Deep learning

Denoising Diffusion Probabilistic Models
ELBO Derivations

» We first show

»

a(xy.r |xo)
—= a1 A
pG(XO:T) ]

_Eq(xo) [log pe(xo)] < Eq(xO:T) [log

» and then

»

104

L = E[—logpe(xolx1) + DKL(CI(XT|x0) Il p(XT)) +
2e>1 Dr (q(xe—q 1%, x0) Il po (xe—q|x:))]
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Denoising Diffusion Probabilistic Models
ELBO Derivations

q(xyr %)
-E 1 <E, y.m[log———] 2 L
aGx) 11086 (x0)] < Eg(x,m[log po (o)
» Proof
» —logpy(xg) < —logpy(xg) + Dy (q(x1:71x0) Il Po(x1.71%0))
q(X1.7]|X,
b 108y (x0) < — 108 P (x0) + Ex, gy o) 108 i 0
Xq1.7|x
» —logpe(xo) < —logpy(xp) + Exl:T~q(x1:T|x0)[logq§,;TTol:T§) + log pg (xo)]
X1.7]%
> —logpg (o) < Ex1:7~q(x1:T|xo)[10g%
Xq.7|%
b ~Eqe 10870 (20)] < Expmgeey 08 222 20)
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ELBO Derivations

L = Eq(xym[—logpe(xolxy) + DKL(Q(XHXO) Il P(XT)) + Z D1, (q(xe—11x¢, x0) Il po(xe-11x:))]

t>1
»  Proof
¥ L= Eqegm [log%m]
» L= Equyml—logp(xr) + Xio, lOg%
» L =Equyr) |~ logplr) + Xi-zlog :e(zc;tlfil_;‘)) i log;g(();lo‘ﬁl))]
» L =Equ,ml—logp(xr) + Xi-;log( q;(::t(;ci‘_?l;cfg) ' q‘(zﬁ(;:fﬁ;i)) + lOnge((xxlo‘\?l))]
» L =Equ,ml—logpxr) + X, log%‘jﬁlz?) + iz log q‘(zgfljgi) log;;g‘;olf?f)}
v L= Equpm[—logp(xr) + T, log qgt(;i‘ﬁxf; 41 Zgﬂ;g)) ’ log;ﬁ;ﬂ?ﬁ)}
» L =Equym) 1og% + Zzzzlogf:ai—m - logpg(XO|X1)]

» L= Eq,ml—logpe(xolx)) + Dy (qCerlxo) 1 pCer)) + Tesa Dier (q(xe—11%6 %0) | po (e—11x))]
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Denoising Diffusion Probabilistic Models
ELBO Derivations

b qCre—1lxe x0) = N (xe—1; ACxe, Xo), Bel) with
1-a¢

~ 1
» fixe, xo) = \/?t(xt _\/1_—%6)

Xe_q|x
» q(xe—qlxe, x0) = q(xelxe—q,%0) a1 1%o)

1-a,

a(xt|xo)
2 2
1 (ep—y@exe-1)? | (Ke-1—/@—1%0) (xe—/@rxo)
¥ q(xp_q1lxe, x9) exp — - ( 5 + P - )
» ... to be completed
>
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Score based models
Score function

» The (Stein) score function of a data distribution q(x),x € R™ is:
s(x) =V, logq(x) € R"
» Interpretation

Given a point x in data space, the score tells us which direction to move

towards a region with higher likelihood

How to use this information for generating data from the distribution q(.)?
0 Sample x, from a prior (e.g. Gaussian) distribution (x) in R™ and

iterate x;.1 = x; + V, logq(x;)

O Warning: indexes « i » are in the reverse order compared to DDPM

Fig. Song 2022

Low density illustrates the score
region SRREER function (arrows) and
. ] : SR ES = 22 the density for a
High density ———~ “-oooo mixture of two
region e : gaussians
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» Score based model (SBM) sy (.)

» V,logq(x) is usually intractable, one will learn a score based model, i.e.

a parametric model sg(x) to be implemented by a NN
sg(x) = V,logq(x),sg: R™ - R™
sg(x) will be learned from a sample of the target distribution q(x)
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Score based models
Notes on the score function

» Let fy(x) € R a real valued function with parameter 8 , we could model a
p.df.as:

_exp(—fo(x)
po(x) = 7,

» fo(x) is called an energy based model
» Zg is a normalizing constant, it is usually untractable

» A score based model sg(x) = V, logpg(x) allows to bypass the normalizing
constant

» Example, considering the energy model above:
so(x) = Vylogpe(x) = =V fg(x) = VylogZg = =V, fo(x)
» The iterative formula x; ;1 = x; + V,. log q(x;) performs gradient ascent
» Starting from x; it will converge to a mode of the distribution

» What we want is to sample the whole distribution, not only the mode
» This is achieved here trough Langevin dynamics
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Langevin dynamics

» Langevin dynamics
» The Langevin dynamics for sampling from a known distribution q(x) is
an itaretive procedure:
Xip1 = X; + € Vylog g (x;) + V2ez

i=0,..,K,with z;~N (0, ), € is a small constant
When € = 0 and K = o0, x, converges to a sample from q(x) under some
regularity conditions
O In practice take € small and K large (100 to 1000)
O Note: Langevin dynamics accesses q(x) only through the score function

By

Fig. Song 2022

Langevin dynamics for sampling from a mixture
of 2 gaussians, arrows indicate the score vector
values, the animated Gif shows the
convergence of the dynamics towards the target
distribution
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Where does the Langevin dynamics come from?

» Langevin dynamics is a stochastic process used to model the motion of
particles in a fluid medium, subject to both deterministic and random forces.

dx _
y = =VUE) +nE
y oy % is a friction force proportional to the velocity, with y being the friction
coefficient.
» —VU deterministic force derived from the potential U(x)

» n(t) random noise representing thermal fluctuations, modeled as Gaussian white
noise

» Another formulation makes appear a Brownian motion term dW (t) (Wiener
process)

dx = =V U@)dt +V2dW(b)
with dW (t)~N (0, 1)

» This is the formulation used for score based models with
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Training and inference

» Score matching

» SBM can be trained by minimizing the following loss between the model
Sg(.) and the data distribution V, log q(x)

Jsu(0) = Eqex[IIVx log q(x) = s ®I3] = [V log q(x) — s ()13 (x)dx

» Inference

» Once trained, sg(x) can be used by starting from a prior distribution
Xo~1(x) (e.g.a Gaussian) and iterating a Markov chain for generating

samples
Xiy1 = X; + €5g(x;) + V2€z;,i =0, ..., K, with z;~N (0, 1), € is a small
constant
114 Advanced Deep learning
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Summary: training + generation

A distribution can be represented by its score function V, log q(x)
The score function can be estimated by training a score based
model sg(x) using samples from the target distribution with score
matching

r—
(¢ } a score 1! Langevin
P matching - dynamics
E n :
Data samples Scores New samples
(X1, %0, -+ xn} " p(x) sp(x) = V log p(x) Fig. Song
2022
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Training: Denoising score matching (DSN)

» let us come back to the score matching training formulation
b argmingE [V, log q(x) — sy |I3]

» This formulation leaves us with 2 problems (Song et al. 2020)
» (1) q(x) is unknown

» (2) In low density regions, there are only a few data points available so
that sg(x) will be inaccurate.

» (Song et al.2020) propose different solutions to this problem, let us
describe one of them (NCSM) used in cutting edge diffusion models

» Noise conditionned score network (NCSN)
» Instead of training on the data distribution directly, train on noisy data

» Perturb data points with noise V'(0, 521), train score based models on
the noisy points using score matching.

» This mitigates both problems | & 2
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Denoising score matching (DSN)

» The score matching problem
Jsu(8) = Eqeo[llVxlog q(x) — s ) l13]
» has an equivalent form, the denoising score matching, defined as:
Jpsm (@) = Eqx [“Vx log q(X|x) — s¢(%X) “%]
» with x" = x + € a noisy version of x
» Theorem (Vincent 201 1)
Jpsm(0) =Jsu(8) +C

» where C is a constant independent of 8

» It can be shown that /s, (0) leads to an unbiased estimate of the
true score

» Note: q(x) is replaced by the conditional q(X|x) which is amenable
to a simple analytic form

M7 Advanced Deep learning
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Denoising score matching (DSN)
» Let us consider the case where Let X is generated according to the transition
kernel q,(%|x) = N (%;%,0%1)
» X can be generated as ¥ = x + 0z,z~N'(0,1)
» Let us define q,(%) 2 [ q,(&|x)q(x)dx
1 exp (_ Hi—x”z) . F=x_  z
( /Tm,z)" 202

» Viq,(%]x) = Vilog

» Josm(0) = Equp [”i;zx*‘ Se(f)Hz] = Eqe Ez~neo [Hi*‘ sg(x + UZ)HE]

» The score function sg( ) is supposed to take a noisy data x + 0z and predict the
noise —= which is equivalent to denoising (Vincent 201 | — denoising auto-encoders)

» Note
» In practice this idea has to be refined
If the noise is too large, q, (%) will be different from q(x)

If it is too small the distribution will not be sampled correctly, e.g. low density regions will not

be covered
Song et al. 2020 propose a refinement of this idea
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Training: Noise conditionned score network (NCSN) (Song et al. 2020)

» Noise conditionned score network (NCSN)
» This idea is then refined as follows

Use multiple and increasing scales of noise N (0,0;1),i = 1...,T with g; <
03 < -+ < o in order to obtain T noise-perturbed distributions g, (%) £

J 46,Ex)q(x)dx

In practice this is achieved by drawing samples from q,, (%) by sampling
x~q(x) and computing ¥ = x + 0;z with z~N(0,1)

Use a unique (0) score function paramaterized by g, s¢(x; o) for all the
noise scales and train it with the different noise scales using score matching
so that s¢(x; ;) = V, log qq,(x)

O sg(x; 0) is called a noise conditional score-based model

Noise schedule: for example geometric schedule between two extreme
values g to ar

» Note
This is similar to the forward process in DDPMs
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Noise conditionned score network (NCSN)
Training formulation detailed

» Noise conditionned score network (NCSN)

» Let X a perturbation of x generated according to the transition kernel g, (%|x) = N (%; x, 0%1)
X can be generated as ¥ = x + 02,z ~N'(0,1)

Let us define q,(%) 2 [ g, (%|x)q(x)dx

» The proposed loss function is

1 - - 2
13T A0 Eq, 00 [IV5log 45, (®) = 50,002
O This is a weighted sum of score matching losses, A(i) € R, > 0, often chosen as A(i) = o/
»  This can be rewriten up to a constant as
J
2

x-x

0 (%) = V(%% 0%) = V;log 4, (%) = -+

1 X—. ~
720121 MO E g 20, (X ) “ % +s0 (%, 01)

»  A(0y) is set for example to o7 - so that all the components inside the summation have the same order
of magnitude and do not depend on o
2]
2

»  After training gy, 5o (%, 0;) will return an estimate of the score Vlog g4, (X)

. 0; sg(%,07)
i

1gT
7 Zi=1 Ereg0) £oa0y(F|) [
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Generation

» For the generation, it is proposed to use an annealed form of the
Langevin dynamics

Initialize xq ~V' (0, 1) (prior distribution)
For t = T to 1 (annealing iterations)
2
set a, the step size e.g. a; = e% with € a small positive constant
1
Fori=1to N —1 (N steps of Langevin dynamics)
Draw z,~N'(0,1)
Xip1 = X; + a;Sg(x;,0¢) ++/2a:2;
Xg = Xy Fig. Song —
Return x, Blog 2021

Remark: at each
annealing iteration, one
starts from the final
sample of the previous
iteration
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» Sg(x;,t) is parametrized with U-Nets with residual connections as
for DDPMs
» Equivalence with DDPM

» The two training objectives (DDPM and SGM) are equivalent once we
set

€g(x,t) = —0p(x, t)
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Score based models
Generation - example

2
o
(o}
S

X —

(a) MNIST (b) CelebA

Figure 5: Uncurated samples on MNIST, CelebA, and CIFAR-10 datasets. Figure 4: Intermediate samples o

Fig. Song et al 2020
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() CIFAR-10

Langevin dynamics.

Advanced Deep learning

f annealed

Score stochastic differential equation

(Song et al. 2021)
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Score stochastic differential equation

» Generalizes the discrete diffusion and score based formulations to
time continuous dynamics
» i.e.one considers the limit when the time step a;in score based
methods goes to 0
» Both DDPM and Score based approaches can be formulated as
discretizations of SDE formulations
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Score stochastic differential equation
Forward dynamics

» Stochastic differential equations (SDE)
» dx(t) = f(x, t)dt + g(t)dw
f(x,t) is a vector valued drift function, f: R™ — R™, describes how molecules
in a closed system would move in the absence of random effect
g(t) is a scalar valued diffusion function, g: R = R, describes the random
movement of the molecules
0 g() is considered scalar and independent of x for simplification,
but could be a vector valued fonction and dependent of x too
w is aWiener process (Brownian motion), dw~N (0, dt)

Under some conditions, the SDE has a unique solution
Fig. Kreis et al. 2022
Sample from a SDE
trajectory
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Score stochastic differential equation
Forward dynamics

» SDE
» dx(t) = f(x, t)dt + g(t)dw
» Time discretization of the SDE
Y Xepar = X¢ + f(x, At + g(xp, AW, with Aw~N (0, At)
» Note
» Langevin dynamics X;1 = X; + @;:Sq (X, t) + /22, appears as a
special case of the discrete equation with:
At =1,f(x, ) = asg(xe t),8(xe V) = 20, Aw = z,
» As for the discrete case, the forward diffusion process does not depend
on the data
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Reversing the SDE

» Any SDE has a reverse SDE, its closed form is given by:
dx = (f(x,0) = 9()*V;logq.(0))de + g(t)dw
O dt is an infinitesimal negative time step
0 q.(x) is the distribution of x at time t € [0,T]
0O This equation shall be solved backward fromt=T tot =0
O i.e. one starts at x(T)~qy and reversing the process we obtain samples
x(0)~qo
O We need to estimate V,[logqg,(x), which is the score of the distribution

0 Once V,logq.(x) is known for all t, we can use this equation and simulate
it by sampling from g (x) to generate a sample from q,

_ Forward SDE (data - noise)
x(0) dx = f(x, t)dt + g(t)dw —>@
; Fig. Song et
TTIIEEEE -
s(u ré function
.4— dx = [E(x,1) v’lrE logpe(x)] dt + g(t)a% —{x(T)

Reverse SDE (noise — data)
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Score stochastic differential equation
Forward dynamics

» Diffusion processes can be modeled as solutions of SDEs
» The solution of a SDE is a continous collection of random variables
{x(®)}eefon
» These variables trace stochastic trajectories when t grows from 0 to T
» The forward and backward passes in DDPM and NCSN can be
writen as the solution of corresponding SDE
» Practical message
» Provides a more general and unified view of diffusion models

» SDE (or ODE see later) solvers can be used for the forward and
backward steps of these diffusion models
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Score stochastic differential equation
Forward process

» lllustration: stochastic trajectories for the forward diffusion process

E Forward diffusion process (fixed)
r
E /

—H

Fig. Kreis et al. 2022
Samples: SDE trajectories from different initial
points
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Score stochastic differential equation
Forward process

» lllustration: stochastic trajectories for the forward diffusion process

—— Stochastic process

Fig. Song 2021 - https://yang-
song.net/blog/2021/score/
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Score stochastic differential equation
Reversing the SDE

» Reverse process illustration
» One starts from noisy samples to generate target data samples

—— Reverse stochastic process

Fig. Song 2021 - https://yang-song.net/blog/2021/score/
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Stochastic differential equation for DDPM

» Forward discrete-time DDPM iteration:
Xi = 4/ 1-— ,Bixi—l + ﬁl’Z with Z"'N(O, I)
» Forward continuous DDPM dynamics (SDE)

» Let us consider the continuous process x(t) and denote x(t) = x;,
x(t — At) = x;_4
» By taking the limit when At — 0, one get:

dx = —@xdt + /B (t)dw
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Stochastic differential equation for DDPM forward pass

» Demonstration
» Let us start from the forward discrete-time DDPM iteration:
» x; =+/1— BiXj_1 + Biz; with z; ~N(0,1)
» Let us consider the continuous process x(t) and define
yox;=x(t+ A, x =x(t),z; =z(t+At),B; =Bt +At)A t
> We get:

» x(t+At) =1 —L(t + At)A tx(t) + /B (t + At). At z(t)
» x(t+A) = (1 - %ﬁ(t + At)A)x(t) + /L (t + At). At z(t)(Taylor expansion order |)

b x(t+ A0 = x(8) — 5 BOALx(E) + B AL z(D)z(t)

» By taking the limit when At — 0, one get:

N dx:—%”xdw B dw

» Conclusion

» DDPM forward iteration corresponds to a specific first order SDE solver
» DDPM forward iteration can be solved by using this specific solver
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Stochastic differential equation for DDPM reverse equation

4

The reverse equation for DDPM can be obtained by substituting the

quantities f(x,t) = —%ﬂx and g(t) = /B(t) in the general
reverse SDE

dx = (f(x, t) — g(t)ZVxlogqt(x)) dt + g(t)dw
The reverse SDE for DDPM writes as:

dx = —B(t) (gx + Vxlogqt(x)) dt + JBO)dw

And similarly, the reverse form of the iterative DDPM equation can
be obtained as the discretization of this SDE

Hence, the reverse pass can be performed by a suitable SDE solver
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Score stochastic differential equation
ODE solvers

4

4

(Song et al 2021) show that it is possible to associate an ODE to
any SDE without changing the marginal distribution {q;(x)}¢e[o,7-
i.e. both the ODE and the SDE share the same set of marginal
distributions {q;(x)}tefo,1

» The ODE associated to the reverse SDE is:

b 2= f(x,t) — 2 g2 (£)V,log qe(x)

» This is called the probability flow ODE associated to the SDE

It is then possible to sample from the same distribution as the
reverse SDE by solving the ODE using classical ODE solvers (e.g.
Runge Kutta)

Note

» When V,log q;(x) is replaced by sy (x, t) the ODE becomes a special
case of Neural ODE (see later in the course) — more precisely it is a
continuous normalizing flow
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Score stochastic differential equation
ODE solvers

m Encoding with Probability Fiow ODE

Fig. Kreis et

al. 2021

» Current practice
» Solve the forward process using the sde formulation (easy, no training)
» Solve the reverse process using the ODE formulation

» Note: the ODE could be used for the forward and reverse diffusion since
(simply change the integration direction i.e. consider ¢ > 0 for one
direction and and t < O for the other direction), however the forward
process is simpler with the fixed SDE formulation.
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Score stochastic differential equation
ODE / SDE solvers

Data Forwara SDE Prior Reverse SDE Data
(2(0) pm—— dx = f(z, 1)t + g{t)dte e ole (T} iz = [f(2,1) — g (1) V, hog s ()] it + git)dii —2{z(0)

m(z) mlz) priz) mlz) i)

Figure 2: Overview of score-based generative modeling through SDEs. We can map data 1o a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score V log p,(x) (Section 3.3). Flg Song et

al. 2021

» ODE trajectories are smoother that SDE trajectories, however they
allow to sample the same marginals {p;(x)}¢e[o,r]

138 Advanced Deep learning

69



Score stochastic differential equation

» With this formulation, we are then left with two problems

» The training problem: how to estimate V,.logq;(x) the score function of

qe(x)?

» How to solve the reverse SDE?

» This is described in the appendix (last slides of the presentation)
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Extension of the denoising score based method to the continuous case

Advanced Deep learning

Score based models
Conditional setting

14
»
14

Include the condition as input to the reverse process
The condition is input to the U-Net or whateverNet used for denoising
Class conditioning

Encode a scalar or class indicator as a vector embedding
Text conditioning

Vector embedding or sequence of vector embeddings, cross attetion, ...
Image conditioning

Channel wise concatenation of the conditional image

» How to perform class conditioning

»

140

Several possibilities have been proposed
E.g. classifier guidance and classifier free guidance

Not covered in this course
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Diffusion models
Conclusion

» Pro

» performance competitive with the best generative models
» Cons

» slow — due to the large number of sampling steps
» Several improvements

» Sampling process

» Training dynamics

» Noise level parametrization
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Appendix - Score stochastic differential equation
The training problem

» Solving the reverse SDE requires to know the terminal distribution pr(x) and
the score function V,logq;(x)
» For the former one uses a prior distribution 7 (x), typically a gaussian
» For the latter, one trains a time-dependent score-based model sq (x, t) such that
se(x,t) = Vylogqe(x)
Note: this is analogous to the discrete case sg(x, i) ~ V logq,,(x)

» The training objective is a continuous extension of the one used with SGMs:
» EruonEq,00[ 2O NIVloggy (x) — s (x, 0113 ]

U(O,T) is a uniform distribution over [0,T] and A: R — R is a positive weighting function

0 As for the discrete case, A(t) will be set so as to balance the magintude of the different
score matching losses across time

» Generation
» Once trained, one can simulate from dx = (f(x,t) — g(t)2sg(x, t))dt + g(t)dw

» Practical training
» Use a score matching method e.g. denoising score matching
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Appendix - Score stochastic differential equation
The training problem

» Denoising score matching
» As in the discrete case, diffuse individual data points using diffusion kernels
q: (x(£)|x(0))
MingE¢v0,1)Ex(0)~ao () Ex(t)~a(x®)x(0)) [A(t)”thlOg‘h(x(f)|x(0)) -

2
seGx@), ) |

diffusion kernels q(x(t)|x(0)) are chosen Gaussian for linear SDEs (this meansfis
affine):

qe(®)1x(0)) = NV (x(); 7¢x(0), 621)
» Objective: as in the discrete case, the loss function can be derived as

. A®)
MingE¢ o, Ex~qx)Ee~n (0,0 [D__tz lle — g (xe, D113 ]
» Practice
» Different loss weightings are proposed, e.g. A(t) = o7 for the simplest case
» Sg(x(t),t) or €g(xt,t) implemented with U-Nets

» For the time integration, one could use Fourier features on t or replace t by
O¢
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Appendix - Score stochastic differential equation
Solving the SDE

» Once sg(x,t) is learned, it can be plugged in the reverse SDE
»odx = (f(x,t) — g(£)?se(x, 0))dt + g(t)dw
» Starting with x(T)~m, one can solve this reverse SDE to obtain a sample
x(0) from the target distribution g(x) — or at least a sample from the
approximate distribution gg(x) = q(x)
» How to solve the reverse SDE
» Learning free methods

SDE solvers — a variety of SDE solvers is available from the numerical analysis
literature

0 Discretize the SDE in time and use a SDE solver
ODE solvers are faster that SDE solvers
» Learning methods

Take benefit from the special for of the SDE in order to optimize the reverse
solver
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Diffusion models
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