
Sorbonne Université

Doctoral School École Doctorale Informatique, Télécommunications et
Electronique (ED130)

Joint Research Unit Institut des Systèmes Intelligents et de Robotique

Operator learning for modeling
spatiotemporal dynamics from

PDEs

By Louis Serrano

Academic Field Computer Science

Thesis supervised by: Patrick Gallinari Supervisor

Jean-Noël Vittaut Co-supervisor

Committee members:

Referees Amaury Habrard Professor at Université Jean Monnet
Saint-Étienne

Alexandros Kalousis Professor at University of Applied
Sciences, Western Switzerland

Examiners Taraneh Sayadi Professor at Conservatoire National des
Arts et Métiers Paris

Johannes Brandstetter Assistant Professor at Johannes Kepler
University Linz

Supervisors Patrick Gallinari Professor at Sorbonne Université

Jean-Noël Vittaut Associate Professor at Sorbonne
Université

Sorbonne Université

École Doctorale Informatique, Télécommunications et Electronique
(ED130)

Laboratoire Institut des Systèmes Intelligents et de Robotique

Apprentissage d’opérateur pour la
modélisation de dynamiques

spatiotemporelles issues d’EDPs

Par Louis Serrano

Thèse de doctorat d’Informatique

Thèse encadrée par: Patrick Gallinari Directeur de thèse

Jean-Noël Vittaut Co-encadrant

Membres du jury:

Rapporteurs Amaury Habrard Professeur à l’Université Jean Monnet
Saint-Étienne

Alexandros Kalousis Professeur à la Haute École Spécialisée
de Suisse Occidentale

Examinateurs Taraneh Sayadi Professeure au Conservatoire National
des Arts et Métiers Paris

Johannes Brandstetter Mâıtre de conférences à Johannes
Kepler University Linz

Encadrants Patrick Gallinari Professeur à Sorbonne Université

Jean-Noël Vittaut Mâıtre de conférences à Sorbonne
Université

À Caroline et ma famille

Operator learning for modeling spatiotemporal

dynamics from PDEs

Abstract

Partial differential equations (PDEs) are fundamental to scientific modeling, nat-

urally emerging from physical principles such as mass and energy conservation. De-

pending on modeling assumptions, PDEs take various forms and parameterizations,

yet most lack closed-form analytical solutions. Consequently, numerical methods

are required to approximate solutions, converging toward the true solution as the

discretization resolution increases. Over the years, scientists and engineers have

developed a wide range of numerical solvers, including Finite Differences, Finite El-

ements, Finite Volumes, and Spectral Methods. These solvers offer theoretical guar-

antees: they approximate the continuous dynamics of the underlying PDEs, provide

well-characterized error bounds, and can be analyzed. However, their performance

is constrained by numerical stability—coarse spatial or temporal discretization can

lead to instability—making them computationally expensive and time-consuming.

Various statistical techniques, such as reduced-order modeling and parameterization,

have been proposed to mitigate these costs, but they are not designed to generalize

across a broad range of simulations.

In recent years, the increasing availability of large-scale data and computational

resources has triggered a paradigm shift in fields such as computer vision and natural

language processing, where deep learning models trained directly on data have out-

performed traditional statistical methods relying on hand-crafted features. A similar

revolution is underway in scientific computing, particularly in PDE resolution. This

thesis explores how neural networks trained on data can approximate numerical

solvers. These neural surrogates generate accurate PDE solutions at a fraction of

the computational cost of numerical simulations, making them attractive for engi-

neering applications. However, their major limitation is poor generalization: they

struggle with changes in problem setup, such as variations in discretization, domain

geometry, or PDE parameters. This thesis focuses on improving the generalization

capabilities of neural solvers across these challenging scenarios. The methods devel-

oped have direct implications for industrial applications, including geometric design

optimization and accelerating numerical simulations. This manuscript presents the

main contributions of this thesis, structured as follows:

(i) We introduce a novel framework based on neural fields for operator learn-

ing, addressing constraints on mesh discretization. Coral, our framework, enables

dynamics modeling and geometry-aware inference on data discretized over regular

grids, irregular grids, and even point clouds. (ii) We propose Infinity, a special-

ized version of Coral tailored for solving Reynolds-Averaged Navier-Stokes (RANS)

equations. Unlike Coral, Infinity incorporates both geometrical features (e.g., signed

distance functions) and flow parameters (e.g., inlet velocities) to predict the steady-s-

tate solution. We validate its performance on a dataset representative of real–

world computational fluid dynamics challenges. (iii) We introduce Aroma, an im-

iv

proved neural surrogate, that extends Coral and existing transformer-based meth-

ods. Aroma employs an encoder-decoder architecture that maps observations to

latent tokens while incorporating information about domain geometry. To enhance

stability at inference, we integrate a diffusion-based transformer for modeling tempo-

ral dynamics. (iv) Inspired by the in-context learning capabilities of large language

models, we propose Zebra, a novel framework for solving PDEs. Zebra adapts trajec-

tory forecasts to various conditioning prompts, including past observations or similar

trajectories. The model employs vector quantization to discretize observations into

a physics-informed vocabulary and uses a decoder-only transformer trained with a

next-token objective. We design a data pipeline that pretrains Zebra on diverse

dynamical tasks, enabling robust generalization.

Apprentissage d’opérateur pour la modélisation

de dynamiques spatiotemporelles issues d’EDPs

Résumé

Les équations aux dérivées partielles (EDP) sont omniprésentes en modélisation

scientifique. Elles émergent naturellement des premiers principes physiques comme

la conservation de la masse ou de l’énergie. Selon les hypothèses, elles peuvent pren-

dre diverses formes et paramétrisations, mais n’admettent que rarement une solution

analytique. Il est donc nécessaire de recourir à des méthodes numériques (différences

finies, éléments finis, volumes finis, méthodes spectrales) pour obtenir des solutions

approchées. Ces méthodes offrent des garanties théoriques en termes de conver-

gence et d’analyse d’erreur, toutefois leur stabilité dépend fortement de la finesse de

la discrétisation, ce qui engendre des coûts de calcul importants. Bien que certaines

méthodes statistiques, comme la réduction d’ordre ou la paramétrisation, tentent de

réduire ces coûts, elles restent peu adaptables à une diversité de configurations.

L’accroissement des données disponibles et des ressources de calcul a récemment

bouleversé des domaines comme la vision par ordinateur ou le traitement du langage

naturel, où les modèles d’apprentissage profond surpassent les approches statistiques

classiques basées sur des représentations conçues par des experts. Une tendance

similaire émerge dans le domaine des simulations scientifiques, notamment pour la

résolution d’EDP. Cette thèse étudie comment des réseaux de neurones entrâınés

sur des données issues de simulations numériques peuvent servir de modèles sub-

stituts capables de générer des solutions précises à faible coût. Ces modèles sont

particulièrement prometteurs pour les applications industrielles, mais leur principal

défaut est qu’ils s’adaptent mal aux changements dans la discrétisation des condi-

tions initiales, dans la géométrie du domaine ou dans la paramétrisation de l’EDP.

Ce manuscrit explore différentes approches pour améliorer la généralisation face

à ces scénarios, et expose les principales contributions de cette thèse, qui portent

sur les sujets suivants :

(i) Nous introduisons une nouvelle méthodologie basée sur les champs neuronaux

pour l’apprentissage d’opérateur. Cette approche, appelée Coral, allège les con-

traintes liées au maillage de discrétisation des données. Elle peut être utilisée pour

modéliser des dynamiques spatiotemporelles ou inférer des solutions stationnaires,

sur des grilles régulières, irrégulières ou des nuages de points. (ii) Nous proposons

Infinity, une version spécialisée de Coral pour la résolution des équations de Reynold-

s-Averaged Navier-Stokes (RANS). Contrairement à Coral, Infinity est conçu pour

prendre en entrée à la fois des caractéristiques géométriques (par exemple, une fonc-

tion de distance signée) et des paramètres d’écoulement (par exemple, des vitesses

d’entrée) pour prédire la solution stationnaire du système. Nous avons mené des

expériences sur des cas représentatifs des défis rencontrés en mécanique des fluides

numérique. (iii) Nous avons ensuite développé Aroma, un modèle substitut neuronal

qui étend Coral et les modèles basés sur les transformeurs. Aroma repose sur une

architecture encodeur-décodeur qui projette les observations vers une séquence de

vi

vii

tokens latents en tenant compte de la géométrie du domaine. Pour la modélisation

temporelle, nous utilisons un transformeur avec un mécanisme de débruitage pour

accrôıtre la stabilité des simulations. (iv) Nous nous sommes inspirés des capacités

des modèles de langage à réaliser un apprentissage en contexte pour de nouvelles

tâches, et proposons Zebra, une méthode qui permet d’adapter la prédiction des

trajectoires à divers types de conditionnement, incluant des observations passées

ou des trajectoires similaires. Le modèle utilise la quantification vectorielle pour

discrétiser les observations en un vocabulaire physique, et un transformeur entrâıné

pour prédire le prochain token. Nous proposons un pipeline de données intégrant

une diversité de tâches dynamiques pour améliorer la généralisation du modèle.

Remerciements

Tout d’abord, je tiens à remercier mes encadrants. Patrick, merci de m’avoir offert

l’opportunité de réaliser cette thèse sous ta direction, et de m’avoir accordé la liberté

d’explorer mes propres pistes de recherche. Je t’en suis profondément reconnaissant.

Ton aide précieuse tout au long de ces années a été déterminante. Rédiger un article

scientifique demande un travail colossal, et il est évident que tes conseils, ta vision

et ton sens du détail ont grandement contribué au bon déroulement de cette thèse.

Jean-Noël, après notre déménagement à la Pyramide, nous avons eu moins

d’occasions d’échanger, mais tu m’as toujours été d’un grand soutien. Je ne pense

pas que j’aurais pu soumettre la première version de Coral sans ton aide. Merci

également pour les cours, et pour ton soutien pour affronter les méandres adminis-

tratifs de la Sorbonne.

Je tiens aussi à remercier toutes les personnes de l’ISIR qui m’ont aidé au fil de

la thèse. Merci bien sûr à Christophe, pour ton aide quotidienne sur les GPUs, et

pour tes excellents conseils au babyfoot. J’espère pour toi que le PSG décrochera

enfin la Ligue des Champions cette année ! Merci également à Awatef, pour ton

aide dans l’organisation de la soutenance.

Je remercie évidemment tous les membres du jury d’avoir accepté de participer à

cette soutenance, et tout particulièrement les rapporteurs, Amaury et Alexandros,

pour leurs retours précieux sur le manuscrit. Merci également à Johannes pour cette

belle opportunité que tu m’as offerte pour la suite de mon parcours. J’ai hâte de

commencer cette nouvelle aventure.

Je souhaite aussi remercier l’ensemble de l’équipe MLIA, ainsi que tous les doc-

torants que j’ai eu la chance de croiser au cours de ces trois ans et demi. Une pensée

particulière pour l’équipe spatiotemp : Emmanuel, Jean-Yves, Matthieu, Ramón

Daniel, Jorge, Joceran, Biel. Mais plus encore, je remercie celles et ceux avec qui

j’ai eu le plaisir de collaborer de près : cette thèse n’aurait pas été la même sans

vous.

Yuan, merci d’avoir partagé ton expérience et tes conseils tout au long de la

thèse. Ton aide sur la rédaction des papiers a été précieuse, et nos discussions, sur

la recherche ou autre, ont toujours été enrichissantes. Tu as été un véritable modèle

ix

x

pour moi.

Lise et Armand, merci pour votre énergie et votre soutien tout au long de ces

années. Je vous dois une fière chandelle, et je vous souhaite le meilleur pour la suite.

Merci à toi, Léon, pour notre collaboration sur Infinity et Timeflow, et pour

m’avoir embarqué dans le projet avec Étienne.

Étienne, je sais que je t’ai cassé les pieds avec tous les papiers que je t’envoyais,

mais merci pour tout. Tu as été une oreille attentive dans les moments difficiles,

et je suis très heureux d’avoir mené ce projet avec toi. C’est l’un de mes meilleurs

souvenirs de la thèse.

Lise, merci de m’avoir permis d’explorer ta direction de recherche. Je te suis

sincèrement reconnaissant. J’aurais aimé t’aider davantage sur ce papier, et je re-

grette de ne pas avoir eu le temps de le faire.

Merci à toi, Pierre, pour m’avoir expliqué les bases des LLMs, et pour ton aide

sur Zebra. D’ailleurs, c’est toi qui as trouvé ce nom : j’espère que ce petit coup de

marketing portera ses fruits !

Armand, encore merci pour ton aide cruciale sur Zebra. Sans toi, cela n’aurait

pas été possible.

Merci aussi à Adel et Louis, j’espère que mon expertise en profiling vous aura

été utile pour ACCO !

Et enfin, un grand merci à Paul et Löıck. Vous m’avez rendu un peu fou ces

derniers mois avec Jafar, mais grâce à vous, j’apprécie encore plus les features pro-

fonds.

Une pensée particulière pour mes amis Ruben, Nicolas, Sam, Thomas et William.

Je suis vraiment heureux d’avoir pu rester proche de vous pendant la thèse. J’ai

perdu de vue pas mal de monde au fil des années, mais avec vous, je sais qu’on

pourra toujours compter les uns sur les autres, c’est ce qui fait la force de notre

groupe. On se retrouve bientôt pour un Catane ou un Abyss !

Je tiens à remercier chaleureusement ma famille. Merci Papa, merci Maman, de

m’avoir toujours soutenu dans mes choix, et d’avoir été là pour moi dans les moments

plus compliqués. Je sais que vous n’étiez pas très rassurés quand je vous ai annoncé

que je voulais faire une thèse, mais je crois que vous pouvez être sereins maintenant

: le plus dur est passé ! Merci à Gabriel et Paul pour toutes ces sessions de padel et

de tennis ensemble. Elles m’ont fait un bien fou. Et merci à toi, Frédéric, pour ta

sagesse et ton esprit philosophe. Je sais que tu es bien occupé depuis la naissance

de Camille, mais il faudra qu’on s’organise une partie de badminton dès que tu as

un moment !

Et enfin, je voulais te remercier, toi, Caroline, du fond du cœur, pour tous les

moments que nous avons partagés pendant cette thèse. On a vécu cette aventure

xi

côte à côte, toi l’internat et moi la thèse, et tu as été un soutien inébranlable, et une

source de bonheur incroyable pendant ces trois années. On a traversé des périodes

parfois difficiles, mais on s’est toujours relevés ensemble. Un grand merci aussi à ta

famille, pour m’avoir toujours accueilli avec générosité et bienveillance à Nancy.

Je repense avec émotion aux treks que nous avons faits ensemble ; je suis telle-

ment heureux que tu aies partagé ta passion avec moi. Ces escapades, hors du

temps, nous ont permis de nous retrouver tous les deux, et elles comptent parmi

mes plus beaux souvenirs de ces dernières années.

Je ne te remercierai jamais assez pour ton aide précieuse tout au long de cette

période. Ce n’était pas simple, et pourtant tu m’as toujours encouragé, même

pendant mes longues soirées à lancer des expériences, ou mes week-ends passés à

analyser des features.

Merci pour tout. Tu vas beaucoup me manquer aux États-Unis durant ces

quelques mois, et j’ai déjà hâte de rentrer pour commencer une nouvelle vie avec toi.

Qui sait, peut-être à Lyon ? À chaque jour suffit sa peine, comme dirait Ruben.

Symbols

The manuscript consistently employs the following symbols, with additional nota-

tions introduced as needed in specific chapters or sections.

Domain Symbol Description

PDE u PDE solution

u0 initial condition

ut PDE solution at time t

a input function

f forcing term

g dynamical model

B boundary condition

Tin Training horizon

t Temporal coordinate

Ω Spatial domain

X Spatial grid

x Spatial coordinate

A Symbolic values support

c Number of input channels

General i, j Samples index

n Number of samples

L Loss

W, b Weights and biases of a linear layer

p(x) Probabilistic distribution

pθ(x) Probabilistic distribution approximation

Ex Expectation over x

N (µ;σ2) Gaussian distribution with mean µ and standard deviation σ

∇ Gradient

π Sampling rate

Neural θ, θ
′

Weights of a neural network

Networks hw Hypernetwork

α inner learning rate

η outer learning rate

B Batch

xii

Contents

Abstract v

Résumé vii

Remerciements ix

Symbols xii

Contents xiii

List of Figures xix

List of Tables xxii

I Research Context 1

1 Introduction 2

1.1 Context and challenges . 2

1.2 Motivations for Using Deep Learning to Solve PDEs 3

1.3 Research Objectives . 5

1.4 Core Contributions . 5

1.4.1 Meshless operators . 6

1.4.2 In-context adaptation for solving PDEs 8

1.5 Other contributions . 8

1.6 Structure of the thesis . 10

2 Some notions on Partial Differential Equations 11

2.1 A first PDE example . 12

2.1.1 Heat equation derivation . 12

2.1.2 Initial boundary value problem formulation 14

2.1.3 Analytical solutions . 15

2.2 ODEs and PDEs . 17

2.2.1 Definitions . 17

xiii

xiv Contents

2.2.2 Fundamental properties of PDEs 21

2.2.3 Non-linear equations . 24

2.3 Numerical Solvers . 26

2.3.1 Finite differences . 26

2.3.2 Finite elements . 29

2.3.3 Time integration . 32

2.3.4 Key properties of numerical solvers 34

2.4 Reduction of complexity . 35

2.4.1 Reduced Order Models . 35

2.4.2 Parameterization . 37

3 Introduction to Deep Learning 39

3.1 A short history of deep learning . 39

3.2 Deep Neural Networks . 41

3.3 Training Deep Neural Networks . 42

3.4 Building blocks of Deep Learning . 46

3.4.1 Layers . 46

3.4.2 Blocks . 49

3.5 Learning Paradigms . 52

3.5.1 Unsupervised learning . 53

3.5.2 Self-Supervised Learning . 56

3.5.3 Meta-learning . 60

3.5.4 In-context learning . 62

4 Deep Learning for solving PDEs 64

4.1 Physical priors for Deep Learning . 64

4.2 Hybrid modeling . 66

4.3 Data-centric approaches . 68

4.3.1 Neural surrogates . 68

4.3.2 Operator learning . 70

4.3.3 Learning with multiple physical parameters 74

II Contributions 77

5 Operator Learning with Neural Fields: Tackling PDEs on General

Geometries 78

5.1 Introduction . 79

5.2 Related Work . 80

5.3 The CORAL Framework . 82

5.3.1 Problem Description . 82

5.3.2 Model . 83

Contents xv

5.3.3 Practical implementation: decoding by INR Modulation . . . 85

5.3.4 Training . 85

5.4 Experiments . 86

5.4.1 Initial Value Problem . 86

5.4.2 Dynamics Modeling . 88

5.4.3 Geometry-aware inference . 91

5.5 Discussion and limitations . 92

5.6 Conclusion . 92

6 Infinity: Neural Field Modeling for Reynolds-Averaged Navier-

Stokes Equations 93

6.1 Introduction and motivation . 94

6.2 Method . 95

6.2.1 Problem setting . 95

6.2.2 Model . 97

6.2.3 Training . 98

6.3 Experiments . 99

6.4 Conclusion . 101

7 Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields 102

7.1 Introduction . 103

7.2 Problem setting . 104

7.3 Model Description . 105

7.3.1 Model overview . 105

7.3.2 Encoder-decoder description 106

7.3.3 Transformer-based diffusion 108

7.4 Experiments . 109

7.4.1 Dynamics on regular grids . 109

7.4.2 Dynamics on irregular grids with shared geometries 111

7.4.3 Dynamics on different geometries 113

7.4.4 Long rollouts and uncertainty quantification 113

7.5 Related Work . 115

7.6 Conclusion and Limitations . 116

8 Zebra: In-Context and Generative Pretraining for Solving Para-

metric PDEs 117

8.1 Introduction . 118

8.2 Problem setting . 121

8.2.1 Solving parametric PDEs . 121

8.2.2 Adaptation for parametric PDE 121

8.3 Zebra Framework . 122

xvi Contents

8.3.1 Learning a finite vocabulary of physical phenomena 123

8.3.2 In-context modeling . 123

8.3.3 Next-token pretraining . 124

8.3.4 Flexible inference: prompting and sampling 124

8.4 Experiments . 125

8.4.1 Datasets details . 125

8.4.2 In-distribution generalization 126

8.4.3 Out-of-distribution generalization 128

8.4.4 Generative ability of the model 129

8.4.5 Accelerating inference . 131

8.5 Limitations . 132

8.6 Conclusion . 133

III Conclusion 134

9 Conclusion 135

9.1 Synthesis . 135

9.1.1 Meshless operators . 135

9.1.2 In-context adaptation for solving PDEs 136

9.2 Limitations . 136

9.3 Perspectives . 137

Bibliography 139

A Appendix of Chapter 5 168

A.1 Dataset Details . 168

A.1.1 Initial Value Problem . 168

A.1.2 Dynamics Modeling . 168

A.1.3 Geometric aware inference . 170

A.2 Implementation Details . 171

A.2.1 CORAL . 172

A.2.2 Baseline Implementation . 179

A.3 Supplementary Results for Dynamics Modeling 180

A.3.1 Robustness to Resolution Changes 180

A.3.2 Learning a Dynamics on Different Grids 181

A.3.3 Training Time . 181

A.3.4 Inference Time . 182

A.3.5 Propagation of Errors Through Time 183

A.3.6 Benchmarking INRs for CORAL 185

A.3.7 Impact of 2nd order meta-learning 185

A.3.8 Key hyper parameter analysis 186

Contents xvii

A.4 Supplementary results for geometry-aware inference 187

A.4.1 Inverse Design for NACA-airfoil 187

A.5 Qualitative results . 187

A.5.1 Initial Value Problem . 187

A.5.2 Dynamics modeling . 189

A.5.3 Geometry-aware inference . 189

B Appendix of Chapter 7 193

B.1 Extended Related Work . 193

B.2 Implementation details . 193

B.2.1 Hyperparameters . 197

B.3 Additional results . 199

B.3.1 Time complexity analysis . 199

B.3.2 Encoding interpretation . 200

B.3.3 Example rollouts . 200

B.3.4 Scaling experiments . 202

B.3.5 Spatial tokens perturbation analysis 202

B.3.6 Ablation studies . 206

B.3.7 Kuramoto-Sivashinsky : a failure case 207

B.3.8 Latent space dynamics . 208

C Appendix of Chapter 8 212

C.1 Related Work . 212

C.1.1 Learning parametric PDEs . 212

C.1.2 Generative models . 214

C.2 Dataset details . 214

C.2.1 Advection . 214

C.2.2 Burgers . 215

C.2.3 Heat . 215

C.2.4 Wave boundary . 216

C.2.5 Combined equation . 216

C.2.6 Vorticity . 217

C.2.7 Wave 2D . 217

C.3 Architecture details . 218

C.3.1 Baseline implementations . 218

C.3.2 Zebra additional details . 219

C.3.3 Auto-regressive transformer 222

C.3.4 VQVAE . 222

C.4 Additional Quantitative results . 229

C.4.1 Alternative pretrainings . 229

C.4.2 Uncertainty quantification . 230

xviii Contents

C.4.3 Analysis of the generation . 235

C.4.4 Dataset scaling analysis . 237

C.4.5 Inference time comparison . 238

C.4.6 Influence of the codebook size 238

C.4.7 Reconstruction errors . 239

C.5 Qualitative results . 240

C.5.1 Advection . 241

C.5.2 Burgers . 243

C.5.3 Heat . 247

C.5.4 Wave boundary . 247

C.5.5 Combined equation . 249

C.5.6 Vorticity . 250

C.5.7 Wave 2D . 252

List of Figures

2.1 Schema of the 1D system to derive heat equation 12

2.2 Discretized solution of the LV equations 19

2.3 Burgers’ equation example . 22

3.1 UNet architecture . 50

3.2 Original transformer architecture from Vaswani et al. (2017). 51

3.3 Simplified view of an Autoencoder. 54

3.4 Neural field example . 55

3.5 Simplified view of an Auto-decoder 61

4.1 DeepONet architecture . 72

4.2 FNO architecture . 74

5.1 Tasks addressed by CORAL . 81

5.2 CORAL’s inference . 83

6.1 INFINITY’s inference . 96

7.1 AROMA’s inference . 105

7.2 Spatial interpretation of the tokens in AROMA 108

7.3 Correlation through time of AROMA’s prediction with ground truth . 114

8.1 Zebra’s inference . 122

8.2 One-shot prediction with Zebra in OoD regime on Vorticity 128

8.3 Uncertainty quantification with Zebra in a one-shot setting on Heat

equation. 130

8.4 PCA Visualization of generated (blue) vs. real (orange) trajectories

on Combined Equation. 131

A.1 CORAL decoders for the input and output functions 173

A.2 CORAL encoder for the input function 175

A.3 CORAL training framework . 176

A.4 Inference time analysis of CORAL vs baselines 183

A.5 Errors along a given trajectory for CORAL vs baselines 184

xix

xx List of Figures

A.6 First-order and second-order meta-learning comparison for CORAL . 186

A.7 Design optimization of a NACA-Airfoil with CORAL 188

A.8 CORAL prediction on Cylinder . 188

A.9 CORAL prediction on Airfoil . 189

A.10 CORAL prediction on Navier-Stokes 190

A.11 CORAL prediction on Shallow-Water 190

A.12 CORAL prediction on NACA-Euler 191

A.13 CORAL prediction on Pipe . 191

A.14 CORAL prediction on Elasticity . 192

B.1 AROMA’s processor denoising training framework 194

B.2 AROMA’s processor inference . 195

B.3 Architecture of our encoder and decoder of AROMA 195

B.4 Single-band local INR decoder of AROMA 196

B.5 Multi-band local INR decoder of AROMA 197

B.6 Analysis of the cross-attention maps in AROMA 200

B.7 Test example of a long rollout trajectory with AROMA on Burgers . 201

B.8 Uncertainty of AROMA over rollout steps 201

B.9 Test example rollout trajectory with AROMA on Navier-Stokes 1×10−3201

B.10 Visualization of AROMA’s predictions on Cylinder beyond the train-

ing horizon . 202

B.11 Scaling comparison of AROMA & CORAL 202

B.12 Perturbation analysis on Burgers. Token 0. 203

B.13 Perturbation analysis on Burgers. Token 1. 203

B.14 Perturbation analysis on Burgers. Token 2. 204

B.15 Perturbation analysis on Burgers. Token 3. 204

B.16 Perturbation analysis on Burgers. Token 5. 204

B.17 Perturbation analysis on Burgers. Token 6. 204

B.18 Perturbation analysis on Burgers. Token 7. 205

B.19 Perturbation analysis on Burgers. Token 8. 205

B.20 Qualitative results on KS equation. 208

B.21 Latent space dynamics on Navier-Stokes - Mean tokens over time. . . 209

B.22 Latent space dynamics on Navier-Stokes - Logvar tokens over time . . 210

B.23 Latent space dynamics on Navier-Stokes - Predicted tokens over time. 211

C.1 Zebra’s pretraining . 220

C.2 Zebra’s inference from context trajectory 221

C.3 Zebra + UNet inference pipeline . 222

C.4 Generation possibilities with Zebra 223

C.5 Zebra’s transformer architecture . 224

C.6 Zebra’s VQVAE overview . 226

C.7 Architecture of Zebra’s VQVAE for 1D datasets. 227

List of Figures xxi

C.8 Architecture of Zebra’s VQVAE for 2D datasets. 228

C.9 Generative vs deterministic next-token transformer - training com-

parison . 229

C.10 Instabilities with next-token deterministic transformer 230

C.11 Deterministic next-token transformer fails at adaptation 231

C.12 Uncertainty quantification with Zebra in a one-shot setting on Heat

equation . 232

C.13 Uncertainty quantification with Zebra 234

C.14 Unconditional generation on Vorticity 2D with Zebra 235

C.15 Qualitative analysis of generated trajectories with Zebra 237

C.16 Dataset scaling analysis. One-shot error on the test set vs. the train-

ing dataset size. 238

C.17 One-shot accuracy vs codebook size with Zebra 240

C.18 One-shot adaptation on Advection 241

C.19 Uncertainty quantification on Advection 242

C.20 One-shot adaptation on Burgers . 243

C.21 Uncertainty quantification on Burgers 244

C.22 One-shot adaptation on Heat . 245

C.23 Uncertainty quantification on Heat 246

C.24 One-shot adaptation on Wave b . 247

C.25 Uncertainty quantification on Wave b 248

C.26 One-shot adaptation on Combined 249

C.27 Uncertainty quantification on Combined equation 250

C.28 One-shot adaptation on Vorticity. Example 1. 250

C.29 One-shot adaptation on Vorticity. Example 2. 251

C.30 One-shot adaptation on Vorticity. Example 3. 251

C.31 One-shot OoD adaptation on Vorticity. Example 1. 251

C.32 One-shot OoD adaptation on Vorticity. Example 2. 251

C.33 One-shot OoD adaptation on Vorticity. Example 3. 252

C.34 One-shot adaptation on Vorticity. Example 1. 252

C.35 One-shot adaptation on Wave2d. Example 2. 252

C.36 One-shot adaptation on Wave2d. Example 3. 252

List of Tables

3.1 Common activation functions and their formulas. 42

5.1 Initial Value Problem - Test results. MSE on normalized data. 87

5.2 Temporal Extrapolation - Test results. Metrics in MSE. 90

5.3 Geometry aware inference - Test results. Relative L2 error. 91

6.1 Test results on AirfRANS . 101

7.1 Model Performance Comparison - Test results. Metrics in Relative L2. 110

7.2 Temporal Extrapolation - Test results. Metrics in MSE. 112

7.3 Dynamics on different geometries - Test results. MSE on normalized

data. 114

8.1 One-shot adaptation results with Zebra 126

8.2 Out-of-distribution results with Zebra 129

8.3 Analysis of the distribution parameterized with Zebra 131

8.4 Inference time comparison for one-shot adaptation 132

8.5 Zebra vs Zebra + UNet comparison 132

A.1 CORAL hyper-parameters for IVP/ Geometry-aware inference 178

A.2 CORAL hyper-parameters for dynamics modeling 178

A.3 Up-sampling capabilities - Test results on Navier-Stokes dataset. Met-

rics in MSE. 181

A.4 Up-sampling capabilities - Test results on Shallow-Water dataset.

Metrics in MSE. 182

A.5 Learning dynamics on different grids - Test results in the extrapola-

tion setting. Metrics in MSE. 183

A.6 Training time comparison - Expressed in days (d) or hours (h) on

several datasets. 185

A.7 CORAL results with different INRs. - Test results in the extrapola-

tion setting on Navier-Stokes dataset. Metrics in MSE. 186

A.8 Hyperparameter study for CORAL 187

B.1 Diffusion Transformer Hyperparameters for Different Datasets 197

xxii

List of Tables xxiii

B.2 Hyperparameters of the Encoder-Decoder for Different Datasets . . . 199

B.3 Influence of the number of tokens for AROMA 206

B.4 Ablation Study. Metrics in Relative L2 on the test set. 207

B.5 Test results on the KS equation for AROMA 207

C.1 Dataset Summary for Zebra . 215

C.2 Hyperparameters for Zebra’s Transformer 224

C.3 Hyperparameters for Zebra’s VQVAE 226

C.4 Uncertainty quantification in the one-shot setting. 233

C.5 Fidelity and diversity metrics. 236

C.6 Comparison of distributions for Zebra 236

C.7 Inference times for one-shot adaptation 239

C.8 Influence of the codebook size . 239

C.9 Reconstruction errors with Zebra . 239

Part I

Research Context

1

Chapter 1

Introduction

1.1 Context and challenges . 2

1.2 Motivations for Using Deep Learning to Solve PDEs 3

1.3 Research Objectives . 5

1.4 Core Contributions . 5

1.4.1 Meshless operators . 6

1.4.2 In-context adaptation for solving PDEs 8

1.5 Other contributions . 8

1.6 Structure of the thesis . 10

1.1 Context and challenges

Modeling physical, chemical or biological systems with partial differential equations

(PDEs) is a cornerstone of science and engineering. Unfortunately, obtaining solu-

tions to these equations is not trivial, and except under simplifying assumptions it

is not possible to obtain them analytically. Therefore, numerically solving PDEs

with solvers is the standard way to find approximate solutions (Olver, 2007). These

solvers implement a discretized version of the original PDE formulation, and come

with various convergence guarantees and error bounds on the approximation error.

Given the highly diverse nature of physical phenomena and range of applications,

there exists a variety of solvers, designed for some particular systems (Quarteroni

and Valli, 2008). For example, finite differences are usually restricted to regular

domains, while finite elements are a good default choice for systems with irregular

boundaries and geometries. There is also a trade-off between accuracy or stabil-

ity and efficiency of the method, which means that the amount of computational

resource is a key criterion for the choice of numerical scheme. The stability of a

solver can depend on key parameters of the equation itself (Courant et al., 1967),

2

1.2. Motivations for Using Deep Learning to Solve PDEs 3

but also on the conditions at the boundary and even the initial condition (Hairer

and Wanner, 2010). All these factors make the choice of a solver a case-by-case

decision.

Solving a PDE enables to gain knowledge over a particular system or model. It

can be used, among others, to achieve temporal forecasting (e.g. in weather model-

ing), design exploration and optimization (e.g. in aerodynamics), and inference of

parameters (e.g. in epidemic modeling) (Ohana et al., 2024). For example, solv-

ing the equations of the atmosphere (Richardson and Lynch, 1922; Simmons et al.,

1989) lets us determine how the system will evolve over time and therefore performs

a forecast. Similarly, solving the RANS equation around a cylinder or an airfoil

leads to a prediction of the steady-state of the system and thus to an assessment of

key properties of the design (Bonnet et al., 2022). Instead of building and testing

real prototypes, which can be costly and inefficient, engineers can optimize designs

with in-silico simulations (Catalani et al., 2024). This can drastically accelerate the

exploration and evaluation of new designs for complex industrial systems. Finally,

aligning numerical simulations with observational data allows scientists to infer un-

known modeling parameters (Cranmer et al., 2019).

1.2 Motivations for Using Deep Learning to Solve

PDEs

In this manuscript, we will present existing deep learning (Goodfellow, 2016) meth-

ods for solving PDEs as well as introduce novel frameworks to address key challenges.

Before delving into the specific research objectives and context of our work, we first

provide an intuition as to why deep learning holds potential in solving PDEs.

As mentioned above, numerical solvers are powerful tools for obtaining PDE

solutions, yet they come with notable drawbacks. Namely, they require substan-

tial expertise to work in practice and are computationally expensive, especially for

high-dimensional problems. While hardware advancements can address memory lim-

itations to some extent, reducing simulation times remains a persistent challenge.

Therefore, designing an efficient solver requires a deep understanding of the prob-

lem’s physics, as well as careful choices in numerical schemes, which is critical to

balance efficiency and accuracy. Factors such as the equation’s stiffness, the domain

resolution, and the temporal or spatial ranges of interest are critical for this matter.

However, even with carefully tuned solvers, running simulations that resolve

all scales of a problem (known as direct numerical simulations, or DNS) remains

computationally expensive. DNS seeks to capture all scales and their interactions,

which makes the simulations highly accurate but impractical for many applications

(Ferziger and Peric, 1996).

To mitigate computational costs, researchers often turn to reduced-order models

4 Chapter 1. Introduction

(ROMs, Brunton and Kutz (2019)) and parametrization techniques such as Large

Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS). These meth-

ods simplify the problem either by projecting the system onto a lower-dimensional

space, as in Proper Orthogonal Decomposition (POD), or by modeling unresolved

scales using closure terms.

However, these approaches come with limitations. Classical ROMs, such as those

based on POD, are typically constructed using the first snapshots of a trajectory

and rely on linear dimensionality reduction techniques. As a result, they primarily

capture the dominant modes present in the early stages of the system, which may

limit their ability to accurately represent the dynamics at later time steps. Addi-

tionally, in the classical setting, ROMs are usually built from a single trajectory or

a restricted set of conditions rather than learning representations across multiple

trajectories. This lack of cross-trajectory learning makes them highly dependent on

the specific conditions used during the basis construction, reducing their ability to

generalize to new scenarios.

Similarly, closure terms in LES and RANS are often derived from empirical

studies or theoretical approximations rather than being systematically learned from

data. These models rely on heuristics that may perform well under specific condi-

tions but fail to generalize across different flow regimes. Tuning these parameters to

align simulations with experimental data can require significant manual effort and

iterative calibration. For instance, in weather modeling, handcrafted parameteriza-

tions have been shown to be less efficient than those learned entirely through deep

learning (Kochkov et al., 2023).

Deep learning offers the ability to learn representations directly from simula-

tion data, making it possible to develop more adaptive and generalizable modeling

approaches. Over the past decade, deep learning has transformed fields such as

natural language processing and computer vision by training models on large-scale

datasets, where it has consistently outperformed traditional methods that rely on

handcrafted features. This success suggests that similar data-driven approaches

could be leveraged to solve PDEs more efficiently.

Deep learning has already been applied to PDE modeling in various ways, which

can be categorized as follows: (i) Physics informed deep learning : These methods re-

place traditional solvers entirely by formulating instance-specific optimization prob-

lems, where neural networks act as function approximators and leverage automatic

differentiation to directly solve PDEs. (ii) Hybrid modeling : Instead of replacing

numerical solvers, this approach integrates neural networks as parameterizations to

improve existing models, helping to capture unresolved scales or model partially

known physical processes. (iii) Data-driven neural surrogates : These models learn

to approximate the time-stepping process of a PDE, providing a significantly faster

alternative to numerical solvers. They are trained on data without requiring prior

knowledge of the governing equations.

1.3. Research Objectives 5

1.3 Research Objectives

This thesis focuses on data-centric approaches, specifically neural surrogates, which

align closely with the deep learning paradigm that has achieved remarkable success

in text and image processing. However, key challenges arise when applying these

methods to PDEs. In this work, we address the two main following aspects:

1. Improving generalization with respect to changes in domain dis-

cretization and geometry

• Handling irregular domains Neural surrogates must generalize be-

yond regular grids to varying domains and discretizations. Many CFD

applications, such as airfoil or car design optimization, involve irregular

meshes. Similarly, weather models rely on sparse and unevenly spaced

spatiotemporal observations. Existing neural architectures are not well-

suited for such settings.

• Encoding domain geometry To generalize across geometries, a neural

surrogate should integrate essential information about the domain and

its boundary conditions. Current architectures typically rely on precom-

puted features to encode this information.

2. Improving generalization with respect to new dynamics

• Adaptive solutions at inference A neural surrogate should be versa-

tile across different PDEs, capable of handling variations in coefficients,

forcing terms, and boundary conditions. It should adapt seamlessly to

these changes at inference without requiring finetuning.

• Uncertainty quantification In the presence of varying or previously

unseen dynamics, reliable neural surrogates should quantify the uncer-

tainty of their predictions. Standard surrogates typically regress the field

values at the next time step, effectively learning to predict the poste-

rior mean. However, real-world applications demand not just a mean

estimate, but also a measure of confidence.

1.4 Core Contributions

In this manuscript, we take a step-by-step approach to tackling these challenges.

Our contributions address key aspects of these problems, laying a solid foundation

for further exploration and expansion.

(i) We present Coral, a novel operator learning framework based on neural

fields, designed to overcome limitations related to discretization meshes. Coral en-

ables geometry-aware dynamics modeling on data discretized over regular grids,

6 Chapter 1. Introduction

irregular meshes, and even unstructured point clouds. (ii) We introduce Infinity,

a specialized variant of Coral tailored for solving Reynolds-Averaged Navier-Stokes

(RANS) equations. Infinity extends Coral by incorporating geometric features (e.g.,

signed distance functions) and flow parameters (e.g., inlet velocities). We evaluate

its performance on datasets representative of real-world CFD challenges. (iii) We

develop Aroma, an enhanced neural surrogate that builds upon Coral and exist-

ing transformer-based approaches. Aroma employs an encoder-decoder architecture

that maps observations to latent tokens while encoding domain geometry. To im-

prove temporal stability during inference, it leverages a diffusion-based transformer

to model time evolution. (iv) Drawing inspiration from the in-context learning capa-

bilities of large language models, we propose Zebra, a novel framework for solving

PDEs via example-based conditioning. Zebra adapts trajectory forecasts to various

prompts, such as past observations or similar trajectories. It uses vector quantiza-

tion to discretize observations into a physics-informed vocabulary and a decoder-only

transformer trained with a next-token objective. A dedicated data pipeline enables

pretraining on diverse dynamical systems, fostering strong generalization.

These contributions, which will be discussed in detail in Part II, are summarized

below.

1.4.1 Meshless operators

Operator Learning with Neural Fields: Tackling PDEs on General Ge-

ometries. Machine learning approaches for solving partial differential equations

require learning mappings between function spaces. While convolutional or graph

neural networks are constrained to discretized functions, neural operators present a

promising milestone toward mapping functions directly. Despite impressive results

they still face challenges with respect to the domain geometry and typically rely

on some form of discretization. In order to alleviate such limitations, we present

CORAL, a new method that leverages coordinate-based networks for solving PDEs

on general geometries. CORAL is designed to remove constraints on the input mesh,

making it applicable to any spatial sampling and geometry. Its ability extends to

diverse problem domains, including PDE solving, spatio-temporal forecasting, and

geometry-aware inference. CORAL demonstrates robust performance across multi-

ple resolutions and performs well in both convex and non-convex domains, surpassing

or performing on par with state-of-the-art models.

Serrano, L., Le Boudec, L., Kassäı Koupäı, A., Wang, T. X., Yin, Y., Vittaut,

J. N., Gallinari, P. (2023). Operator learning with neural fields: Tackling pdes

on general geometries. Neurips 2023.

1.4. Core Contributions 7

Infinity: Neural Field Modeling for Reynolds-Averaged Navier-Stokes

Equations For numerical design, the development of efficient and accurate sur-

rogate models is paramount. They allow us to approximate complex physical phe-

nomena, thereby reducing the computational bur- den of direct numerical simula-

tions. We propose INFINITY, a deep learning model that utilizes implicit neural

representations (INRs) to address this challenge. Our framework encodes geometric

information and physical fields into compact representations and learns a mapping

between them to infer the physical fields. We use an airfoil design optimization prob-

lem as an example task and we evaluate our approach on the challenging AirfRANS

dataset, which closely resembles real-world industrial use-cases. The experimental

results demonstrate that our framework achieves state-of-the-art performance by

accurately inferring physical fields throughout the volume and surface. Additionally

we demonstrate its applicability in contexts such as design exploration and shape op-

timization: our model can correctly predict drag and lift coefficients while adhering

to the equations.

Serrano, L., Migus, L., Yin, Y., Mazari, J. A., Gallinari, P. (2023). Infinity:

Neural field modeling for reynolds-averaged navier-stokes equations. ICML

2023 SynS ML workshop.

AROMA: Preserving Spatial Structure for Latent PDE Modeling with

Local Neural Fields. We present AROMA (Attentive Reduced Order Model

with Attention), a novel framework for modeling partial differential equations that

combines the strengths of transformers and local neural fields. AROMA features a

flexible encoder-decoder architecture composed of cross-attention and self-attention

blocks, enabling the extraction of smooth latent representations from spatial phys-

ical fields across diverse input formats, including irregular grids and point clouds.

This versatility removes the need for arbitrary patching schemes typically used with

transformers, facilitating efficient processing of complex geometries. The sequen-

tial structure of the latent representation can be interpreted spatially and supports

the use of a conditional transformer to model temporal dynamics. By adopting

a diffusion-based formulation, AROMA improves inference stability and enables

longer, reliable rollouts compared to conventional MSE-based training. We demon-

strate AROMA’s effectiveness in simulating 1D and 2D PDEs, showcasing its ability

to capture complex dynamical behaviors with high fidelity.

Serrano, L., Wang, T. X., Naour, E. L., Vittaut, J. N., Gallinari, P. (2024).

AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields. Neurips 2024.

8 Chapter 1. Introduction

1.4.2 In-context adaptation for solving PDEs

Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs Solving time-dependent parametric partial differential equations is chal-

lenging, as models must adapt to variations in parameters such as coefficients, forc-

ing terms, and boundary conditions. Data-driven neural solvers either train on data

sampled from the PDE parameters distribution in the hope that the model gener-

alizes to new instances or rely on gradient-based adaptation and meta-learning to

implicitly encode the dynamics from observations. This often comes with increased

inference complexity. Inspired by the in-context learning capabilities of large lan-

guage models (LLMs), we introduce Zebra, a novel generative auto-regressive trans-

former designed to solve parametric PDEs without requiring gradient adaptation at

inference. By leveraging in-context information during both pre-training and infer-

ence, Zebra dynamically adapts to new tasks by conditioning on input sequences

that incorporate context trajectories or preceding states. This approach enables

Zebra to flexibly handle arbitrarily sized context inputs and supports uncertainty

quantification through the sampling of multiple solution trajectories. We evaluate

Zebra across a variety of challenging PDE scenarios, demonstrating its adaptability,

robustness, and superior performance compared to existing approaches.

Serrano, L., Koupäı, A. K., Wang, T. X., Erbacher, P., Gallinari, P. (2024).

Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs.

ICML 2025.

1.5 Other contributions

Here, two contributions are mentioned that are not detailed in this manuscript, but

were carried out during the course of this thesis. The first is a collaboration with

Etienne Le Naour, whose PhD focused on time-series forecasting and imputation.

We found that the method I developed in Coral could be effectively transferred to

his domain of expertise, and we jointly explored this extension of the framework.

This collaboration resulted in a publication in Transactions on Machine Learning

Research (TMLR) in 2024.

Time series continuous modeling for imputation and forecasting with im-

plicit neural representations. In this contribution, we present a novel mod-

eling approach called ”TimeFlow” for time series imputation and forecasting that

addresses challenges in real-world data, such as irregular samples, missing data, and

unaligned measurements from multiple sensors. Our method utilizes a continuous-

time model of the series’ evolution dynamics and incorporates conditional, implicit

neural representations for sequential data. A modulation mechanism, driven by

1.5. Other contributions 9

meta-learning, allows adaptation to new samples and long-term extrapolation be-

yond observed time windows. This model offers a flexible and unified framework for

both imputation and forecasting tasks in diverse scenarios. It demonstrates state-

of-the-art performance on classic benchmarks and surpasses other time-continuous

models.

Le Naour, E., Serrano, L., Migus, L., Yin, Y., Agoua, G., Baskiotis, N., Gal-

linari, P., and Guigue, V. Time Series Continuous Modeling for Impu-

tation and Forecasting with Implicit Neural Representations. Trans-

actions on Machine Learning Research (TMLR) 2024.

The second contribution is an early version of Zebra, in which I explored replac-

ing the discrete tokenization and transformer architecture commonly used in large

language models – later adopted in the final version of Zebra – with a continuous

distribution-based approach. This method did not achieve the desired performance,

and it was uncertain at the time whether it could support in-context learning within

the proposed architecture, therefore I ultimately returned to a discrete formulation

for Zebra. Nevertheless, this preliminary investigation opened a new research direc-

tion that is now being actively investigated within the team.

Zebra: A Continuous Generative Transformer for Solving Parametric

PDEs Tokenization is a cornerstone of language modeling, enabling the discretiza-

tion of values into a finite vocabulary. This approach has demonstrated exceptional

scalability across language, image, and video generation tasks. However, for spatial

modalities such as images, videos, and physical fields, discrete encoders often pro-

duce latent representations with lower reconstruction accuracy compared to their

continuous counterparts. In this work, we introduce a continuous version of Zebra:

an auto-regressive transformer operating in a continuous domain, with its output

distribution parameterized by a mixture of Gaussians. Pre-trained on specific fam-

ilies of PDEs, Zebra excels in dynamic forecasting, outperforming existing neural

operators and solvers. Furthermore, it paves the way for the development of foun-

dation models extensively pre-trained on diverse PDE scenarios, enabling effective

solutions to PDE challenges with limited data.

Serrano, L., Erbacher, P. , Vittaut, J.N., Gallinari, P. (2024). Zebra: a

continuous generative transformer for solving parametric PDEs. ICLR 2024

AI4PDE workshop.

10 Chapter 1. Introduction

1.6 Structure of the thesis

This thesis is organized as follows:

• Chapter 2 provides an overview of the fundamental concepts of partial differ-

ential equations and the numerical techniques used in traditional solvers.

• Chapter 3 covers the foundations of deep learning.

• Chapter 4 sheds light on existing methods for tackling the resolution of PDEs.

• Chapter 5 presents our first contribution, which leverages neural fields to solve

PDEs. We validate the proposed framework through experiments on various

tasks, including initial value problems, dynamics modeling, and geometry-

aware inference.

• Chapter 6 extends the previous neural field framework to address RANS equa-

tions around airfoil geometries, with a particular focus on learning represen-

tations of shape and boundary conditions.

• Chapter 7 introduces a framework utilizing attention mechanisms to handle

irregular grids and geometries in complex datasets. This chapter emphasizes

modeling dynamics in such scenarios.

• Chapter 8 outlines our final contribution, focused on solving parametric PDEs.

We propose a novel in-context and generative pretraining approach, enabling

few-shot adaptation during inference.

• Chapter 9 discusses the key limitations of our contributions and outlines di-

rections for future research.

Chapter 2

Some notions on Partial

Differential Equations

In this section, we present core concepts related to the resolution of partial differ-

ential equations. Our objective is to demonstrate how classical methods for solving

PDEs operate and to provide intuition for readers without a background in physics.

This section is not intended to be exhaustive, but aims to offer insights and per-

spectives that contextualize the contributions made in this thesis. Readers already

familiar with partial differential equations may skip this chapter. For those seeking

a deeper understanding, we recommend Olver (2007) as a comprehensive reference.

We begin by illustrating what a PDE is and how to solve it analytically through

a simple example (Section 2.1). Next, we introduce fundamental concepts in the

field (Section 2.2), followed by an overview of numerical solvers used to solve these

equations (Section 2.3). Finally, we discuss dimensionality reduction and parame-

terization techniques (Section 2.4) that simplify the resolution process, highlighting

the relevance and advantages of Deep Learning methods.

2.1 A first PDE example . 12

2.1.1 Heat equation derivation . 12

2.1.2 Initial boundary value problem formulation 14

2.1.3 Analytical solutions . 15

2.2 ODEs and PDEs . 17

2.2.1 Definitions . 17

2.2.2 Fundamental properties of PDEs 21

2.2.3 Non-linear equations . 24

2.3 Numerical Solvers . 26

2.3.1 Finite differences . 26

2.3.2 Finite elements . 29

2.3.3 Time integration . 32

11

12 Chapter 2. Some notions on Partial Differential Equations

2.3.4 Key properties of numerical solvers 34

2.4 Reduction of complexity . 35

2.4.1 Reduced Order Models . 35

2.4.2 Parameterization . 37

2.1 A first PDE example

Partial differential equations naturally arise from the mathematical formulation of

physics first principles. These principles often involve the conservation of physical

quantities, such as mass or momentum, across space and time. Here, we illustrate

this derivation process through the heat equation, serving as our first PDE example.

In a simplified setting, we then employ the method of separation of variables, an

analytical technique, to obtain a solution to this equation.

spatial axis

Temperature at
time t in Kelvin

Figure 2.1: u(x, t) is the temperature of the system at spatial coordinate x and time
t expressed in Kelvin, while q is the heat flux (here in Watt, denoted W, as the
system is 1-dimensional).

2.1.1 Heat equation derivation

The heat equation plays a fundamental role in engineering and science. It is a linear,

homogeneous and second-order PDE, which makes it canonical, in the sense that

it is possible to analytically derive solutions and study them. Therefore, it holds a

particular place for better understanding partial differential equations and studying

their resolution. This equation, first studied by Joseph Fourier himself, describes

the evolution of the temperature in a solid material over time due to the conduction

of heat.

2.1. A first PDE example 13

Consider a rod of length L that we treat as one-dimensional, with mass density

ρ (in kg/m3), specific heat capacity cp (in J/(kg·K)), and thermal conductivity κ (in

W/(m·K)). The temperature u(x, t) evolves as a function of the spatial coordinate

x ∈ [0, L] and time t ∈ [0, T]. For clarity, we define the interior of the domain as

Ω = (0, L) and the boundary as ∂Ω = {0}∪{L}. The whole domain is Ω̄ = Ω∪ ∂Ω.

To derive the governing equation for u(x, t), we apply conservation principles to

the system. In this scenario, where the medium is solid and no mass is transported,

heat energy is the conserved quantity. The continuity equation reads as follows: the

rate of change of heat energy in time is equal to the instantaneous transfer of heat

energy at the boundary of the system, plus the sources and sink of energy within

the system. Heat transfer in this one-dimensional setup occurs exclusively through

conduction, as there is no convective heat transfer and we neglect radiative effects.

Mathematically, this yields the following equation:

dQ

dt
= (q(x = 0, t)− q(x = L, t)) + F (t) (2.1)

where Q is the total heat energy of the system, q is the heat flux (J/s or W)

that goes from high temperatures to low temperatures, and F (t) is the source term

within the domain Ω.

It is known from experimental observations (Cannon, 1984) that the total heat

energy in the rod at time t is proportional to the temperature u, the mass density

ρ, and the specific heat capacity cp. Mathematically, this is expressed as:

Q(t) =

∫ L

0

ρcpu(x, t) dx, (2.2)

Similarly, the source term can be expressed as an integral over the domain in function

of a localized source term f(x, t):

F (t) =

∫ L

0

f(x, t) dx, (2.3)

On the other hand, the heat flux q, depends on the thermal conductivity κ of

the material, and the temperature gradient ∂u
∂x

according to Fourier’s Law (Cannon,

1984). For a one-dimensional rod, the heat flux across the boundaries is given by:

q(x, t) = −κ∂u(x, t)

∂x
(2.4)

where the negative sign reflects the principle that heat flows from hotter to

cooler regions. Using the fundamental theorem of calculus (analogous to Gauss’s

divergence theorem in higher dimensions), we can reformulate the following:

q(x = 0, t)− q(x = L, t) = −
∫ L

0

−κ∂
2u(x, t)

∂x2
dx (2.5)

14 Chapter 2. Some notions on Partial Differential Equations

Gathering all the pieces together, we can express everything in terms of domain

integrals (instead of surface integrals) and we obtain the following integral equation:∫ L

0

ρcp
∂u

∂t
dx = κ

∫ L

0

∂2u

∂x2
dx+

∫ L

0

f(x, t) dx. (2.6)

This equality must hold for any subdomain of the material, leading to the local

form of the heat equation:

ρcp
∂u

∂t
= κ

∂2u

∂x2
+ f(x, t) (2.7)

For a homogeneous material where ρ, cp, and κ are constant, the equation reads:

∂u

∂t
= α

∂2u

∂x2
+

1

ρcp
f(x, t), (2.8)

where α = κ
ρcp

is the thermal diffusivity, a parameter that quantifies the rate at

which heat spreads through the material.

2.1.2 Initial boundary value problem formulation

To simplify the problem, we will neglect the source term (f(x, t) = 0) and focus on

the homogeneous equation:

∂u

∂t
= α

∂2u

∂x2
(2.9)

Once the physical problem has been translated into a mathematical equation,

the next step is to determine how to find a temperature function u(x, t) that satisfies

the heat equation. Equally important is the question of whether a solution exists at

all. For example, in the case of the 3D Navier-Stokes equations, it remains an open

problem whether smooth solutions always exist (see the Millennium Prize problem

of Clay Mathematics Institute (2000)). In contrast, the heat equation is relatively

simple—it is linear, homogeneous, and second-order—which not only guarantees the

existence of solutions but also often allows them to be expressed analytically.

The equation itself suggests that solutions must be at least once differentiable in

time and twice differentiable in space, as these are necessary for the partial deriva-

tives to be well-defined. To provide intuition that solutions to this problem exist, we

can consider time-independent solutions, where ∂u
∂t

= 0. In this case, the heat equa-

tion reduces to the Laplace equation, which governs steady-state conditions. In one

dimension, the Laplace equation simplifies further and can be solved by integrating

twice over the spatial domain:

2.1. A first PDE example 15

u(x, t) =
∂u

∂x

∣∣
x=0
· x+ u(x = 0).

As this example illustrates, the solution of the heat equation depends not only

on the governing equation itself but also on the conditions imposed at the system’s

boundaries.

If we consider only Equation (2.9), the equation admits infinitely many solutions,

making the problem inherently ill-posed. For instance, if u is a solution, then for

any λ ∈ R∗, the function λu is also a solution due to the equation’s linearity.

Thus, while the heat equation describes the fundamental dynamics of the system,

additional constraints are required to fully determine a unique solution. To resolve

this ambiguity, we introduce two essential elements:

• Initial conditions – These define the temperature state at t = 0, denoted u0(x).

• Boundary conditions – These account for external influences at the domain

boundaries, which are not specified by the governing equation itself. Common

boundary conditions include: (i) Dirichlet boundary conditions, which fix the

temperature at the boundaries, e.g., u(x = 0, t) = u|0(t) and u(x = L, t) =

u|L(t); (ii) Neumann boundary conditions, which specify the thermal flux at

the boundaries, e.g., q(x = 0, t) = 0 and q(x = L, t) = 0, corresponding to

insulated boundaries; (iii) Periodic boundary conditions, which enforce peri-

odicity so that u(x, t)
∣∣
x=0

= u(x, t)
∣∣
x=L

, implying that spatial derivatives also

match at these points.

With these conditions, we can ensure the problem has a unique solution (Muench,

2023) by formulating it as follows:

∂u

∂t
= α

∂2u

∂x2
, ∀x ∈ Ω,

u(x, t = 0) = u0(x),

B(u)
∣∣
∂Ω

= 0,

where u0(x) is a smooth function representing the initial state at t = 0, and B(T)

is the boundary operator enforcing Neumann, Dirichlet, or periodic boundary con-

ditions. These additional constraints resolve the ambiguity, ensuring the existence

of a unique solution.

2.1.3 Analytical solutions

Now let us show, in a simple way, how to derive an analytical solution to the heat

equation. For simplicity, we will consider periodic boundary conditions. The equa-

tion will be solved using the separation of variables principle (see Feldman (2007)

for more details), which intuitively allows us to search for a solution u(x, t) as a

16 Chapter 2. Some notions on Partial Differential Equations

product of a spatial function h and a temporal function g, i.e. u(x, t) = h(x)g(t).

By substituting u(x, t) = h(x)g(t) into the heat equation, we obtain:

h(x)g′(t) = αh′′(x)g(t) (2.10)

Rearranging the terms, and assuming h(x) and g(t) are always non-zero, we find:

h′′(x)

h(x)
=

1

α

g′(t)

g(t)
= −λ (2.11)

where λ ∈ R is a separation constant. This follows from the observation that a

function of x can only equal a function of t if both are constant. Thus, the separation

of variables reduces the partial differential equation into a system of coupled ordinary

differential equations:
h′′(x) = −λh(x),

g′(t) = −αλg(t).

The nature of the solutions for h depends on the sign of λ:

• Case 1: λ = 0

The solution is h(x) = ax+ b. However, periodic boundary conditions require

h(x + L) = h(x), leading to aL + b = b, which implies a = 0. Therefore, h is

constant. This, in turn, makes g constant, contradicting the initial condition

u(x, t = 0) = u0(x) which is generally not constant. Thus, λ = 0 yields no

valid solutions.

• Case 2: λ < 0

The solution for h is h(x) = Ae
√
−λx + Be−

√
−λx. For periodic boundary

conditions, h(x + L) = h(x) must hold. This condition forces A = B = 0,

leaving only the trivial solution u(x, t) = 0.

• Case 3: λ > 0

Let λ = µ2, where µ > 0. The solution for h becomes: h(x) = A cos(µx) +

B sin(µx). Periodic boundary conditions require h(x + L) = h(x), leading to

sin(µL) = 0. This implies µ = nπ
L

for some integer n ≥ 1, giving λ =
(
nπ
L

)2
.

Denoting these eigenvalues by λn, we now solve for g. For each λn, the temporal

equation becomes g′(t) = −αλng(t), For which, the solution is an exponential decay

g(t) = e−αλnt. By the superposition principle, the general solution is:

u(x, t) =
∞∑
n=1

(
An cos

(nπ
L
x
)

+Bn sin
(nπ
L
x
))

e−α(nπ
L)

2
t. (2.12)

To determine An and Bn, we use the initial condition u(x, 0) = u0(x). Projecting

2.2. ODEs and PDEs 17

this equation onto the Fourier basis functions cos
(
nπ
L
x
)

and sin
(
nπ
L
x
)
, we find:

An =
2

L

∫ L

0

u0(x) cos
(nπ
L
x
)
dx, Bn =

2

L

∫ L

0

u0(x) sin
(nπ
L
x
)
dx.

The solution illustrates how the heat equation smooths out an initial temper-

ature distribution over time. Each Fourier mode (indexed by n) decays at a rate

determined by its corresponding eigenvalue λn. Higher-frequency modes (with larger

n) decay more rapidly due to the exponential factor e−α(nπ
L)

2
t. As time increases,

lower-frequency modes dominate the solution, resulting in an increasingly smoother

temperature profile.

Notably, the separation of variables approach assumes that the solution can be

expressed as a product of independent spatial and temporal components. However,

by applying the superposition principle, the complete solution emerges as a sum of

these separable solutions, each associated with a distinct mode.

This technique is just one of many tools available for analyzing and solving partial

differential equations. For a more comprehensive exploration of analytical methods,

such as the method of characteristics, readers may refer to an undergraduate-level

textbook provided in Muench (2023).

2.2 ODEs and PDEs

Now that we understand how PDEs arise and that we have shown how they can

be solved in an analytical way on a simple case, we will introduce some formalism

and explain the different categories of PDEs that occur in scientific and engineering

applications. Throughout this section, we will introduce some equations relevant in

fluid mechanics, and which will motivate the use of numerical solvers.

2.2.1 Definitions

Before introducing formally partial differential equations in space and time, we pro-

vide the definition of a first-order ordinary differential equation (ODE) in time.

Definition 2.2.1. (First-order ODE) Let u : R → Rp be a differentiable func-

tion representing the state of a system at time t. A first-order ordinary differen-

tial equation is satisfied by u if there exists a continuous function g : R×Rp → Rp

such that:

∀t ∈ R,
du

dt
= g(t, u(t)), (2.13)

where g maps the time scalar t and the state vector u(t) to a vector in Rp.

18 Chapter 2. Some notions on Partial Differential Equations

Note that in the case of an ODE, the state of the system u is a function of

a single variable—the time variable. Consequently, no spatial derivatives need to

be considered, unlike in the case of PDEs, where approximating spatial derivatives

becomes essential. This means that if g is known, observing u at time t is theoret-

ically sufficient to predict how the system will evolve over time. Notably, g can be

nonlinear, as illustrated in the following example.

Example 2.2.1. The Lotka-Volterra equations (Lotka, 1925; Volterra, 1928)

form a system of first-order nonlinear differential equations that model the in-

teraction between two populations: prey and predators. The prey population

grows in the absence of predators but declines due to predation, while the preda-

tor population decreases without prey but thrives when prey are abundant. The

system is described by:

dx

dt
= ax− bxy, dy

dt
= cxy − dy,

where x(t) and y(t) represent the prey and predator populations, respectively.

The parameters a, b, c, and d correspond to the intrinsic reproduction rate of

the prey, the rate of prey mortality due to predation, the reproduction rate of

predators proportional to the prey consumed, and the intrinsic mortality rate

of predators.

As in the introductory PDE example, we are interested in finding a solution

u(t) = (x(t), y(t)) that satisfies the ODE for a given particular initial condition u0.

This is called an initial value problem, and we provide its definition below.

Definition 2.2.2. (Initial Value Problem) Given a continuous function g : R×
Rp → Rp and an initial state u0, solving an initial value problem (IVP) for a

first-order ordinary differential equation involves finding a differentiable function

u : R→ Rp that satisfies the ODE:

du

dt
= g(t, u(t)),

and the initial condition:

u(0) = u0,

The solution u(t) describes the system’s trajectory starting from u0 at t = 0.

Under some circumstances, there is an existence and uniqueness guarantee of the

solution to this initial value problem. The proofs of existence and uniqueness can

be found in Peano (1890) for example.

2.2. ODEs and PDEs 19

Example 2.2.2. In the general case, it is not possible to solve the IVP an-

alytically for the Lotka-Volterra equations. However, as we will show in the

section on numerical schemes, it is possible to discretize the dynamics and use

time-integration schemes based on e.g. Euler’s or Runge-Kutta methods (Runge

(1895); Kutta (1901)). We show an example of a solution in Figure 2.2 with a

Runge-Kutta solver. Notice the periodic patterns of the approximated solutions,

which is characteristic of the system’s solution.

0 25 50 75 100 125 150 175 200
Time

0

10

20

30

40

Po
pu

la
tio

n

Prey Population (x)
Predator Population (y)

Figure 2.2: Discretized solution of the LV equations. Starting with (x(0) =
40, y(0) = 10) and with parameters a = d = 0.1 and b = 0.02 and c = 0.01.
We obtain the following solution on [0, 200] with an RK45 scheme.

We now turn to generally introduce the notion of PDE. The main difference

between an ODE and a PDE is that the equation involves several partial derivatives

(at least two) as the state of interest is a function of multiple variables, mainly space

and time.

Definition 2.2.3. (Partial Differential Equation in space and time) Let Ω be

an open set included in Rd, where d is the dimension of the system. Let u :

Ω×R→ Rp be a smooth function representing the state of a system at spatial

location x = (x1, · · · , xd) and time t. A partial differential equation in space

and time is satisfied by u if there exists a continuous function g such that:

∀x, t ∈ Ω× R,
∂u

∂t
= g(µ, x, t, f(x, t), u(t),∇u,∇ · u,∇× u,∇2u, · · ·) (2.14)

where g is now a function of u and its spatial derivatives, but also of coefficient

20 Chapter 2. Some notions on Partial Differential Equations

parameters µ and of an external forcing function f(x, t).

Note that here, we use the∇ notation to represent the operators involving spatial

derivatives. Specifically, ∇u, ∇ · u, ∇× u, and ∇2 denote the gradient, divergence,

curl and laplacian of the field u, respectively. We have already provided a PDE

example in Section 2.1 with the Heat equation, so let us give another example

related to fluid dynamics.

Example 2.2.3. Burgers’ equation is a simplification of the Navier-Stokes equa-

tion (by neglecting the gradient of the pressure) used for representing convec-

tive and diffusive flows. It is a non-linear equation commonly studied in one-

dimension (d = 1):
∂u

∂t
= ν

∂2u

∂x2
− u∂u

∂x
(2.15)

or equivalently using the operators from Equation (2.14):

∂u

∂t
= ν∇2u− (u · ∇)u, (2.16)

where u(x, t) represents the fluid’s velocity, and ν is the viscosity. The terms u∂u
∂x

and ν ∂
2u
∂x2

are the convective (advection) and diffusive effects on the dynamics.

The Burgers’ equation illustrates the formation of shock waves (when ν → 0).

As discussed in Section 2.1, specifying the initial and boundary conditions is es-

sential to fully characterize the system, a formulation known as an initial boundary

value problem. Additionally, multiple conservation laws may be required to pro-

vide independent constraints on the system. A system is considered closed, or fully

characterized, when there are, in theory, a sufficient number of equations, along

with appropriate initial and boundary conditions, to uniquely determine the solu-

tion. Furthermore, the initial boundary value problem is considered well-posed if it

satisfies three criteria: (1) a solution exists, (2) the solution is unique, and (3) the

solution depends continuously on the input parameters (i.e. it is stable).

Definition 2.2.4. (Initial Boundary Value Problem or IBVP). The state u

satisfies an initial boundary value problem associated with Equation (2.14) if:

∂u

∂t
= g(µ, x, t, f(x, t), u,∇u,∇2u, . . .), ∀(x, t) ∈ Ω× R,

u(x, t0) = u0(x), ∀x ∈ Ω,

B(u,∇u, x, t) = 0, ∀(x, t) ∈ ∂Ω× R,

(2.17)

2.2. ODEs and PDEs 21

where B is a boundary operator involving u and its spatial derivatives on ∂Ω

(e.g., Dirichlet or Neumann conditions), and u0(x) is the initial condition.

Example 2.2.4. Even though Burgers’ equation is non-linear, it remains pos-

sible to analyze its solutions. For ν > 0, analytical solutions can be obtained

using the Cole-Hopf transformation (Hopf, 1950), which transforms the equa-

tion into a heat equation with a change of variable. In the inviscid case (ν = 0),

the solution can be derived and analyzed using the method of characteristics,

an approach suitable for transport-type phenomena. Notably, for specific affine

initial conditions, it can be shown that a time step t∗ exists, called the breaking

time, at which point in time a shock forms and the solution becomes singular

(Cameron, 2016).

To solve our first initial boundary value problem, we use a periodic initial

condition u0 = sin(2πx) along with periodic boundary conditions. We illustrate

how the viscosity parameter ν influences the solution obtained with a numerical

solver in Figure 2.3. As ν decreases, we observe the formation of a shock in

the middle of the domain, and numerical errors become apparent due to the

suboptimal choice of the numerical solver. For higher values of ν, the amplitude

of the signal decays more rapidly towards zero, as there is no external forcing

term adding energy to the system. This demonstrates that the diffusion term

in Burgers’ equation has a dissipative effect on the system, gradually reducing

its kinetic energy. However, in all cases, the global momentum is conserved.

2.2.2 Fundamental properties of PDEs

Definition 2.2.5. (linearity) A PDE is linear if g can be expressed as a linear

combination of the dependent variable u and its derivatives ∇u,∇2u, etc.

Linear equations are generally easier to solve than nonlinear ones, and can be bet-

ter understood analytically (Olver, 2007). They are often more predictable whereas

nonlinear equations can include bifurcations or chaotic phenomenon. From a physi-

cal point of view, homogeneous equations often represent systems without external

forcing.

Example 2.2.5. The heat equation is an example of a linear equation. Based

on Equation (2.9), we have g(α, x, t, f(x, t), u,∇u,∇ · u,∇ × u,∇2u, . . .) =

α∇2u+ f(x, t).

22 Chapter 2. Some notions on Partial Differential Equations

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
lo

cit
y

viscosity=0.05
t = 0.00
t = 0.00
t = 0.25
t = 0.50
t = 0.75
t = 1.00

(a) ν = 0.05

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
lo

cit
y

viscosity=0.01
t = 0.00
t = 0.00
t = 0.25
t = 0.50
t = 0.75
t = 1.00

(b) ν = 0.01

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
lo

cit
y

viscosity=0.005
t = 0.00
t = 0.00
t = 0.25
t = 0.50
t = 0.75
t = 1.00

(c) ν = 0.005

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
lo

cit
y

viscosity=0.002
t = 0.00
t = 0.00
t = 0.25
t = 0.50
t = 0.75
t = 1.00
t = 1.00

(d) ν = 0.002

Figure 2.3: Examples of a solution of the Burgers’ equation for various viscosity
value. In all cases, the initial condition is set to u0(x) = sin(2πx) and we fix periodic
boundary conditions. For the numerical solver, we employed a finite difference
scheme of order 4 to approximate the spatial derivatives and an explicit runge kutta
of order 4 for time-integration. See Section 2.3 for further details.

2.2. ODEs and PDEs 23

Definition 2.2.6. (homogeneity) A PDE is homogeneous if f(x, t) = 0; other-

wise, it is inhomogeneous.

An important property of homogeneous linear PDEs is that if u1 and u2 are

solutions, then by linearity u1+u2 is also a solution. This is called the superposition

principle, and this is what we used to express the general solution of the heat

equation in Section 2.1.

Example 2.2.6. Laplace’s equation is the homogeneous version of the Poisson

equation:
∇2u(x) = f(x) ∀x ∈ Ω (Poisson)

∇2u(x) = 0 ∀x ∈ Ω (Laplace)

The Poisson equation is widely used in various scientific applications, notably

for computing pressure fields in the solution of incompressible Navier-Stokes

equations (Ferziger and Peric, 1996).

Definition 2.2.7. (order) The order of a PDE is determined by the highest

derivative of the variable u in Equation (2.14).

In this thesis, we will primarily focus on first-order and second-order equations,

with a few exceptions. Notably, the Korteweg-de Vries equation (see, e.g. Miura

et al. (1968)) and the Kuramoto-Sivashinsky equation (see e.g. Kuramoto (1978))

are well-studied nonlinear equations of third and fourth order, respectively. As the

order of an equation increases, its numerical solution becomes more complex and

challenging.

Example 2.2.7. Advection equation represents the transport of a scalar quan-

tity with constant speed β. It is a first-order PDE: ∂u
∂t

+ β ∂u
∂x

= 0. The wave

equation describes the propagation of a wave traveling at a constant celerity c. It

is a second-order partial differential equation (PDE) ∂2u
∂t2

= c2 ∂
2u
∂x2
. Here, the sec-

ond derivative with respect to time appears, which differs from our formulation

in Equation (2.14). However, we can rewrite this as a system of first-order-in-

time equations by introducing the extended state vector x =
(
u, ∂u

∂t

)
.

Linear, homogeneous, second-order partial differential equations can be broadly

classified into three categories: elliptic, parabolic, and hyperbolic equations (Olver,

2007). While these categories have precise mathematical definitions, we will de-

scribe them using physical intuition and properties, as these insights are also useful

for understanding non-linear equations. An exhaustive description of linear partial

differential equations can be found in Polyanin (2001).

24 Chapter 2. Some notions on Partial Differential Equations

Hyperbolic equations govern systems where information propagate at finite speeds,

such as waves. Therefore, a defining characteristic of hyperbolic systems is that in-

formation is confined to a specific region, meaning it cannot travel faster than the

wave celerity in the medium. This ensures causality, maintaining a clear relationship

between different points in space and time. Examples include shock waves generated

by supersonic aircraft and sound waves propagating through a compressible medium

like air.

Parabolic equations describe systems where information diffuses over time and

space in a smooth and gradual manner, without abrupt changes or shocks. These

equations commonly model diffusion processes, such as heat conduction. A key

property of parabolic equations is that information typically propagates in a sin-

gle direction—often forward in time. For instance, once heat is transferred into a

material, it spreads continuously from hot to cooler regions, and does not transfer

backward.

Elliptic equations, in contrast, describe systems in a steady-state or equilibrium,

where there is no explicit time dependence. In these systems, the state at any point

is determined by its spatial surroundings, where every point influence each other. A

well-known example is the Poisson equation, often used to calculate the electrostatic

potential around a static charge or the gravitational potential within a given mass

distribution.

2.2.3 Non-linear equations

A PDE is nonlinear if u or its derivatives appear with nonlinear terms. This can

include for example the convective term (u · ∇)u for fluid flows, or the reaction

term f(u) = u(1 − u) in chemical reactions. Nonlinearity significantly complicates

analysis and the resolutions, and as a result non-linear equations often cannot be

solved explicitly and require approximations or numerical methods.

Example 2.2.8. The compressible Navier-Stokes equations describe the mo-

tion of a viscous, compressible fluid, where the density can vary in space and

time. These equations are derived from the principles of conservation of mass,

conservation of momentum, and conservation of energy (in case of heat transfer):

∂ρ

∂t
+∇ · (ρu) = 0 (Continuity equation: Conservation of mass)

∂ρu

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f (Conservation of momentum)

∂E

∂t
+∇ · (u(E + p)) = ν (∇u)2 + q (Conservation of energy)

(2.18)

Where u is the fluid velocity, ρ is the density of the fluid, p the pressure, f a

2.2. ODEs and PDEs 25

forcing term, E the energy of the system per unit mass, q a heat flux and ν is

the kinematic viscosity. The hypothesis of a compressible fluid is often verified

for gas fluids with high velocity V . A general rule of thumb indicates that a

gas flow should be considered compressible for mach numbers greater than 0.3

(Ferziger and Peric, 1996). The mach number is a dimensionless number M = V
c

where c is the speed of sound in the medium.

However, for liquids and gas fluids with M < 0.3 it is in general better

to assume that the fluid is incompressible and has a constant density ρ. This

amounts to have ∂ρ
∂t

= 0, and the conservation of mass therefore yields ∇·u = 0,

i.e. the velocity has a zero divergence. Furthermore, if we consider the fluid to

be isothermal, this yields the incompressible Navier-Stokes equation:

∇ · u = 0 (Continuity equation)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ f (Conservation of momentum)

(2.19)

In this thesis, we will examine both liquid and gas flows with Mach number

smaller than 1. Flows with Mach numbers greater than 1 are referred to as

supersonic, and are characterized with shock waves.

The Reynolds number is a key parameter used to characterize the flow regime

of a fluid. It helps to classify a flow as laminar or turbulent, with lower Reynolds

numbers indicating smooth flows and higher numbers indicating chaotic, irregular

flows. The Reynolds number Re is a dimensionless quantity that compares inertial

forces to viscous forces in a fluid flow, defined as Re = uL
ν

, where u is the velocity, L

is a characteristic length, and ν is the kinematic viscosity. As the Reynolds number

increases, the flow becomes more dominated by inertial forces, leading to turbulence.

As a result, a low viscosity (small ν) increases the Reynolds number, making the

fluid more turbulent.

Another distinctive feature of nonlinear equations is that small changes in the

initial conditions of the system can lead to drastically different solutions. Therefore

nonlinear systems can be chaotic. This is famously known as the butterfly effect

(Lorenz, 1963), where small changes in the initial conditions of the atmospheric

system could lead to vastly different weather outcomes. This contrasts sharply

with linear equations, where the solutions typically change smoothly in response to

changes in the input.

Example 2.2.9. A simple example of a chaotic Partial Differential Equation

(PDE) is the Kuramoto-Sivashinsky (KS) equation. The KS equation is a non-

linear PDE often used to model spatiotemporal chaos in a variety of systems

such as flame fronts. The Kuramoto-Sivashinsky equation for a scalar field u in

one dimension is:

26 Chapter 2. Some notions on Partial Differential Equations

∂u

∂t
= −u∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4

Chaotic phenomenon are much harder to reproduce numerically as small per-

turbations lead to drastically different solutions. We will focus on non-chaotic

equations in this thesis.

2.3 Numerical Solvers

As discussed in the previous section, many non-linear equations lack analytical solu-

tions, and even linear equations can become difficult to solve with complex boundary

conditions. To address these challenges, numerical methods provide powerful tools

for obtaining approximate solutions to partial differential equations by discretizing

the problem.

In this section, we will introduce key numerical techniques for discretizing and

solving PDEs, considering both spatial and temporal dimensions. Widely used meth-

ods such as finite differences, finite elements, and various time integration schemes

each offer unique advantages and trade-offs.

We begin with the finite difference method (FDM), a straightforward approach

that approximates spatial derivatives by discretizing the domain on a structured

grid. Next, we explore the finite element method (FEM), which leverages the weak

formulation of the PDE to handle complex geometries and boundary conditions with

greater flexibility. Finally, we discuss time integration schemes, covering explicit

methods like Euler and Runge-Kutta, as well as implicit methods and iterative

solvers for stable time-stepping in more demanding scenarios.

2.3.1 Finite differences

The finite difference method is a numerical technique used to approximate deriva-

tives in PDEs. It expresses the derivatives of a function u, which depends on both

space x and time t, as differences between values of u at discrete grid points xi = i∆x.

To approximate the derivative of u at a spatial grid point xi, we can consider its

Taylor series expansion around xi. For a small spatial increment ∆x, the function

at xi+1 = xi + ∆x can be written as:

u(xi+1, t) = u(xi, t)+∆x
∂u

∂x
(xi, t)+

∆x2

2!

∂2u

∂x2
(xi, t)+

∆x3

3!

∂3u

∂x3
(xi, t)+O(∆x4). (2.20)

Similarly, at xi−1 = xi −∆x, the expansion is:

u(xi−1, t) = u(xi, t)−∆x
∂u

∂x
(xi, t)+

∆x2

2!

∂2u

∂x2
(xi, t)−

∆x3

3!

∂3u

∂x3
(xi, t)+O(∆x4). (2.21)

2.3. Numerical Solvers 27

These expansions can be combined to derive various finite difference schemes. In

Equation (2.20), subtracting u(xi, t) from u(xi+1, t), we obtain the forward difference

scheme (FDS):

u(xi+1, t)− u(xi, t)

∆x
=
∂u

∂x
(xi, t) +

∆x

2!

∂2u

∂x2
(xi, t) +

∆x2

3!

∂3u

∂x3
(xi, t) +O(∆x3)

If we rearrange the terms of the Taylor expansion, we obtain:

∂u

∂x
(xi, t) =

u(xi+1, t)− u(xi, t)

∆x︸ ︷︷ ︸
Discrete approximation

−∆x

2!

∂2u

∂x2
(xi, t)−

∆x2

3!

∂3u

∂x3
(xi, t) +O(∆x3)︸ ︷︷ ︸

Truncation error

where we emphasize the truncation error resulting from this finite difference ap-

proximation, which arises from omitting higher-order terms in the Taylor expansion.

The leading term in this truncation error is of the order ∆x, indicating that this

scheme is first-order accurate. More generally, a scheme of order p has a leading

truncation error term of the order of O(∆xp).

Similarly, we obtain the backward difference scheme (BDS) from Equation (2.21):

u(xi, t)− u(xi−1, t)

∆x
=
∂u

∂x
(xi, t)−

∆x

2!

∂2u

∂x2
(xi, t) +

∆x2

3!

∂3u

∂x3
(xi, t) +O(∆x3)

This is also a first-order scheme with an O(∆x) error. Finally, subtracting Equa-

tion (2.21) from Equation (2.20) and dividing by 2∆x yields the central difference

scheme (CDS), which is second-order accurate:

u(xi+1, t)− u(xi−1, t)

2∆x
=
∂u

∂x
(xi, t) +

∆x2

3!

∂3u

∂x3
(xi, t) +O(∆x4)

We can also combine equations Equation (2.20) and Equation (2.21) to obtain

an approximation of the second order derivative:

u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

∆x2
=
∂2u

∂x2
(xi, t) +O(∆x2)

The order of a scheme has direct implications for the accuracy and computational

costs of numerical solvers. Higher-order schemes provide more accurate approxima-

tions for the same grid spacing. For this reason, a central difference scheme, which

has a second-order local truncation error, is generally preferred over forward or

backward difference schemes, which are first-order accurate.

To improve accuracy, higher-order finite difference schemes can be used by in-

corporating additional grid points into the stencil and determining coefficients that

minimize the truncation error. The stencil defines the local points that are used

to compute the approximate derivatives. Here, for the central difference scheme

28 Chapter 2. Some notions on Partial Differential Equations

to approximate the first derivative, we used the stencil (−1, 1) with coefficients
1

2∆x
(−1, 1), while we used the stencil (−1, 0, 1) with coefficients 1

∆x2
(1,−2, 1) to

approximate the second-order derivative.

Using Taylor expansions at points such as xi+2 and xi−2, or even further, higher-

order schemes can be derived. However, this increased accuracy comes at the cost

of greater computational complexity. For example:

∂u

∂x
(xi, t) ≈

−u(xi+2, t) + 8u(xi+1, t)− 8u(xi−1, t) + u(xi−2, t)

12∆x
,

is a fourth-order finite difference scheme with stencil (−2,−1, 0, 1, 2) and coefficients
1

12∆x
(−1, 8, 0,−8, 1) .

Example 2.3.1. Returning to our beloved heat equation from Section 2.1:

∂u

∂t
= α

∂2u

∂x2

we now discretize the spatial domain into N equally spaced nodes x1, x2, . . . , xN
with a uniform spacing ∆x. Using a second-order central difference scheme to

approximate the second spatial derivative at time t, we have for each node xi:

∂u

∂t
(xi, t) = α

u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

∆x2

This transforms the continuous PDE into a discrete system of coupled ordinary

differential equations. For all nodes i = 1, . . . , N , we can write the discrete

equations compactly as a linear system:

du

dt
= Au(t), (2.22)

where u(t) =
[
u(x1, t) u(x2, t) · · · u(xN , t)

]⊤
is the state vector at time t

representing the temperature at each spatial node. The matrix A encodes the

finite difference discretization of the second derivative and is given by:

A =
α

∆x2


−2 1 0 · · · 0 1

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 1 −2

 .
The first and last entries of the matrix (top-right and bottom-left corners) en-

force periodic boundary conditions, where the first node x1 is connected to the

last node xN , and vice versa. For other types of boundary conditions (e.g.,

2.3. Numerical Solvers 29

Dirichlet or Neumann), these entries would need to be modified accordingly.

This choice of discretization and approximation reduces the resolution of a

PDE problem into that of a system of linear ODE. The matrix A encapsulates

the spatial discretization, and the evolution of u(t) over time is governed by

this matrix. The numerical solution can then proceed using time integration

methods such as Euler, Runge-Kutta, or implicit solvers, depending on the

desired stability and accuracy properties, that we will present in Section 2.3.3.

Taylor series expansion is not the only method to approximate derivatives. Local

polynomial fitting uses neighboring grid points to construct a polynomial approxi-

mation of u. The derivative is then computed from the polynomial, enabling higher-

order accuracy (Brabanter et al., 2013). Padé approximants express derivatives as

ratios of polynomials, achieving high accuracy with relatively few grid points. This

method is particularly useful for stiff problems or where high precision is required

(Baker, 1975).

In practice, for modeling spatiotemporal dynamics with deep learning models,

we will also separate space and time as is done with this example. We discretize the

solution in space and advance the system forward in time with time-stepping. This

autoregressive setting will be the foundation of the contributions that we present in

this thesis.

2.3.2 Finite elements

Finite difference methods rely on structured grids and regular discretizations, mak-

ing them less suitable for handling complex geometries, non-uniform meshing, and

general boundary conditions. These limitations stem from the reliance of FDM

on approximating derivatives at discrete grid points, which becomes challenging to

apply effectively on irregular domains or domains with intricate boundary shapes.

In contrast, the finite element method (FEM) is a versatile numerical technique

for solving partial differential equations, and is particularly well-suited for problems

involving complex geometries, irregular domains, and non-uniform meshes. The

method starts from the so-called weak formulation of the PDE, which reformulates

the problem in terms of integrals rather than derivatives. This reformulation inher-

ently provides flexibility, allowing FEM to yield potentially discontinuous solutions.

Let us revisit the PDE formulation of Equation (2.14). A function u is said to

satisfy the strong formulation of the PDE if

∀t ∈ R, ∀x ∈ Ω,
∂u

∂t
= g(u) + f(x, t),

where g represents an operator applied to u and its derivatives, and f is the forcing

term. In the weak formulation, we test the PDE against a function v ∈ V , where V

is a suitable function space defined on Ω with sufficient regularity. We say that u

30 Chapter 2. Some notions on Partial Differential Equations

satisfies the weak formulation of Equation (2.14) if

∀t ∈ R, ∀v ∈ V,
∫
Ω

∂u

∂t
v dx−

∫
Ω

g(u)v dx =

∫
Ω

fv dx.

Using the notation ⟨f, g⟩Ω =
∫
Ω
fg dx, this can be written more compactly as

∀t ∈ R, ∀v ∈ V, ⟨∂u
∂t
− g(u), v⟩Ω = ⟨f, v⟩Ω.

The weak formulation shifts the problem from finding u, a solution satisfying the

PDE pointwise, to finding u in a weaker sense. Specifically, u is required to satisfy

the integral equation for every test function v. Importantly, every solution to the

strong formulation is also a solution to the weak formulation, but the inverse is

not necessarily true, as the weak formulation admits solutions with lower regularity,

such as functions with discontinuous derivatives.

In FEM, the solution u and the test functions v are approximated using finite-

dimensional function spaces, typically spanned by piecewise polynomials. The do-

main Ω is divided into smaller subdomains, called elements Ωi, over which the func-

tions are simple, such as linear or quadratic polynomials. This approach provides

the flexibility to handle arbitrary geometries, non-uniform meshing, and general

boundary conditions, making FEM a powerful tool for solving PDEs in diverse ap-

plications. More details can be found for example in Johnson (1992).

Example 2.3.2. Let us consider the heat equation again, this time with a

forcing term f :

∂u

∂t
= α

∂2u

∂x2
+ f,

The corresponding weak formulation is:

∀t ∈ R,∀v ∈ V,
∫
Ω

∂u

∂t
v(x) dx−

∫
Ω

α
∂2u

∂x2
v(x) dx =

∫
Ω

f(x, t)v(x) dx,

where V is a suitable space of test functions, such as V = H1(Ω), the Sobolev

space of functions with square-integrable derivatives. We also impose periodicity

constraints on v, i.e. v(0) = v(L) and ∂v
∂x

(0) = ∂v
∂x

(L). Using the divergence

theorem, we integrate by parts to reduce the order of the derivatives:

∫
Ω

∂u

∂t
v(x) dx− α

(∫
∂Ω

∂u

∂x
v(x) dx−

∫
Ω

∂u

∂x

∂v

∂x
dx

)
=

∫
Ω

f(x, t)v(x) dx.

2.3. Numerical Solvers 31

Since u and v are periodic over the domain, the boundary term vanishes,

and the weak formulation simplifies to:

∀t ∈ R,∀v ∈ V,
∫
Ω

∂u

∂t
v(x) dx+ α

∫
Ω

∂u

∂x

∂v

∂x
dx =

∫
Ω

f(x, t)v(x) dx. (2.23)

The solution u must satisfy Equation (2.23) for every function v ∈ V .

To discretize in space, we partition Ω = [0, L] into N subintervals:

x0 = 0, x1 = ∆x, x2 = 2 ∆x, . . . , xN = L,

where ∆x = L
N

. On each subinterval [xi, xi+1], we define piecewise linear basis

functions {ϕi}Nj=0. A typical function ϕi is given by

ϕi(x) =


x− xi−1

∆x
, x ∈ [xi−1, xi],

1− x− xi
∆x

, x ∈ [xi, xi+1],

0, otherwise.

Since we want u to be periodic, we identify the left boundary x0 = 0 with

the right boundary xN = L. Equivalently, we treat node 0 and node N as the

same physical point, reducing the number of independent degrees of freedom by

one. Concretely, let

u∆(x, t) =
N−1∑
i=0

Ti(t) ϕi(x),

where we implicitly enforce T0(t) = TN(t). We substitute u∆ into Equa-

tion (2.23) and choose v(x) = ϕj(x) for j = 0, . . . , N − 1. This yields

N−1∑
i=0

dTi(t)

dt

∫
Ω

ϕi(x)ϕj(x) dx+ α

N−1∑
i=0

Ti(t)

∫
Ω

∂ϕi
∂x

∂ϕj
∂x

dx =

∫
Ω

f(x, t)ϕj(x) dx.

Defining the mass matrix M, stiffness matrix K, and load vector F:

Mij =

∫ L

0

ϕi(x)ϕj(x) dx,

Kij =

∫ L

0

∂ϕi
∂x

(x)
∂ϕj
∂x

(x) dx,

Fj(t) =

∫ L

0

f(x, t)ϕj(x) dx.

32 Chapter 2. Some notions on Partial Differential Equations

Hence, for each j ∈ {0, . . . , N − 1}, we have:

N−1∑
i=0

dTi
dt

Mij + α

N−1∑
i=0

TiKij = Fj(t).

In matrix form, this becomes:

M
dT

dt
+ αKT = F(t), (2.24)

where T(t) =
(
T0(t), T1(t), . . . , TN−1(t)

)⊤
. Solving this system with appropriate

time integration yields the approximate solution.

2.3.3 Time integration

Once the discretization through finite differences or finite elements has transformed

a partial differential equation (PDE) into a high-dimensional ordinary differential

equation (ODE), we can apply standard time integration methods from the ODE

literature. This approach—often referred to as the method of lines—leads us to

consider the generic formulation from Equation (2.13) for the remainder of this

section.

Time integration methods are essential for solving partial differential equations

(PDEs) by advancing solutions in time, given initial or boundary conditions. These

methods can be categorized as explicit, implicit, or iterative/direct, depending on

their approach to time evolution.

Explicit methods compute the solution at the next time step using information

from the current and previous steps. The simplest explicit scheme is the Forward

Euler method, given by

u(t+ ∆t) = u(t) + ∆t · g(u(t), t),

where u(t+ ∆t) represents the solution at time t+ ∆t, and g(u(t), t) is the time

derivative evaluated at the current time step. This method is first-order accurate but

conditionally stable for solving PDEs. Indeed, in practice g(u(t), t) approximates

spatial derivatives and depends on the spatial discretization parameter ∆x, there-

fore, the time step ∆t must satisfy the Courant-Friedrichs-Lewy (CFL) condition

for stability. For higher accuracy, Runge-Kutta methods, such as the fourth-order

Runge-Kutta (RK4), are often employed. The RK4 method computes the solution

at intermediate stages ki and advances the solution as

u(t+ ∆t) = u(t) +
∆t

6
(k1 + 2k2 + 2k3 + k4),

where the intermediate evaluations are

2.3. Numerical Solvers 33

k1 = g(u(t), t), k2 = g

(
u(t) +

∆t

2
k1, t+

∆t

2

)
,

k3 = g

(
u(t) +

∆t

2
k2, t+

∆t

2

)
, k4 = g (u(t) + ∆tk3, t+ ∆t) .

Explicit methods are efficient for smooth, non-stiff problems but require small

time steps for stability.

On the other hand, implicit methods compute the solution at the next time step

by solving equations that involve the future state u(t + ∆t). The Backward Euler

method is a simple implicit scheme:

u(t+ ∆t) = u(t) + ∆t · g(u(t+ ∆t), t+ ∆t),

Because u(t+∆t) appears on both sides, a nonlinear (or linearized) system must

be solved at every time step. While Backward Euler is unconditionally stable for

linear problems, using too large a time step can still lead to large errors. To achieve

higher accuracy, the Crank-Nicolson method is often used, which is second-order

accurate:

u(t+ ∆t) = u(t) +
∆t

2
(g(u(t), t) + g(u(t+ ∆t), t+ ∆t)) .

Implicit methods are particularly suitable for stiff systems, where explicit meth-

ods require prohibitively small time steps.

For implicit schemes, if the function g is linear (or can be linearized), the resulting

equation can be written in a matrix form:

Mu(t+ ∆t) = b,

where M depends on the discretization scheme and b includes contributions from

the current time step. One can choose between:

• Direct solvers (e.g., Gaussian elimination, LU decomposition), which yield

exact solutions but can be computationally expensive for large systems.

• Iterative solvers (e.g., Jacobi, Gauss-Seidel, or conjugate gradient methods

for symmetric systems), which are more efficient for large or sparse systems.

Their convergence, however, depends on the properties of M, and they often

require preconditioning for optimal performance. For non-symmetric systems,

methods such as GMRES (Generalized Minimal Residual) are commonly used.

For nonlinear PDEs, iterative methods like Newton’s method (or its variants,

such as inexact or quasi-Newton methods) are employed to solve the nonlinear sys-

tem at each time step. These methods linearize the nonlinear system around the

current approximation and iteratively solve the linearized equations.

34 Chapter 2. Some notions on Partial Differential Equations

Example 2.3.3. For the heat equation, a forward (explicit) Euler scheme to

approximate the temporal derivative yields:

u(t+ ∆t) = u(t) + ∆tAu(t) (2.25)

while the backward (implicit) Euler scheme gives:

Mu(t+ ∆t) = u(t) (2.26)

with M = I−∆tA

2.3.4 Key properties of numerical solvers

When evaluating numerical solvers for PDEs, we usually consider three main prop-

erties: consistency, stability, and convergence. We provide an intuition of what they

entail and refer the reader to Ferziger and Peric (1996) and Strikwerda (1989) for

more details.

Consistency measures how well the discrete scheme approximates the continuous

PDE. The idea is that if we substitute the exact solution u into the discrete equa-

tions, the error introduced (known as the truncation error) should tend towards

zero as the grid is refined. Mathematically, if the discrete operator is denoted by

g∆, then the truncation error is given by:

τ∆ =
∂u

∂t
− g∆u.

The scheme is consistent if:

τ∆ = O(∆xq) +O(∆tr),

where q and r indicate the order of approximation in space and time, respectively.

Consistency ensures that, in the limit as ∆x,∆t→ 0, the discrete equations converge

to the original PDE.

Stability ensures that errors do not grow uncontrollably during the time evolu-

tion. For explicit schemes applied to time-dependent problems, stability is often

governed by the CFL condition. For example, for an explicit scheme solving the

heat equation, stability typically requires:

∆t ≤ ∆x2

2α
.

For linear problems, stability is sometimes analyzed by examining the eigenvalues

of the matrix M, ensuring that |λ| ≤ 1. In short, stability guarantees that the

numerical solution remains bounded over time.

2.4. Reduction of complexity 35

Convergence is the property that the numerical solution u∆ approaches the exact

solution u as the discretization is refined:

lim
∆x,∆t→0

u∆(x, t) = u(x, t).

According to the Lax Equivalence Theorem, for linear problems a numerical

scheme that is both consistent and stable will be convergent. This convergence is

typically measured in a suitable norm ∥.∥. For a fully discrete scheme, the error

may be expressed as

∥u(·, tn)− u∆(·, tn)∥ ≤ C
(

∆xq + ∆tr
)
,

where q and r are the orders of accuracy in space and time, respectively.

2.4 Reduction of complexity

With numerical solvers, we can approximately solve a PDE by solving a high di-

mensional ODE thanks to the spatial discretization. However, the cost of solving

this high dimensional ODE can remain prohibitive and we will cover two different

solutions to overcome this limitation.

2.4.1 Reduced Order Models

Reduced Order Models (ROMs) are powerful techniques for solving high-dimensional

problems by projecting the dynamics onto a lower-dimensional subspace. This reduc-

tion significantly decreases computational cost while capturing the essential behavior

of the original system. One widely used ROM technique is the Proper Orthogonal

Decomposition (POD), which is described below and with more details in Kerschen

et al. (2005).

The core idea behind POD is to represent the high-dimensional solution u as

a linear combination of spatial basis functions. Initially, the solution is expressed

using a set of n fixed basis functions:

u(x, t) =
n∑
k=1

ak(t)ψk(x),

where ψk(x) are the spatial modes and ak(t) are the corresponding time-dependent

coefficients. The goal is to determine a reduced set of r optimal basis functions,

{ϕ1, . . . , ϕr} with r ≪ n, so that:

u(x, t) ≈
r∑

k=1

bk(t)ϕk(x),

36 Chapter 2. Some notions on Partial Differential Equations

with bk(t) being the new reduced coefficients.

The key challenge is to select {ϕ1, . . . , ϕr} so as to minimize the reconstruction

error while ensuring computational efficiency. To determine these optimal modes,

one minimizes the reconstruction error over a collection of snapshots. Specifically,

let

u(ti) =
(
u(x1, ti), . . . , u(xN , ti)

)
be the state vector at time ti, and let

ϕk =
(
ϕk(x1), . . . , ϕk(xN)

)
denote the discretized version of the k-th basis function. Then, the optimal basis

{ϕ1, . . . , ϕr} is obtained by solving:

min
ϕ1,...,ϕr

M∑
i=1

∥∥∥∥∥u(ti)−
r∑

k=1

⟨u(ti), ϕk⟩ϕk

∥∥∥∥∥
2

.

Here, the inner product ⟨·, ·⟩ is defined appropriately for the discrete setting

(e.g., a Euclidean inner product). In practice, these snapshots are organized into a

matrix:

U =
[
u(t1) u(t2) · · · u(tM)

]
∈ RN×M ,

where N is the spatial dimension and M is the number of snapshots. The problem

then reduces to finding an orthonormal basis Φr = [ϕ1, ϕ2, . . . , ϕr] that minimizes

the Frobenius norm of the reconstruction error:

min
Φr

∥U−ΦrΦ
⊤
r U∥2F .

This optimization is efficiently solved by applying the Singular Value Decompo-

sition (SVD, Golub and Reinsch (1970)) to U:

U = WΣV⊤,

where W ∈ RN×N contains the left singular vectors (spatial modes), Σ is a diagonal

matrix with singular values σ1 ≥ σ2 ≥ · · ·, and V ∈ RM×M contains the right

singular vectors (temporal modes). The reduced basis is obtained by selecting the

first r columns of W, corresponding to the largest singular values.

Once the reduced basis Φr is obtained, the high-dimensional state can be ap-

proximated by projecting onto the reduced space:

ũ(t) = ΦrΦ
⊤
r u(t),

with the reduced coefficients given by a(t) = Φ⊤
r u(t).

2.4. Reduction of complexity 37

For example, consider a linear dynamical system governed by:

du(t)

dt
= Lu(t),

where L is a linear operator. By substituting the reduced representation u(t) ≈
Φra(t) into the equation, one obtains:

Φr
da(t)

dt
= LΦra(t).

Exploiting the orthonormality condition Φ⊤
r Φr = Ir, the dynamics reduce to:

da(t)

dt
= Φ⊤

r LΦra(t).

Thus, the original n-dimensional system is reduced to a system of size r, yielding

computational savings.

2.4.2 Parameterization

An alternative approach to reducing computational cost involves modifying the gov-

erning equations through modeling approximations. This is particularly relevant in

turbulence modeling.

Direct Numerical Simulation solves the Navier–Stokes equations without any

turbulence modeling, capturing all relevant scales. DNS requires extremely fine

spatial and temporal resolution—often dictated by the Kolmogorov scale—and is

typically limited to simple geometries due to its high computational cost. Although

DNS provides detailed insight into turbulent flows, its computational expense makes

it impractical for daily engineering applications, where only essential flow features

(such as drag and lift) are of interest (Ferziger and Peric, 1996).

To make the problem tractable, the Navier–Stokes equations are often aver-

aged or filtered. For instance, in the Large Eddy Simulation (LES) approach, the

equations are spatially filtered to resolve large-scale dynamics while modeling the

effects of smaller scales through a subgrid-scale model. Alternatively, the Reynolds-

Averaged Navier–Stokes (RANS) equations are obtained by time-averaging the

Navier–Stokes equations, resulting in a set of equations that describe the mean

flow. However, the averaging process introduces unclosed terms due to the non-

linear convective terms, necessitating additional modeling assumptions to close the

system.

These parameterization techniques strike a balance between fidelity and compu-

tational cost, enabling to get numerical simulations that preserve key flow properties.

They are particularly useful because they allow us to generate data, reducing the

number of full-scale simulations needed to model a phenomenon. Additionally, this

38 Chapter 2. Some notions on Partial Differential Equations

also means that an approximate representation of the phenomenon is already highly

valuable for engineers and scientists. This implies that when developing surrogate

models with deep learning, while accuracy remains an important criterion, factors

such as applicability and speed will also be critical.

Chapter 3

Introduction to Deep Learning

This section adopts a practical view to present Deep Learning. We will first recap

briefly the evolution of DL through time Section 3.1. Then we will detail what is a

deep neural network Section 3.2 and how to train them in Section 3.3. We will then

present the building blocks of Deep Learning in Section 3.4 and finally go over some

important learning paradigms in Section 3.5.

3.1 A short history of deep learning . 39

3.2 Deep Neural Networks . 41

3.3 Training Deep Neural Networks . 42

3.4 Building blocks of Deep Learning . 46

3.4.1 Layers . 46

3.4.2 Blocks . 49

3.5 Learning Paradigms . 52

3.5.1 Unsupervised learning . 53

3.5.2 Self-Supervised Learning . 56

3.5.3 Meta-learning . 60

3.5.4 In-context learning . 62

3.1 A short history of deep learning

Learning with Deep Neural Networks (DNN) or Deep Learning (DL) (Goodfellow,

2016) is a key subfield of machine learning (Bishop and Nasrabadi, 2006; Hastie

et al., 2009) that has driven significant breakthroughs in the ongoing artificial in-

telligence revolution. Over the past decade, AI systems powered by deep learning

have reached or even surpassed human-level performance in various tasks, including

video games (Mnih et al., 2013), chess (Silver et al., 2017a), the game of Go (Silver

et al., 2017b), scientific challenges such as protein folding (Jumper et al., 2021), and

39

40 Chapter 3. Introduction to Deep Learning

have recently sparked profound societal and industrial changes with the revolution

of Large Language Models (Radford et al., 2019; Achiam et al., 2023; Touvron et al.,

2023).

The primary factor behind this success is that deep learning architectures have

significantly benefited from advances in computational resources and the availability

of large high-quality datasets. Altogether, this enabled to minimize the reliance on

handcrafted features or domain-specific knowledge and to learn everything from

the data. This embodies the ”bitter lesson” articulated by Sutton (2019), which

emphasizes that methods capable of leveraging greater computational power through

search and learning tend to dominate other techniques in the long run.

The origins of modern deep learning trace back to the late 1950s with the intro-

duction of the Perceptron (Rosenblatt, 1958). This first neural network consisted of

a single layer—a linear transformation followed by an activation function—and was

inspired by early models of brain activity. This is the first example of feedforward

neural networks (FFNs), which perform computations without any loops or cycles.

The Perceptron was trained in a supervised fashion, using input features x to predict

binary labels y.

In 1982, Hopfield (1982) demonstrated that neural networks could store informa-

tion in the state of their neurons and retrieve corrupted examples. These networks,

minimized an energy function during inference to recover the most probable exam-

ple. Another milestone for energy-based modeling came with the introduction of

Restricted Boltzmann Machines (RBMs) (Ackley et al., 1985), which in contrast

with Hopfield networks, are generative models designed to model probability distri-

butions of observed inputs x with unobserved latent variables z in an unsupervised

manner. Both Hopfield and Hinton were recently awarded a Nobel prize in physics

in 2024, as their works were deemed precursors to contemporary self-supervised

learning methods and of modern generative AI techniques.

Perhaps the most influential advancement in deep learning during the late 1980s

was the popularization of the backpropagation algorithm (Rumelhart et al., 1986)

for training multi-layer perceptrons (MLPs). This method provided a principled

approach to training neural networks composed of several layers, by efficiently com-

puting gradients for weight updates. Its effectiveness was demonstrated in combina-

tion with convolutional neural networks (CNNs) for handwritten digit recognition

(LeCun et al., 1989). These advances marked a significant victory for the field given

the computational limitations of the time.

However, in the 1990s and 2000s deep learning struggled to compete with ma-

chine learning algorithms such as Support Vector Machines (SVMs) (Cortes and

Vapnik, 1995). Challenges such as exploding/vanishing gradients, overfitting, and

limited training data hindered its development.

Eventually, the exponential growth of available computational resources and the

explosion of web data led to the paradigm shift we have witnessed. A decisive victory

3.2. Deep Neural Networks 41

for deep learning occurred in 2012, when the CNN AlexNet (Krizhevsky et al., 2012)

won the ImageNet classification competition (Deng et al., 2009) outperforming all

the other machine learning techniques.

3.2 Deep Neural Networks

Let us now provide a definition of the general structure of a Deep Neural Network.

To keep it simple, we will use the multi-layer perceptron (MLP) as a canonical

example of a feed-forward neural network.

Definition 3.2.1. (Multi-Layer Perceptron) For an MLP with L layers and an

input a(0) = x ∈ Rd0 , the forward pass computes the output iteratively for each

layer l = 1, 2, . . . , L:

h(l) = W(l)a(l−1) + b(l), a(l) = σ(l)(h(l)), (3.1)

where W(l) ∈ Rdl×dl−1 denotes the weight matrix of layer l, b(l) ∈ Rdl is the

bias vector of layer l, and σ(l)(·) represents the activation function of layer l.

The vector h(l) ∈ Rdl is referred to as the pre-activation, while a(l) ∈ Rdl is the

post-activation or activation of the output of layer l. The output of the network

is therefore a(L). We also call h(l) the hidden representations or features of the

network.

The activation functions are non-linear operations applied element-wise to the

components or channels of a vector, and in a standard MLP, the same activation

function is typically used throughout the network, such that σ1 = σ2 = . . . = σL−1.

The choice of activation function plays a critical role in training an MLP and

continues to be an active area of research. If these activations were replaced by

the identity function, the network would reduce to a simple linear transformation,

lacking the expressive power to model complex relationships. Conversely, the right

activation function can enhance stability during training and improve performance

on specific tasks. The most commonly used activation functions are summarized in

Table 3.1.

The Sigmoid function maps inputs to the range [0, 1] and was widely used in early

neural networks. However, it suffers from vanishing gradients, which makes training

deep networks difficult. The Tanh function is closely related but maps the input to

the range [−1, 1], offering outputs centered around zero that mitigate some gradient

issues compared to Sigmoid. It is a smooth function with non-zero derivatives of any

order, which makes it ideal to represent smooth physical phenomenon. On the other

hand the ReLU function (Nair and Hinton, 2010), is a non-smooth function but

became the standard in deep learning due to its simplicity and efficiency. However,

ReLU can suffer from ”dead neurons” (when weights stop updating). To address

42 Chapter 3. Introduction to Deep Learning

this, variants like Leaky ReLU (Maas, 2013) and ELU (Clevert, 2015) were proposed,

which allow small gradients for negative inputs.

More recent activations aim to balance smoothness and trainability. The Swish

function (Ramachandran et al., 2017), and GELU function (Gaussian Error Linear

Unit; Hendrycks and Gimpel (2016)) have gained popularity, particularly in trans-

formers, due to their smooth and differentiable nature. Notably the swish function

was selected after an exhaustive empirical search over a large set of candidate ac-

tivation functions. Finally, advanced gating mechanisms like GLU (Dauphin et al.,

2017) and SwiGLU (Shazeer, 2020) have been widely adopted in language modeling

architectures.

Table 3.1: Common activation functions and their formulas.

Activation name Function

Sigmoid σ(x) = 1
1+e−x

Tanh tanh(x) = ex−e−x

ex+e−x

ReLU ReLU(x) = max(0, x)

Leaky ReLU LeakyReLU(x) =

{
x if x ≥ 0

αx if x < 0

Softplus Softplus(x) = ln(1 + ex)

ELU ELU(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0

Swish (SiLU) Swish(x) = x · σ(x), σ(x) = 1
1+e−x

Softmax Softmax(xi) = exi∑n
j=1 e

xj

GELU GELU(x) = x · Φ(x), Φ(x) = 1
2

(
1 + erf

(
x√
2

))
GLU GLU(x) = x1 · σ(x2), x = [x1,x2]

SwiGLU SwiGLU(x) = Swish(x2) · x1, x = [x1,x2]

3.3 Training Deep Neural Networks

In Definition 3.2.1, we describe the class of models representing MLPs of a specific

depth L and width d1, but we do not specify which weights W(l) and biases b(l) to

use. These weights and biases determine the specific behavior of the network and

3.3. Training Deep Neural Networks 43

must be tailored for the task at hand. In the context of statistical learning, the

network’s knowledge or aptitude to perform a given task is encoded in its weights

and is evaluated with a loss function and metrics relevant to the task. This refers

to the paradigm of empirical risk minimization (ERM).

Definition 3.3.1. Given a supervised training dataset {(xi,yi)}ni=1 consisting

of n input-output pairs, where xi ∈ Rdin is the input vector, yi ∈ Rdout is the

corresponding target, ERM seeks to find the weights θ of a neural network

fθ : Rdin → Rdout that minimize the empirical risk, defined as the average loss

over the training data:

R(θ) =
1

n

n∑
i=1

L(fθ(xi),yi), (3.2)

where: L : Rdout × Rdout → R+ is the loss function, such as the mean squared

error (MSE) for regression or cross-entropy loss for classification. However, the

true objective is to minimize the expected risk :

r(θ) = E(x,y)∼pdata [L(fθ(x),y)], (3.3)

where pdata is the true (but unknown) data distribution. Since pdata is unknown,

the empirical risk R(θ) serves as an approximation of the expected risk r(θ),

assuming the training dataset is representative of the true distribution.

From this definition, we can introduce fundamental concepts for deep learning.

The primary objective is to train a neural network with low expected risk, while

achieving low empirical risk is secondary. This distinction is crucial because neural

networks are often overparameterized, increasing the risk of the model simply mem-

orizing the dataset instead of learning underlying patterns. Our ultimate goal is to

perform well in terms of expected risk rather than empirical risk.

This implies that evaluating a neural network’s performance solely on the train-

ing set, which is used to optimize the weights, is insufficient. Instead, we should

use test samples (x,y) ∼ pdata not seen before to estimate the expected risk. This

challenge is common across all machine learning applications: when a model has

low empirical risk but high expected risk, it has overfitted the dataset. Conversely,

high empirical risk indicates underfitting.

To address overfitting, we can add penalty terms or constraints to the empirical

risk, a technique known as explicit regularization. Explicit regularization includes

methods such as L1 or L2 regularization (Ng, 2004), which penalize large weights,

and dropout (Srivastava et al., 2014), which randomly drops activation units during

training to prevent overfitting.

In practice, the process of determining suitable weights for a task—and thereby

44 Chapter 3. Introduction to Deep Learning

minimizing an empirical risk function R—typically begins with initializing the

weights using a good guess and refining them iteratively through gradient-based

optimization. This phase is called the training of a neural network. A good guess

refers to a variety of initialization schemes, most of which are designed to ensure

numerical stability and preserve the norms of hidden representations throughout the

network. This helps prevent issues like vanishing or exploding gradients, as achieved

by techniques such as Xavier initialization (Glorot and Bengio, 2010) and Kaiming

initialization (He et al., 2015b). Proper initialization is especially critical in deep

networks, where instability during training can severely hinder convergence.

The optimization process itself relies on backpropagation (Rumelhart et al.,

1986), an algorithm that computes the derivatives of the loss function with respect to

each network parameter using the chain rule of calculus. By propagating gradients

from the output layer to the input layer, backpropagation enables the network to

iteratively adjust its weights to minimize the loss. This method is computationally

efficient and particularly advantageous in cases where dL < d0, as gradients at the

output layer involve fewer dimensions, reducing overall computational cost.

Example 3.3.1. To illustrate backpropagation, consider a 2-layer neural net-

work with ReLU activation. The network takes an input x ∈ Rdin and outputs

ŷ ∈ Rdout . The forward pass in matrix form is:

h(1) = W(1)x + b(1), a(1) = ReLU(h(1)), ŷ = W(2)a(1) + b(2).

We use the mean squared error (MSE) loss:

L(y, ŷ) =
dout∑
k=1

(yk − ŷk)2.

The weight and bias are updated with gradient descent to minimize the loss

L with a learning rate η :

W
(l)
ij = W

(l)
ij − η

∂L
∂W

(l)
ij

, b
(l)
i = b

(l)
i − η

∂L
∂b

(l)
i

We can compute these gradients analytically using the chain rule:

∂L
∂ŷk

= 2(ŷk − yk),
∂L

∂W
(2)
ki

=
∂L
∂ŷk
· a(1)i ,

∂L
∂b

(2)
k

=
∂L
∂ŷk

.

3.3. Training Deep Neural Networks 45

For the hidden layer:

∂L
∂a

(1)
i

=
dout∑
k=1

∂L
∂ŷk
·W (2)

ki ,
∂L
∂h

(1)
i

=
∂L
∂a

(1)
i

· 1
h
(1)
i >0

.

For the input layer:

∂L
∂W

(1)
ij

=
∂L
∂h

(1)
i

· xj,
∂L
∂b

(1)
i

=
∂L
∂h

(1)
i

.

We can therefore compute the errors with the loss function and propagate

this signal to update the weights with this method.

As demonstrated in Example 3.3.1, defining the forward pass of a neural net-

work implicitly defines the backward pass, which is essential for backpropagation

during training. In practice, this means that simply implementing the forward

pass is insufficient for training; the computation of derivatives is also required to

update parameters via backpropagation. Modern automatic differentiation frame-

works such as TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2019a), and

JAX (Bradbury et al., 2018) efficiently handle this process by dynamically comput-

ing and caching the necessary partial derivatives during the forward pass for use in

the backward pass.

Optimizing the empirical risk using gradient descent on the entire dataset at once

is impractical due to memory and computational constraints. Instead, we use mini-

batches B of size b to compute weight updates. This approach, known as stochastic

gradient descent (SGD, Robbins (1951)), updates the parameters using a limited

subset of data that fits in memory:

θ ← θ − η

b

∑
i∈B

∇θL(fθ(xi),yi).

SGD has been shown to enhance the generalization capabilities of neural net-

works, as its noisier updates introduce stochasticity that prevents overfitting (Zhang

et al., 2016). However, training with SGD can be unstable and slow in practice. To

address this, momentum-based methods (Polyak and Juditsky, 1992) are commonly

employed to stabilize and accelerate convergence. Momentum involves maintaining

an exponential moving average of past gradients in a buffer, effectively smoothing

the updates. The momentum buffer is updated iteratively as:

m1 = β1m1 + (1− β1)
1

b

∑
i∈B

∇θL(fθ(xi),yi).

This approach ensures that the gradient vector’s direction is influenced by a

larger portion of the dataset, improving stability. Variants like RMSProp extend

46 Chapter 3. Introduction to Deep Learning

this idea by tracking a moving average of the squared gradients, allowing for adaptive

learning rates:

m2 = β2m2 + (1− β2)
1

b

∑
i∈B

(∇θL(fθ(xi),yi))
2.

The Adam optimizer (Kingma, 2014) combines both momentum and adaptive

learning rate ideas, making it a robust and widely used choice for neural network

training. Adam is often a good starting point for experimentation, as it balances

simplicity and effectiveness across a wide range of tasks.

Even though recent optimizers include adaptive learning rate mechanisms, it

remains important in practice to tune the base learning rate η and define it as a

function of the optimization step. The general principle is to ensure ηstep → 0 as

step reaches its final stages during the training, facilitating smoother convergence.

The linear decay scheduler reduces η at a constant rate, while the cosine scheduler

has initially a more gradual reduction, followed by a steeper decrease towards the end

of training. For training transformers and similar architectures, it is often beneficial

to initialize with η0 = 0 and linearly increase the learning rate to a peak value ηmax

before starting the decay phase. This initial phase, known as warmup, helps stabilize

training by allowing the optimizer to aggregate sufficient statistics for more reliable

momentum estimation.

3.4 Building blocks of Deep Learning

So far, we have examined the fundamental components of a standard neural network

and how to train it using backpropagation, focusing on the case of the multilayer

perceptron (MLP). While the MLP serves as a canonical example, it is not ideal for

all tasks because it lacks specific inductive biases.

To overcome these limitations, neural network architectures are constructed us-

ing various modules or blocks, which in turn are composed of smaller units called

layers. These layers act as the ”Lego blocks” for processing data, enabling the design

of networks tailored to specific tasks.

In this section, we will introduce the most essential types of layers, then discuss

common building blocks, and finally explore some of the key architectures in modern

deep learning.

3.4.1 Layers

Definition 3.4.1. (Linear) The linear layer is the simplest type of layer. It

3.4. Building blocks of Deep Learning 47

changes the dimensions from din to dout. It is expressed mathematically as:

y = Wx + b

where W represents the weights, x the input, and b the bias. It is sometimes

called fully connected layer as it connects every input neuron to every output

neuron.

For spatial features x ∈ RH×W×d (e.g. an image), directly applying a linear layer

to project an input of size H × W × d to an output space of H × W × dout can

be computationally expensive. To reduce memory consumption and computational

cost while introducing spatial inductive biases, convolutions provide a more efficient

and effective alternative.

Definition 3.4.2 (Convolution). A convolutional layer processes input data

using spatial filters (or kernels) to extract local patterns. In the 2D case, each

filter slides over the input x ∈ RH×W×din , applying a cross-correlation operation

to compute the output y ∈ RH×W×dout .

The weights of the filters are represented by a tensor Wk ∈ Rk×k×din×dout ,

where k is the kernel size, din is the number of input channels, and dout is the

number of output channels. The output of the convolution operation at position

(h,w) and output channel i is computed as:

y[h,w, i] =

din−1∑
c=0

⌊k/2⌋∑
h′=−⌊k/2⌋

⌊k/2⌋∑
w′=−⌊k/2⌋

Wk[h
′, w′, c, i] · x[h+ h′, w + w′, c] + b[i],

where b ∈ Rdout is a bias term.

At the edges of the image, the cross-correlation operation may become ill-

defined due to missing values. To address this, the input is padded with pixels

using various strategies. For example:

• Zero padding adds pixels with zero values,

• Periodic padding wraps the image around using periodic boundary condi-

tions,

• Reflect padding mirrors the input to impose zero-gradient boundaries.

The number of pixels added to each side is called the padding size, denoted

p. To ensure that the kernel is centered and that the output spatial dimensions

match the input, the padding size is typically chosen as p = ⌊k/2⌋.

Convolutions can also be extended to non-regular grids, such as graph-based

data. In this case, the neighbors of each node are used to define the local connec-

48 Chapter 3. Introduction to Deep Learning

tivity. Another commonly used layer for processing irregular grids and graph-based

data is the message-passing layer, which aggregates and updates node features based

on neighborhood information (Bronstein et al., 2021).

Definition 3.4.3. (Message-passing) Let us consider a graph G = (V , E), where

each node v ∈ V has a feature vector hv ∈ Rd and each edge (u, v) ∈ E has a

feature vector euv ∈ Re. A message passing layer updates node representations

by exchanging information between adjacent nodes, leveraging both node and

edge features. The message passing layer proceeds in three steps. First, for

each edge (u, v) ∈ E , a message is computed using a learnable function ϕmessage,

typically an MLP:

muv = ϕmessage(hu, hv, euv).

Next, each node v aggregates incoming messages from its neighbors N (v) using

a permutation-invariant function such as a sum or mean:

Mu = aggregate({muv | v ∈ N (u)}).

Finally, the node feature is updated by combining the current state with the

aggregated message, using another learnable function ϕupdate:

h′u = ϕupdate(hu,Mu).

Finally, one of the most influential components in modern architectures is the

attention mechanism (Bahdanau, 2014). Attention is a powerful approach for pro-

cessing sequences, as it does not depend on predefined notions of neighborhoods or

meshes, making it highly versatile for various data structures.

Definition 3.4.4. (Attention) An attention layer is an aggregation mechanism

with a global receptive field, allowing a sequence of sizeN to retrieve information

from another sequence of size M . Specifically, given queries q ∈ RN×dk , keys

k ∈ RM×dk , and values v ∈ RM×dv , the attention layer dynamically focuses

on the most relevant parts of the input by assigning weights based on their

importance. The attention mechanism is defined as:

Attention(q,k,v) = softmax

(
qkT√
dk

)
v,

where the softmax ensures that the rows of the resulting matrix sum to 1,

producing normalized attention weights.

In practice, attention is commonly used in two forms: self-attention and

cross-attention. In self-attention, the queries, keys, and values are derived from

the same sequence of features x ∈ RN×dx , with linear projections applied to

3.4. Building blocks of Deep Learning 49

compute q = Wqx, k = Wkx, and v = Wvx. In cross-attention, two sequences

are involved: x ∈ RN×dx and y ∈ RM×dy . The queries are derived from x, while

the keys and values are derived from y, such that q = Wqx, k = Wky, and

v = Wvy.

To facilitate training and ensure a standardized input range throughout the net-

work, it is beneficial to use normalization layers. These layers adjust the activations

to a consistent scale and may include learnable parameters. The first widely adopted

normalization technique was batch normalization (Ioffe and Szegedy (2015)), which

normalizes activations across a mini-batch of inputs. However, more efficient alterna-

tives have since been proposed, including Layer Normalization (Ba et al. (2016)) and

Group Normalization (Wu and He (2018)), which normalize the channels in a single

example. More recently, RMSNorm (Zhang and Sennrich (2019)), a computationally

cheaper variant of Layer Normalization, has gained popularity in transformer-based

architectures.

3.4.2 Blocks

These layers are combined into blocks, which serve as reusable building units for

constructing more complex models. By stacking these blocks, neural network archi-

tectures can be tailored to address a variety of tasks effectively.

Residual Networks (He et al. (2015a)) introduced the key concept of skip con-

nections, which allow gradients to flow directly through the network during opti-

mization. Its core building block, the Residual Block, adds the input directly to the

output of a sequence of layers:

y = x + F (l)(x),

where F (l) represents the transformation applied by a few convolutional layers in-

terleaved with activation functions. This residual connection has been fundamental

to the development of deep architectures and has a theoretical connection to the

discretization of ordinary differential equations. Omitting the ∆t term, the resid-

ual block resembles the explicit Euler discretization scheme of an ODE, and this

discretized version is consistent under some hypotheses (Marion et al., 2023).

The UNet architecture (Ronneberger et al. (2015b), see Figure 3.1) is another

widely recognized example of convolutional neural networks. It adopts an encoder-

decoder structure, where the encoder reduces spatial dimensions through downsam-

pling layers, and the decoder restores them with upsampling layers. UNet integrates

skip connections between corresponding layers in the encoder and decoder. These

connections preserve spatial details while reconstructing the output, making UNet

particularly effective for regression tasks such as image segmentation.

Transformers (Vaswani et al. (2017), see Figure 3.2) represent a different class

50 Chapter 3. Introduction to Deep Learning

Figure 3.1: UNet architecture. The gray arrows represent skip connections. The
red and green represent respectively downsampling and upsampling by a factor 2.
Diagram taken from Leung (2020).

of neural networks, designed for processing sequential data. Transformers primarily

rely on attention mechanisms, which dynamically focus on different parts of the

input sequence. The blocks in Transformers consist of self-attention layers followed

by feedforward layers (FFN). This structure enables the model to efficiently capture

dependencies in the sequence. Architectures such as GPT (Radford et al. (2018))

adopt this design and achieve state-of-the-art performance in language modeling.

GPT employs a transformer block with post-layer normalization and also employs

skip connections even within a single block:

ỹ = LayerNorm(x + Self-Attention(x)),

y = LayerNorm(ỹ + FFN(ỹ)),
(3.4)

where x is the input, ỹ represents the intermediate output after the attention mech-

anism, and FFN denotes a two layer feed-forward neural network applied to ỹ.

Recently, pre-layer normalization (Touvron et al., 2023) has proven to be more

stable computationally. The difference is that the LayerNorm is applied before the

self-attention and feed-forward block.

ỹ = x + Self-Attention(LayerNorm(x)),

y = ỹ + FFN(LayerNorm(ỹ)),
(3.5)

Transformers and attention mechanisms were originally developed for natural

3.4. Building blocks of Deep Learning 51

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

Figure 3.2: Original transformer architecture from Vaswani et al. (2017).

52 Chapter 3. Introduction to Deep Learning

language processing tasks, where they excel at modeling sequences of tokens. This

concept was later extended to image processing by Dosovitskiy et al. (2020), who

proposed to divide images into small patches of adjacent pixels and treating each

patch as a token in a sequence. The Transformer architecture’s ability to process

and scale efficiently with large datasets has been one of its key strengths.

A major challenge with Transformers is the quadratic complexity of the stan-

dard attention mechanism, which scales as O(N2) with the sequence length N . To

address this, several variants have been proposed. For example, Swin Transformers

(Liu et al., 2021) or Neighborhood Transformer (Hassani et al., 2023) limit the range

of attention to local regions, while other approaches explore alternative attention

mechanisms with linear complexity (Katharopoulos et al., 2020). However, the in-

troduction of Flash Attention (Dao et al., 2022) has significantly mitigated these

limitations. By optimizing memory usage and minimizing read/write operations,

which are the most time-consuming aspects of attention computation, Flash Atten-

tion achieves superior efficiency and prevents memory issues. It is however available

only on most recent GPUs.

3.5 Learning Paradigms

Before training a deep learning model, we first have to gather and construct a

dataset (if it is not already done for us). The choice of learning, i.e. the way we

want to train the neural network from data, needs to be aligned with the dataset

and the tasks we wish the model to address. So far, we have presented the classical

example of supervised learning, where both inputs x and corresponding targets y

are available. In this setting, the data and the task are well defined: we want to

use a model to ”predict” the corresponding y to any new x. However, in many

real-world scenarios, such clearly defined inputs and targets are either unavailable

or poorly defined. Consider, for instance, random images found on the web: they

may lack meaningful annotations beyond a basic caption. Similarly, in the case of

a sequence of words, what should the target be for a given word? Should it try to

predict another sentence with a question-answer scheme, or should we try to infer

the sentiment from this sentence ?

There are therefore many available tasks, but for each task labeled data is often

rare as labeling is a time-consuming and expensive process. One of the main strength

of deep learning lies in its ability to learn meaningful patterns and representation

even when the data might not come under the scope of supervised learning. We

can instead adopt different types of learning objectives, and depending on these

objectives, models can learn useful feature representations, structural or semantic.

They can even learn how to generate new samples.

3.5. Learning Paradigms 53

3.5.1 Unsupervised learning

Unsupervised learning is a classical statistical learning paradigm where we have a

dataset of features X ∈ Rn×d, where n is the number of samples, and d is the feature

dimensionality. However, unlike supervised learning, we do not have explicit labels

Y. Several statistical methods can be used in this setting. For example, Principal

Component Analysis (PCA, Hotelling (1933)) enables dimensionality reduction by

finding a lower-dimensional linear representation of the data that retains the most

variance. This is very close to what we presented in Section 2.4.1 to describe the

POD in reduced-order modeling. K-Means (MacQueen, 1967) partitions the data

into clusters, ideally associating each cluster with meaningful features. Similarly,

methods like Gaussian Mixture Models (GMM, Dempster et al. (1977)) attempt to

model the underlying data distribution using probabilistic assumptions.

Autoencoder In the deep learning literature, Autoencoders (AE) have become

a prominent approach for learning compact representations z from input features

x. Autoencoders generalize the concept of PCA by employing non-linear encoders

and decoders to better capture complex data structures. Key milestones in the

development of Autoencoders include the original work of Hinton and Salakhutdi-

nov (2006), which demonstrated their ability to learn meaningful low-dimensional

representations. Extensions such as Denoising Autoencoders (Vincent et al., 2008)

introduced robustness to noise, while Variational Autoencoders (VAE, Kingma and

Welling (2013)) incorporated probabilistic modeling to allow the generation of new

samples from the latent space. While this latent representation z can take infi-

nite values, other works have attempted to constrain even further the space of val-

ues, with frameworks such as Vector-Quantized Variational Autoencoders (VQVAE,

van den Oord et al. (2017)) or VQGAN (Esser et al., 2020), which also includes an

adversarial loss developed from the generative adversarial network literature (GAN,

Goodfellow et al. (2014)).

Example 3.5.1. (AE, see Figure 3.3) In an autoencoder, the goal is to encode

the most informative features of the data x with an encoder ENCθ into z such

that the original data x can be reconstructed with high fidelity with a decoder

DECϕ. This yields the following training objective:

R(θ, ϕ) =
1

n

n∑
i=1

L(DECϕ ◦ ENCθ(xi),xi), (3.6)

Although training is typically framed as a dimensionality reduction problem,

the learned latent representations zi = ENCθ(xi) can be leveraged in more

complex pipelines or downstream tasks, effectively replacing the original input

54 Chapter 3. Introduction to Deep Learning

CNN
Encoder Decoder

CNN

codes

Output: reconstructionInput: physical field

Figure 3.3: Simplified view of an Autoencoder.

features xi. For example, in the work of Le Naour et al. (2023), it is shown that

the indices obtained through the quantization step of a VQVAE can be used to

achieve a strong performance in downstream classification tasks.

Neural Fields Implicit Neural Representations (INRs), also known as Neural

Fields (NFs), are neural networks designed to learn a continuous representation of

a signal, such as an image, a shape, or a video. See Figure 3.4 for an illustration.

These coordinate-based networks encode a signal into their weights and decode

it by mapping input coordinates to output signal values. This capability makes

neural fields particularly powerful for interpolating signals in space or time, enabling

applications like super-resolution or the representation of sparse signals.

Despite the apparent simplicity of the task, reconstructing a signal with a contin-

uous neural approach is non-trivial. A straightforward neural network with standard

activation functions struggles to represent signals faithfully due to spectral bias (Ja-

cot et al., 2018), which favors learning the low-frequency components. To address

this limitation, modern architectures commonly employ frequency-based embeddings

(Tancik et al., 2020a; Fathony et al., 2021a; Lindell et al., 2022) or specialized ac-

tivation functions, such as those used in SIREN (Sitzmann et al., 2020d), to better

capture high-frequency details. More recently, some connections have been made

between layer normalization in the neural network and the spectral bias of neural

fields (Cai et al., 2024).

One of the most prominent applications of neural fields is scene reconstruction,

with the famous Neural Radiance Fields (NeRF) (Mildenhall et al., 2021). NeRF

is a framework that yields novel views of a scene with smooth and realistic inter-

polation given a few images of an object captured from different angles. Since its

introduction, numerous works have built upon this method. Variable Bitrate Neural

Fields (Takikawa et al., 2022a) introduced interpolation schemes leveraging features

on regular grids for improved efficiency. Instant Neural Graphics Primitives (Instant

3.5. Learning Paradigms 55

Figure 3.4: Vision applications of Coordinate-based networks or Neural fields (Tan-
cik et al., 2020a).

NGP) (Müller et al., 2022) accelerated training and rendering using a multiresolu-

tion hash table, while Shue et al. (2022) reduced the computational cost of scene

representation by utilizing triplane features.

More recently, Gaussian Splatting (Kerbl et al., 2023) emerged as a neural-

free approach to scene representation. Unlike traditional neural fields, Gaussian

Splatting relies on explicit 3D Gaussian rather than neural networks, achieving real-

time rendering.

Example 3.5.2. (Neural field) Let us see how we can represent an image I of

size H ×W with a neural field. Each pixel at coordinates (x, y) is normalized

betwen [0, 1], with x = i/W and y = j/H, where i ∈ {0, . . . ,W − 1} and

j ∈ {0, . . . , H − 1}. We note the positional embedding γ : R2 → Rd mapping

the coordinates (x, y) to a high-dimensional space using a frequency embedding

from Mildenhall et al. (2021):

γ(x, y) =
[
sin(2kπx), cos(2kπx), sin(2kπy), cos(2kπy)

]L−1

k=0
.

The neural field fθ : Rd → R3 maps γ(x, y) to the corresponding RGB values

I(x, y) = (r(x), g(x), b(x)):

fθ(γ(x, y)) = (r̂(x), ĝ(x), b̂(x)).

56 Chapter 3. Introduction to Deep Learning

The training loss is computed with the mean squared error (MSE):

R(θ) =
1

HW

W−1∑
i=0

H−1∑
j=0

∥fθ(γ(x, y))− I(x, y)∥22 .

By minimizing R(θ), we obtain weights θ such that fθ(γ(x, y)) ≈ I(x, y),

and we can query the network at every coordinate within the spatial domain,

even if it is not an observed pixel.

3.5.2 Self-Supervised Learning

Self-supervised learning shares similarities with unsupervised learning but differs in

its approach by generating pseudo-labels directly from the data. For instance, given

an input x, a label x̃ can be created by applying transformations or augmentations

to x. Another common way involves creating two complementary views of the same

input, x → (x̃1, x̃2), where for instance x̃1 has 90% of the information masked out

and x̃2 has only the remaining 10%. This approach is particularly useful when

reconstructing the input is either too challenging or not the main objective. This

focuses rather on building representations that are invariant or consistent across x̃1

and x̃2.

One of the most impactful aspects of self-supervised learning is its scalability.

By leveraging large, unlabeled datasets, self-supervised methods can pretrain mod-

els on very large datasets, and can learn complex patterns and structures. This

phase, commonly referred to as pretraining, is typically the most critical and com-

putationally intensive step in building foundation models such as Llama 3 (Dubey

et al., 2024) or Olmo2 (OLMo et al., 2024).

Masking In natural language processing, BERT (Devlin et al., 2018) is perhaps

the best example to illustrate the advantages of self-supervised learning. BERT

learns rich contextual representations by predicting masked tokens in a sentence of

tokens (units for representing words), using an encoder-only transformer architec-

ture. At inference, BERT can encode a sentence to produce contextual embeddings

for each token. These embeddings can be used with linear probing to achieve state-

of-the-art results in tasks such as sentiment analysis and question answering, outper-

forming models supervised solely on this task. This framework marked a paradigm

shift in deep learning, emphasizing the utility of pretraining on vast datasets in a

self-supervised manner. The masking-demasking concept introduced in BERT has

since then been extended to audio (Baevski et al., 2020), images (He et al., 2021)

and videos (Tong et al., 2022), demonstrating its versatility across domains.

3.5. Learning Paradigms 57

Example 3.5.3. BERT is a foundational model that introduced the concept of

masked language modeling (MLM), a paradigm based on masking and demask-

ing parts of a text to train the model on understanding language representations.

The training process involves two main objectives: one focuses on guessing miss-

ing words in a sequence, while the other predicts whether one sentence follows

another. Here, we focus on the masked language modeling aspect.

Let x = [x1, x2, . . . , xN] be an input sequence of tokens of length N . A

random binary mask m = [m1,m2, . . . ,mN] is sampled, where each mj is sam-

pled independently from a Bernoulli distribution with parameter p. A value of

mj = 1 indicates that the token xj will be masked. The resulting corrupted

input is denoted x̂ = [x̂1, x̂2, . . . , x̂N], where:

x̂j =

{
[MASK] if mj = 1

xj otherwise

The MLM objective over a dataset of sequences {x1, . . . ,xn} is to minimize

the negative log-likelihood of the original (unmasked) tokens xij at positions

where mij = 1, conditioned on the corrupted input x̂i. Formally, the training

loss is defined as:

RMLM = − 1

n

n∑
i=1

Emi

[
N∑
j=1

mij log pθ(xij | x̂i)

]

Here, pθ(xij | x̂i) denotes the model’s predicted probability of the original token

xij, at position j, given the masked input sequence x̂i. The expectation is

taken over the random masking process, with mij sampled independently from

Bernoulli distribution for each training step. This objective encourages the

model to infer missing tokens from their surrounding context, allowing it to

learn rich and robust language representations.

Contrastive Contrastive learning methods, such as SimCLR (Chen et al., 2020b),

are also prominent self-supervised learning frameworks in computer vision. These

frameworks train models to maximize the similarity between two embedded repre-

sentations z1, z2 from augmented views x̃1, x̃2 of the same instance while ensuring

that representations of different instances remain distinct. For example, SimCLR

uses image data augmentations, like random cropping and color distortions, to gen-

erate multiple views of an image. Building on this concept, DINO (Caron et al.,

2021) integrates a teacher-student framework (Hinton et al., 2015) to stabilize learn-

ing and avoiding the need for negative examples. DINO’s learned features have been

highly effective in tasks such as semantic segmentation and object detection. Beyond

computer vision, contrastive learning has been adapted in other modalities such as

58 Chapter 3. Introduction to Deep Learning

time series representations (Franceschi et al., 2019) and even on cross-modal tasks,

e.g. aligning images with textual descriptions in CLIP (Radford et al., 2021).

Next-token prediction Another widely used self-supervised objective for train-

ing models on sequential data is next-token prediction, where the model learns to

predict the next token in a sequence given all preceding tokens as input. By doing

so, the model approximates a parameterized distribution over the data by factoriz-

ing the joint probability of a sequence into a product of conditional probabilities.

This approach forms the cornerstone of pretraining in many large language models

(Radford et al. (2018), Radford et al. (2019), Achiam et al. (2023) Touvron et al.

(2023), OLMo et al. (2024)).

Architectures trained using the next-token prediction objective offer notable scal-

ability and efficiency. Their scalability stems from employing causal masking in the

attention mechanism during training—ensuring predictions rely solely on preceding

tokens—and from leveraging dense supervision via parallel processing. Every sub-

sequence in a batch predicts its next token in parallel. Additionally, at inference

key-value caching during inference efficiently stores intermediate states, preventing

redundant computations.

During inference, these models generate sequences one token at a time based on

the provided context. This generative approach is fundamental to the development

of robust models capable of handling diverse modalities, including text, images,

and videos. For example, it has been extended to tasks such as image generation

(ImageGPT Chen et al. (2020a), VQGAN (Esser et al., 2020)) and video generation

(MAGVIT2 Yu et al. (2023b), VideoPoet Kondratyuk et al. (2023)).

Most autoregressive generative models work with discrete tokens only, i.e. they

model distributions over a finite vocabulary. The tokenizer is the block that projects

the data onto this finite vocabulary. This is particularly appealing in language mod-

eling, where sentences and words can be efficiently decomposed in subunits. There-

fore, it is common to say that next-token predictors model discrete distributions.

Nonetheless, recent works such as (Li et al., 2024a) have explored how the next-token

prediction objective can be applied to continuous distributions.

Example 3.5.4. Next-token prediction for textual tokens. Consider an input

sequence of tokens denoted as x = [x1, x2, . . . , xN]. The joint probability of the

sequence is factorized into a product of conditional probabilities:

pθ(x) =
N∏
j=1

pθ(xj | x<j),

where P (xt | x<t) is the probability of the token xt, conditioned on all pre-

ceding tokens. The next-token prediction objective minimizes the negative log-

3.5. Learning Paradigms 59

likelihood of the sequence:

RNTP = − 1

nN

n∑
i=1

N∑
j=1

log pθ(xij | xi,<j),

where pθ(xij | xi,<j) is estimated using a causal transformer that processes

the sequence with attention masking to ensure predictions are only based on

preceding tokens.

Diffusion For modalities such as images and videos—where discretization is less

straightforward—state-of-the-art generative models are often trained using denoising

procedures. During training, inputs are corrupted with noise at varying variance

levels, and the model learns to predict the noise injected into the input. Denoising

Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) demonstrated that even

a simple denoising objective can effectively train models to generate high-quality

images starting from pure noise. Building on this, Song et al. (2020) introduced a

more efficient sampling procedure, enabling the generation of high-quality images

with fewer steps.

Training diffusion models directly in the pixel space, however, is computation-

ally expensive. To address this challenge, Rombach et al. (2021) proposed a latent

diffusion framework that stabilizes training by operating in the latent space of au-

toencoders. This approach not only reduces computational costs but also supports

text conditioning, allowing for more flexible generation. Although these models are

trained for image generation, they can be adapted for a variety of tasks. For ex-

ample, diffusion models not only support image editing but also can extract robust

features that excel in downstream tasks like image segmentation. Xu et al. (2023)

demonstrated that these features can be effectively repurposed to train segmenta-

tion models, while DiffCut (Couairon et al., 2024b) shows that diffusion features

can achieve state-of-the-art zero-shot segmentation performance.

Recently, flow-matching based methods have emerged as a more sample-efficient

alternative for inference. In flow matching, the model learns to approximate the

derivative of a flow map that transforms random noise into images (Lipman et al.,

2022). Notably, flow matching models solve an ordinary differential equation during

inference to generate samples, drawing interesting connections with ODE solvers.

Techniques such as Rectified Flows Liu et al. (2022b) have further reduced the

number of required sampling steps, and this approach has been successfully scaled,

as demonstrated in Esser et al. (2024).

On the architectural side, Peebles and Xie (2023) introduced the Diffusion Trans-

former (DIT), a simple yet scalable architecture that outperforms traditional CNN

diffusion models. This transformer-based architecture has also been adapted for

video generation, as showcased by Sora (OpenAI, 2024), highlighting the potential

60 Chapter 3. Introduction to Deep Learning

for scalable generative modeling across diverse modalities.

3.5.3 Meta-learning

Given the diversity of tasks in certain domains, training separate models for each

task can be inefficient and resource-intensive. This challenge motivated the devel-

opment of multi-task learning, where a single model is trained to handle multiple

tasks simultaneously, sharing representations across tasks to improve generalization.

The concept of multi-task learning was introduced in Caruana (1997), where models

learn shared parameters across related tasks to improve performance. However, con-

ventional multi-task learning typically involves training on a predefined and fixed

set of tasks. When confronted with a new task, the model often requires additional

fine-tuning on new task-specific examples, and this stage can be costly and possibly

inefficient.

Meta-learning extends multi-task learning by focusing on training a model not

to perform specific tasks directly, but to adapt quickly and efficiently to new tasks.

In essence, meta-learning is the process of ”learning to learn” rather than ”learning

to do.” This paradigm enables models to generalize its learning strategy to unseen

tasks, providing greater flexibility and faster adaptation compared to fine-tuning

large task-specific models.

In deep learning, one prominent subfield of meta-learning (Hochreiter et al., 2001)

is gradient-based meta-learning, where the model is trained to adapt its parameters

through gradient updates on a new task. In MAML (Finn et al., 2017), the model

learns an initialization of parameters that can be quickly adapted to new tasks with

just few gradient steps. There exists many alternatives, such as the first order variant

(Reptile, Nichol et al. (2018)) that reduces memory constraints. Meta-sgd (Li et al.,

2017a) aims at learning not only the intitialization but also the learning rate for each

parameter. Flennerhag et al. (2019) learns to warp gradients to precondition the

gradient descent of the network, this can be seen as a generalisation of the previous

works. Some lighter alternatives use context parameters instead of full parameters

to adapt, such as CAVIA (Zintgraf et al., 2019a), where each task has a specific

parameter while the main parameters are shared across tasks. .

Auto-decoding Auto-decoding provides an elegant connection between gradient-

based meta-learning, multitask learning, and neural fields. It enables the training of

autoencoders without the need for an explicit encoder network, which is especially

useful when the optimal structure of the encoder is uncertain, but the desired prop-

erties of the decoder are well known. For example, this is particularly advantageous

for scenarios requiring fully continuous representations of data. By employing a con-

tinuous decoder (such as a neural field), auto-decoding derives latent representations

directly from the data but without relying on meshes or grids. These representations

3.5. Learning Paradigms 61

Decoder
CNN

codes

Output: reconstruction Target: physical field

MSE Loss

optimization

Figure 3.5: Simplified view of an Auto-decoder during inference. The latent codes
are optimized to minimize the mean squared error (MSE) loss between the recon-
structed output and the input to be encoded.

are encoded within the weights of the neural network and can be adjusted in size by

varying the number of context parameters as in Zintgraf et al. (2019b). At inference,

auto-decoding replaces the encoder with an optimization loop that optimizes some

parameters to obtain the latent representation of the inputs (see Figure 3.5).

The first work by Park et al. (2019b) introduced this concept to generate latent

representations of point clouds representing shapes. While this work emphasizes

multitask learning rather than meta-learning, it laid the foundation for using neural

fields for such scenarios. Subsequently, Sitzmann et al. (2020a) and Tancik et al.

(2021), employed meta-learning techniques to enable rapid adaptation across tasks

for shapes and images,. These works highlight the potential of combining auto-

decoding with meta-learning for efficient and flexible neural representations.

More recent works, including Dupont et al. (2022b) and Dupont et al. (2022a),

extend this concept in conjunction with context-based meta-learning by incorpo-

rating activation modulations (Perez et al., 2018b) and hypernetworks (Ha et al.,

2016). These methods focus on deriving compact latent representations that are

both efficient to store and effective for downstream tasks.

While auto-decoding offers a conceptually elegant approach, it can be compu-

tationally intensive during both training and inference and may exhibit instability,

hindering its scaling potential. Efforts to improve its scalability, such as Bauer et al.

(2023), have seen limited success. To address these challenges, several works have

explored alternative encoder and decoder designs tailored to neural fields. For in-

stance, Chen and Wang (2022) propose an encoder that transfer patches of data

into the weights of an implicit neural network, while Luigi et al. (2023) introduce

an encoder that compresses implicit neural representations, which are subsequently

62 Chapter 3. Introduction to Deep Learning

decoded with a conditioned neural field.

3.5.4 In-context learning

The rise of large language models and foundation models has revealed their impres-

sive in-context learning (ICL) capabilities. These models can handle a wide range

of tasks, including those not seen during training. ICL refers to a model’s ability to

solve tasks by leveraging a few examples given in the input prompt. Since the num-

ber of examples is limited by the model’s maximum sequence length, ICL is closely

tied to few-shot learning, as shown by Brown et al. (2020) and further explored by

Touvron et al. (2023). Notably, LLMs can even perform well on abstract tasks, such

as mathematical reasoning (Wei et al., 2022).

Unlike gradient-based learning, which updates model parameters through train-

ing or fine-tuning, ICL adapts by processing examples in the input without mod-

ifying its parameters. This makes it a ”training-free” approach. Studies such as

Liu et al. (2022a) and Mosbach et al. (2023) compare ICL to fine-tuning, finding

that while ICL performs comparably for large models, smaller models (fewer than 7

billion parameters) benefit more from fine-tuning.

ICL’s effectiveness depends on the pretraining quality and has been linked to

meta-learning. Min et al. (2021) introduces a meta-learning approach where models

are fine-tuned to use in-context examples effectively. Similarly, Shi et al. (2023) pro-

poses in-context pretraining, where sequences are structured around related tasks

rather than random documents during pretraining, improving task contextualiza-

tion.

Prompt design is crucial for ICL performance. Lu et al. (2021c) highlights the

sensitivity of ICL to prompt example order and suggests ways to mitigate this. Min

et al. (2022) examines how demonstration examples influence ICL, identifying key

success factors. Structured prompts, like chain-of-thought prompting (Wei et al.,

2022), enhance ICL by breaking complex tasks into intermediate reasoning steps.

Essentially, they bias the model to perform a more thorough and extended analysis

of the input before generating its final answer.

The mechanisms behind ICL remain partially understood. One theory views

ICL as implicit Bayesian inference, where models deduce task-relevant distributions

from the context. Another, proposed by von Oswald et al. (2022), suggests that ICL

mimics gradient descent, with attention over the context examples approximating

parameter updates. Pan et al. (2023) further differentiates between a model’s ability

to recognize tasks and learn task-specific patterns, noting that once the task is

identified, the labels in the examples become less important.

Example 3.5.5. In-context learning enables a model to infer and perform a

task by observing examples of the function it is expected to approximate. For

3.5. Learning Paradigms 63

instance, in a color translation task from English to French, providing examples

like ”blue: bleu, green: vert, pink: rose,” followed by ”yellow:” allows the model

to deduce that ”jaune” corresponds to ”yellow,” just as ”vert” corresponds

to ”green.” Alternatively, the instruction can be explicitly stated in natural

language, such as ”What is the French word for yellow?”.

While natural language instructions work well for text-based tasks, they

may not sufficiently define the task in other modalities. Consider an image

editing scenario where the goal is to add a specific pair of glasses to the face of

a person. Rather than describing the glasses in natural language, it seems far

more informative to provide a set of example images showing people with and

without the target pair of glasses. In such cases, presenting structured examples

of the task provides a more effective and unambiguous way to condition the

model than relying on potentially vague textual descriptions.

Chapter 4

Deep Learning for solving PDEs

Now that we have covered the key concepts of partial differential equations and deep

learning, this section will explore the existing methods that leverage deep learning

to solve PDEs or, more broadly, to model spatiotemporal dynamics.

Broadly speaking, these methods fall into three main categories. The first in-

cludes approaches that incorporate physical information into deep learning architec-

tures. The second involves techniques designed to augment or accelerate traditional

numerical solvers by integrating components based on deep learning. Finally, and

most relevant to our focus, are the methods that adopt a data-centric approach,

relying mainly on data rather than explicit physical principles.

4.1 Physical priors for Deep Learning . 64

4.2 Hybrid modeling . 66

4.3 Data-centric approaches . 68

4.3.1 Neural surrogates . 68

4.3.2 Operator learning . 70

4.3.3 Learning with multiple physical parameters 74

4.1 Physical priors for Deep Learning

Hard constraints Bézenac et al. (2017) were the first to integrate physical priors

into a deep learning architecture. They focused on an advection-diffusion system to

model sea surface temperature (SST), leveraging the formulation of its analytical

solution to compute the temperature field at time t + ∆t as a convolution of the

temperature field at time t with a Gaussian kernel dependent on the advection flow

w(t). Since this flow is not directly observed, they modeled it using a UNet and

trained the neural network to predict future time steps. This work represents an

early example of enforcing hard constraints in neural networks, here ensuring that

64

4.1. Physical priors for Deep Learning 65

outputs adhere to known analytical solutions. More broadly, hard constraints can

be imposed to enforce physical laws or boundary conditions, for example through

iterative solvers in Negiar et al. (2022); Chalapathi et al. (2024).

Soft constraints However, designing explicitly a network to satisfy a constraint

is difficult in most cases. As this is not trivial we can penalize the network with

soft constraints instead. This transforms the problem of finding a solution of a

PDE into an optimization problem. This is the line of works started with the

Deep Galerkin Method (Sirignano and Spiliopoulos, 2018) and the Physics Informed

Neural Networks (PINNs) (Raissi et al., 2019), which use a combination of loss

terms to enforce the partial differential equation or the boundary condition. Though

this approach sounds simple and convenient thanks to automatic differentiation, in

practice it is very difficult or even infeasible to obtain acceptable PDE solutions,

as the optimization problem is ill-conditioned (Krishnapriyan et al., 2021; De Ryck

et al., 2023). A simple workaround, though not always applicable, is to reduce the

number of soft constraints by replacing some with hard constraints when possible

(Lu et al., 2021b). However, the optimization process remains ill-conditioned. To

address this, Boudec et al. (2025) propose a neural solver that efficiently optimizes

the PINN losses by guiding the optimization towards the numerical solver’s solution

within just a few iterations. This results in an orders-of-magnitude speedup over

standard PINN optimization.

Example 4.1.1. We consider the heat equation again, this time with neumann

boundary conditions:

∂u

∂t
= α

∂2u

∂x2
, x ∈ [0, L], t > 0,

u(x, 0) = u0(x), x ∈ [0, L],

u(0, t) = b1(t), u(L, t) = b2(t), t > 0.

(4.1)

In the PINNs framework, we approximate the solution u to this problem

using a neural network fθ and leveraging automatic differentiation. The param-

eters θ are learned by minimizing the following multi-term loss function:

L(θ) = LPDE + λICLIC + λBCLBC. (4.2)

Each term in the loss function enforces a different constraint of the problem.

The loss LPDE ensures the solution satisfies the heat equation at collocation

points.

LPDE =
∑
(xi,ti)

(
∂f

∂t
(xi, ti)− α

∂2f

∂x2
(xi, ti)

)2

. (4.3)

66 Chapter 4. Deep Learning for solving PDEs

Here the derivatives can be automatically computed analytically using auto-

matic differentiation. The initial condition loss LIC enforces agreement with

the given initial state:

LIC =
∑
xi

(
f(xi, 0)− u0(xi)

)2
. (4.4)

Finally, the boundary condition loss LBC ensures that the solution respects the

prescribed boundary values:

LBC =
∑
ti

(f(0, ti)− b1(ti))2 +
∑
ti

(f(L, ti)− b2(ti))2 . (4.5)

Symmetries Symmetry in a system arises when certain transformations (e.g.,

translations, rotations, reflections) leave its fundamental properties unchanged. In

the context of partial differential equations, symmetries can be leveraged by consid-

ering the solution space itself. Specifically, if u is a solution to an initial-boundary

value problem with initial conditions u0, and there exists a transformation ϕ such

that ϕ(u) is also a solution with initial conditions ϕ(u0), then this property can be

exploited to improve neural surrogate models. This leads to the development of

equivariant models, where the conservation of symmetry can be expressed as:

g(ϕ(u)) = ϕ(g(u))

This principle has been explored in various ways in the literature. For instance,

Wang et al. (2020b) introduced equivariant convolutional layers to enforce PDE

symmetries in neural networks for the Navier-Stokes and Heat equations. Brand-

stetter et al. (2022b) proposed a data augmentation strategy based on symmetry

transformations of PDEs, leveraging the fact that if u is a solution, then ϕ(u) re-

mains a valid solution for any transformation ϕ in the symmetry group. Similarly,

Mialon et al. (2023) investigated the use of PDE symmetries for both data augmen-

tation and self-supervised learning of solution representations, following contrastive

learning approaches such as SimCLR (Chen et al., 2020b). However, a key challenge

in these methods lies in determining which symmetries to exploit and how similar

two transformed views should be in order to learn meaningful representations.

4.2 Hybrid modeling

Incorporating physical knowledge directly into neural networks is a challenging task.

As a result, other approaches have instead taken the opposite direction, integrating

neural networks into classical solvers. These methods aim to achieve various objec-

tives, such as augmenting partial knowledge of a system (Yin et al., 2021), combining

4.2. Hybrid modeling 67

numerical solvers and neural networks (de Avila Belbute-Peres et al., 2020), or learn-

ing more efficient parameterizations to improve closure modeling (Kochkov et al.,

2021). Recently, this paradigm has showcased impressive capabilities for complex

applications in weather modeling (Kochkov et al., 2023).

This integration typically requires solvers that are compatible with automatic

differentiation. There are two main categories of solvers that enable this combi-

nation: neural ODE-based solvers and implicit differentiation-based solvers. These

can be used with the help of specific libraries such as torchdiffeq (Chen, 2018) or

diffrax (Kidger, 2021).

Neural ODEs So far, many architectures designed for scientific machine learning

have been inspired by existing models for sequential data or images, such as CNNs

and Transformer-based architectures. These models follow a straightforward struc-

ture: given an input x, the network applies a series of transformations to produce

an output. However, another class of architectures actually draws inspiration from

ODEs and PDEs, namely the neural ODE architecture (Chen et al., 2018). It differs

from standard feedforward networks by modeling the derivative of a state variable

x with a neural network gθ:

dx

dt
= gθ(x, t) (4.6)

where x is the state variable, and t represents time. Namely it is formulated as

in Equation (2.13), but gθ is now a neural network.

This modeling is actually close to the ResNet architecture and skip connections

as explained in Section 3.4.2, where ResNet blocks can be compared to the integra-

tion steps of a discretized Euler scheme of Equation (4.6). During training and at

inference, the state at arbitrary time t1 can be queried by solving the ODE forward

in time : x(t1) = ODESolve(x(t0), t1 − t0, gθ).
There are two training methods for neural ODE models: (i) Discretize-then-

Differentiate (standard backpropagation). The model is trained like a typical neu-

ral network using automatic differentiation. While straightforward, this method

requires storing all intermediate states, leading to high memory consumption. (ii)

Differentiate-then-Discretize (Adjoint Method): Instead of storing intermediate

states, the gradients are computed by solving a second ODE backward in time. This

approach reduces memory requirements but is computationally more expensive. Dif-

ferent numerical solvers can be employed for these methods, such as Runge-Kutta

methods (RK4, Dopri5) and even implicit solvers for stiff systems. In practice, (i)

is often preferred.

Implicit Solvers and Differentiation A related approach relies on the implicit

function theorem, which enables differentiation through iterative solve operations in

68 Chapter 4. Deep Learning for solving PDEs

order to compute the solution to a linear system of the form:

Ax = y

This type of system appears frequently in finite element methods (FEM) and

other numerical PDE solvers. In this context, neural networks can be combined

with the iterative solver while maintaining gradient flow through the steps of the

solvers as in Um et al. (2020b) or Negiar et al. (2022).

4.3 Data-centric approaches

Strictly speaking, hybrid modeling also relies on numerical simulations to train neu-

ral networks. However, since this section serves as a key foundation before presenting

our contributions, we provide a thorough description of the setup here.

Setting Unlike physics-informed methods or numerical solvers that incorporate

prior knowledge of the system, these purely data-driven approaches can be used to

train models that emulate any kind of phenomena, whether governed by known or

unknown equations. This flexibility makes them particularly valuable in real-world

scenarios, where large datasets are available, but the underlying physical laws are

either partially known or too complex to be fully captured by a set of equations.

In the context of solving PDEs, we will consider this setting, adapted from

Definition 2.2.4:

∂u

∂t
= g
(
µ, x, t, f(x, t), u,∇u,∇2u, . . .

)
,

∀x ∈ Ω,∀t ∈ (0, T]

B(u)(x, t) = 0, ∀x ∈ ∂Ω,∀t ∈ (0, T]

u(0, x) = u0, ∀x ∈ Ω

(4.7)

where g is a function of the solution u and its spatial derivatives on the domain

Ω, and also includes the forcing term f ; B is the boundary condition constraint (e.g.,

spatial periodicity, Dirichlet, or Neumann) that must be satisfied at the boundary of

the domain ∂Ω; and u0 is the initial condition sampled with a probability measure

u0 ∼ p0(.).

4.3.1 Neural surrogates

A surrogate model is a function gθ designed to approximate the temporal evolution

of a system. In the autoregressive case, this amounts to design a model such that:

gθ(u
t) ≈ ut+∆t

4.3. Data-centric approaches 69

To do so, the classical training setup for a neural surrogate assumes access to

a set of trajectories uti, u
t+∆t
i , . . . , ut+Ti where the objective is to train a model that

advances the system forward in time. The standard training loss minimizes the

empirical risk with a relative loss:

R(θ) =
1

n

n∑
i=1

Et

∥∥gθ(uti)− ut+∆t
i

∥∥∥∥ut+∆t
i

∥∥ (4.8)

This formulation ensures that the neural surrogate learns to approximate the

time-stepping operator. As mentioned before, the main motivation for using a

surrogate model is to accelerate the resolution of dynamical systems by replacing

computationally expensive numerical solvers with a cheaper alternative. Instead of

solving the full system of equations at each time step, one can efficiently predict

future states using gθ, significantly reducing computational cost. In order to recover

a trajectory with several snapshots, we can make recursive calls to the solvers:

ut+k∆t = gθ ◦ gθ ◦ · · · ◦ gθ︸ ︷︷ ︸
k times

(ut).

However, as with classical numerical solvers, these neural surrogates can diverge

over time. Therefore, the classical evaluation metric is the relative L2 error over the

trajectory:

L2
test =

1

ntest

ntest∑
j=1

∥∥∥ûtrajectoryj − utrajectoryj

∥∥∥∥∥∥utrajectoryj

∥∥∥ (4.9)

One major advantage of neural networks over classical solvers is their ability to

learn mappings for arbitrary temporal resolutions ∆t, enabling much faster inference

compared to traditional numerical methods. On the other hand, neural surrogates

do not have guarantees at inference and do not perform well for out-of-distribution

dynamics.

The two main neural architectures used for training surrogate models on discrete

grids are either based on CNN or GNN.

CNN-Based Surrogate Models Convolutions operate locally on fixed-size

neighborhoods, drawing similarities to classical numerical schemes used to approx-

imate spatial derivatives in PDEs, such as finite differences. The most commonly

used architectures in this context are direct adaptations of classical vision models,

notably UNet and ResNet (Gupta and Brandstetter, 2022). To enhance expressiv-

ity, Stachenfeld et al. (2022) proposed the use of dilated convolutions, while Zhang

et al. (2024) introduced a strategy of stacking multiple UNet blocks to enable a

more progressive processing of the input. CNN-based surrogate models are inher-

70 Chapter 4. Deep Learning for solving PDEs

ently restricted to regular grids due to their reliance on traditional convolutions.

To accommodate irregular grids and arbitrary geometries, a common approach is

to interpolate observations onto a regular grid or apply masking. However, these

processing steps distort the original signal and have been shown to be less effective

in the presence of obstacles within the domain, as demonstrated in Li et al. (2022a).

GNN-Based Surrogate Models A more natural approach for handling irregu-

lar grids is to represent the mesh as a graph, where observations correspond to graph

nodes and edges—defined based on a notion of distance—capture connectivity. In

Pfaff et al. (2021), a graph neural network (GNN) with multiple message-passing

blocks demonstrated strong performance on both Eulerian and Lagrangian systems.

Building on this framework, Brandstetter et al. (2022d) introduced several key en-

hancements, including the pushforward and temporal bundling tricks, as well as the

use of relative distances in message-passing blocks. Moreover, they showed that nu-

merical solver schemes, such as finite differences, can be formulated naturally within

a message-passing framework.

Despite their advantages, these surrogate models remain inherently mesh-

dependent, making them challenging to apply in certain contexts. CNN-based

models are constrained to regular grids, limiting their applicability in real-world

industrial problems involving complex geometries. GNN-based models, on the other

hand, rely on graph connectivity defined by mesh structures, preventing them from

generalizing to changes in topology or discretization levels (Yin et al., 2023; Li et al.,

2023b). Training a GNN without downsampling the original mesh is often imprac-

tical, mainly due to the high memory complexity inherent to message passing layers

on large graphs (Catalani et al., 2024). Furthermore, GNNs also suffer from over-

smoothing (Rusch et al., 2023), where node embeddings become indistinguishable

after multiple message-passing layers, limiting the capture of fine-scale local features.

These limitations underscore the need for more flexible surrogate models that can

generalize across different spatial discretizations while remaining computationally

efficient. This motivates the development of neural operators, which we discuss

next.

4.3.2 Operator learning

Operator learning generalizes the concept of supervised learning for finite-

dimensional vectors to functional representations.

Definition 4.3.1. (Operator Learning) Let Ω ⊂ Rd be a bounded, open set,

and define the input function space A = A(Ω;Rda) and output function space

U = U(Ω;Rdu) as separable Banach spaces of functions taking values in Rda and

Rdu , respectively.

4.3. Data-centric approaches 71

Furthermore, let G† : A → U be an operator that maps a PDE parameter

a ∈ A to the corresponding PDE solution u ∈ U . Suppose we have a training

set of observation pairs {ai, ui}ni=1, the goal of operator learning is to construct

a parametric approximation of G† by learning a map Gθ : A → U such that

Gθ ≈ G†. The optimal parameters θ are found by minimizing the empirical risk:

R(θ) =
1

n

n∑
i=1

L(Gθ(ai), ui), (4.10)

where L is a suitable loss function measuring the error between the predicted

and true solutions.

The operator learning setting encompasses various tasks. For instance, by setting

a = ut and defining G†(a) = ut+∆t, we recover an autoregressive framework as seen

in Section 4.3.1, except that we operate on functions rather than their discretized

representations. Alternatively, in non-autoregressive settings, the objective may be

to predict the full solution trajectory over a given time horizon T , where a = u0 and

u = u(0,T], as in Lu et al. (2021a).

Although operator learning is formulated with a functional perspective, in prac-

tice, these functions are discretized over spatial grids Xi ⊂ Ω. Consequently, op-

erator learning methods must be robust to variations in the discretization level,

ensuring they depend only on the underlying function. Furthermore, they should

accommodate arbitrary observation points within the spatial domain Ω.

To address these challenges, several architectures have been proposed for op-

erator learning. DeepONet (Lu et al. (2021a), see Figure 4.1 for an illustration)

was introduced to enable continuous querying of the solution within the domain Ω

and builds on the separation of variable principles, briefly presented in Section 2.1.

The Fourier Neural Operator (FNO, Li et al. (2021), see Figure 4.2 for an illustra-

tion) leverages spectral convolutional blocks to capture global spatial interactions

through an integral kernel term. The Graph Neural Operator (GNO) (Li et al.,

2020b) adopts the same idea by modeling the kernel integral using graph convo-

lutions. More recently, the Convolutional Neural Operator (CNO) (Raoni’c et al.,

2023) is a modified UNet architecture, incorporating the resolution-aware activation

function from Karras et al. (2021) to improve adaptability across different resolu-

tions. GINO (Li et al., 2023b) combines elements of GNO and FNO to handle larger

meshes effectively. Additionally, several operator learning models based on trans-

formers have been introduced (Li et al., 2023a; Hao et al., 2023), employing linear

self-attention and cross-attention mechanisms to allow for continuous querying of

the solution and flexible processing.

The desired property of discretization invariance for operator learning has been

studied in Bartolucci et al. (2024), where they introduce a mathematical framework

to analyze the properties of neural operators. They demonstrate that both CNO

and SNO (Fanaskov and Oseledets, 2023) have desirable properties when increasing

72 Chapter 4. Deep Learning for solving PDEs

the resolution beyond that used during the training.

We now describe in more details the two most popular architectures for operator

learning.

Example 4.3.1. The DeepONet architecture (Lu et al., 2021b) consists of two

neural networks:

• Branch Network : Given an input function u observed at discrete points

{x1, x2, . . . , xm}, the branch network Bθ encodes these values into a feature

representation:

b(u) = Bθ(u(x1), u(x2), . . . , u(xm)) ∈ Rp,

where p is the latent dimension.

• Trunk Network : Given a query location y ∈ Ω, the trunk network Tϕ maps

it to a latent representation:

t(y) = Tϕ(y) ∈ Rp.

The final prediction of DeepONet is obtained via a weighted sum of the

latent representations, akin to the separation of variables principle:

Gθ(u)(y) =

p∑
i=1

bi(u)ti(y) = b(u)⊤t(y).

... branch
net

trunk
net

Figure 4.1: Overview of the DeepONet architecture.

4.3. Data-centric approaches 73

Example 4.3.2. The Fourier Neural Operator (FNO) (Li et al., 2020a) is an ar-

chitecture that performs global convolutions in the frequency domain, enabling

efficient long-range interactions. It relies heavily on the Fast Fourier Transform

(FFT) and inverse Fast Fourier Transform (IFFT) to go back and forth between

the spatial and spectral domain. The architecture consists of three main steps:

• The input function u is first lifted into a higher-dimensional feature space

through a pointwise linear transformation:

v0(xj) = W(0)u(xj) ∈ Rdh , ∀j = 1, . . . ,m,

where dh is the dimensionality of the feature space.

• A sequence of spectral convolution blocks is applied to the lifted repre-

sentation. At each block l, the function is transformed into the Fourier

domain:

v̂(l)(k) = FFT(v(l)(x1), . . . , v
(l)(xm)),

where v̂(l)(k) ∈ Rdh represents the frequency components at frequency

k. Instead of processing all frequency modes, FNO truncates the high-

frequency components, retaining only the lowest kmax modes and then

applies a linear layer:

ṽ(l)c (k) =

dh∑
c′=1

R
(l)
k,c,c′ v̂

(l)
c′ (k), ∀k ∈ {1, . . . , kmax}, ∀c ∈ {1, . . . , dh}.

This truncation reduces computational cost and prevents overfitting to

high-frequency noise, improving generalization. The filtered representa-

tion is then transformed back into the spatial domain via the inverse

Fourier transform:

v(l),†(x1), . . . , v
(l),†(xm) = IFFT(ṽ(l)(1), . . . , ṽ(l)(m)).

Finally, the result of the global convolution is added to a linear projection

of the input features, and the sum is passed through a nonlinear activation.

This residual term allows to keep high-frequency components through the

different blocks.

74 Chapter 4. Deep Learning for solving PDEs

v(l+1)(xj) = σ(v(l),†(xj) + W(l)v(l)(xj)), ∀j = 1, . . . ,m.

• After the Fourier blocks, the final feature representation v(L)(x) is pro-

jected back to the target function space using a pointwise linear layer:

Gθ(u)(xj) = W(L+1)v(L)(xj), ∀j = 1, . . . ,m.

Lift Project
...

fourier blocks

+

Linear

Linear
low-pass

Figure 4.2: Overview of the FNO architecture.

Each architecture has its own strengths and limitations. DeepONet allows the

evaluation anywhere in the domain but requires input observations at fixed loca-

tions. FNO is efficient but cannot be used with irregular geometries due to its

reliance on FFT, the Discrete Fourier Transform being too costly. CNO is robust

to changes in the discretization but is limited to regular domains. OFormer and

GNOT can process irregular geometries but use simplified attention schemes suited

for a processing in the observation space. GNO is flexible but struggles to scale with

mesh size, making GINO the preferred choice in practice.

4.3.3 Learning with multiple physical parameters

In previous sections, the main varying parameter of the equation was essentially

the initial condition, which means models are evaluated on their ability to unroll

a trajectory given a new initial condition u0∗. Beyond this, evaluations can also

include out-of-distribution scenarios, such as new domains with different topologies

or geometries, alternative observation samplings that modify resolution or sparsity,

and extended time horizons to see temporal extrapolation capabilities.

However, unlike classical solvers that can handle a range of PDE parame-

ters—including scalar coefficients (e.g., viscosity or advection speed), boundary con-

ditions (e.g., Neumann or Dirichlet), and forcing terms—neural networks struggle

to generalize to such variations at inference time.

4.3. Data-centric approaches 75

Direct conditioning A straightforward approach to allow for generalization to

a larger set of PDE parameters is to condition the neural network directly with

those that we expect to vary at inference. This works well when dealing with scalar

coefficients or when boundary conditions can be easily enforced, as explored in

Brandstetter et al. (2022d) and Takamoto et al. (2023). However, this method

assumes precise knowledge of the system’s parameters and limits the flexibility of

how they condition the network.

Adaptation methods A more principled approach (Yin et al., 2022a; Kirchmeyer

et al., 2022; Koupäı et al., 2024) partitions the parameter space into environments

ej, where each environment ej consists of trajectories governed by the same underly-

ing dynamics (i.e., identical PDE parameters except for the initial condition). These

methods typically use shared parameters θ across environments while introducing

environment-specific parameters ξj to capture distinct dynamics. During training

the common parameters θ and environment parameters ξj are jointly learned. At

inference, given an initial condition u0∗, these methods rely on gradient-based adapta-

tion to optimize ξ∗ using example trajectories from the new environment e∗. While

architecture-agnostic and sample-efficient at inference, these methods require an

adaptation step that can be computationally expensive due to the need for gradient

descent.

In-context learning Instead of relying on gradient-based adaptation, in-context

learning methods use an encoder to condition a processor or decoder. ICON

(Yang et al., 2023) is an encoder-decoder transformer trained to predict the

PDE solution u∗ given an input parameter a∗ and a set of context examples

(a1, u1), (a2, u2), . . . , (ak, uk). While effective for operator learning, its scalabil-

ity is limited since the inputs are processed point-wise by the transformer. Cao

et al. (2024) addressed this issue by introducing patch-based processing to scale the

method for 2D temporal dynamics. However, this approach requires a history of

frames and cannot be used with a single initial condition at inference.

Though not strictly in-context learning, Zhou and Farimani (2024) explored a

masked autoencoder (He et al., 2021) pretraining strategy on PDE trajectories.

They showed that this encoder could extract meaningful embeddings that could

be used to condition classical surrogate models. However, their focus is not on

adaptation. Similarly, Chen et al. (2024) proposed an unsupervised strategy to

pretrain a neural operator using only initial conditions.

Multiple physics Inspired by the development of foundation models in vision and

language modeling, another promising direction is to design neural networks capa-

ble of handling entirely different physical systems—such as both Navier-Stokes and

Maxwell’s equations—rather than just variations in PDE parameters. This concept,

76 Chapter 4. Deep Learning for solving PDEs

known as Multiple Physics Pretraining, was introduced in McCabe et al. (2023),

where a single network achieved state-of-the-art performance across PDEBench

(Takamoto et al., 2022). Similar efforts with different architectures have since

emerged (Herde et al., 2024; Hao et al., 2024).

However, these models require fine-tuning when only a single initial condition is

available at inference, making them computationally costly and inefficient. Despite

this limitation, they hold great potential for developing a true foundation model for

physics. This promise is further strengthened by the recent release of high-quality

datasets (Ohana et al., 2024), which could enable broader applications beyond direct

surrogate modeling—such as extracting meaningful features for downstream tasks.

Part II

Contributions

77

Chapter 5

Operator Learning with Neural

Fields: Tackling PDEs on General

Geometries

In this chapter, we address the problem of operator learning with arbitrary geome-

tries and discretizations. Machine learning approaches for solving partial differential

equations require learning mappings between function spaces. While convolutional

or graph neural networks are constrained to discretized functions, neural operators

present a promising milestone toward mapping functions directly. Despite impres-

sive results they still face challenges with respect to the domain geometry and typ-

ically rely on some form of discretization. In order to alleviate such limitations,

we present CORAL, a new method that leverages coordinate-based networks for

solving PDEs on general geometries. CORAL is designed to remove constraints on

the input mesh, making it applicable to any spatial sampling and geometry. Its

ability extends to diverse problem domains, including PDE solving, spatio-temporal

forecasting, and geometry-aware inference. CORAL1 demonstrates robust perfor-

mance across multiple resolutions and performs well in both convex and non-convex

domains, surpassing or performing on par with state-of-the-art models.

Serrano, L., Le Boudec, L., Kassäı Koupäı, A., Wang, T. X., Yin, Y., Vittaut,

J. N., Gallinari, P. (2023). Operator learning with neural fields: Tackling pdes

on general geometries. Neurips 2023.

5.1 Introduction . 79

5.2 Related Work . 80

5.3 The CORAL Framework . 82

1The source code for this paper is available at https://github.com/LouisSerrano/coral

78

https://github.com/LouisSerrano/coral

5.1. Introduction 79

5.3.1 Problem Description . 82

5.3.2 Model . 83

5.3.3 Practical implementation: decoding by INR Modulation . . . 85

5.3.4 Training . 85

5.4 Experiments . 86

5.4.1 Initial Value Problem . 86

5.4.2 Dynamics Modeling . 88

5.4.3 Geometry-aware inference . 91

5.5 Discussion and limitations . 92

5.6 Conclusion . 92

5.1 Introduction

Modeling physics dynamics entails learning mappings between function spaces, a

crucial step in formulating and solving partial differential equations (PDEs). In the

classical approach, PDEs are derived from first principles, and differential operators

are utilized to map vector fields across the variables involved in the problem. To

solve these equations, numerical methods like finite elements, finite volumes, or

spectral techniques are employed, requiring the discretization of spatial and temporal

components of the differential operators (Morton and Mayers, 2005; Olver, 2014).

Building on successes in computer vision and natural language processing

(Krizhevsky et al., 2017; He et al., 2016a; Dosovitskiy et al., 2021; Vaswani et al.,

2017), deep learning models have recently gained attention in physical modeling.

They have been applied to various scenarios, such as solving PDEs (Cai et al.,

2021), forecasting spatio-temporal dynamics (Bézenac et al., 2017), and addressing

inverse problems (Allen et al., 2022). Initially, neural network architectures with

spatial inductive biases like ConvNets (Long et al., 2018; Ibrahim et al., 2022) for

regular grids or GNNs (Pfaff et al., 2021; Brandstetter et al., 2022d) for irregular

meshes were explored. However, these models are limited to specific mesh points

and face challenges in generalizing to new topologies. The recent trend of neu-

ral operators addresses these limitations by modeling mappings between functions,

which can be seen as infinite-dimensional vectors. Popular models like DeepONet

(Lu et al., 2022) and Fourier Neural Operators (FNO) (Li et al., 2022b) have been

applied in various domains. However, they still have design rigidity, relying on fixed

grids during training and inference, which limits their use in real-world applications

involving irregular sampling grids or new geometries. A variant of FNO tailored for

more general geometries is presented in (Li et al., 2022a), but it focuses on design

tasks.

To overcome these limitations, there is a need for flexible approaches that can

handle diverse geometries, metric spaces, irregular sampling grids, and sparse mea-

80
Chapter 5. Operator Learning with Neural Fields: Tackling PDEs on General

Geometries

surements. We introduce CORAL, a COordinate-based model for opeRAtor Learn-

ing that addresses these challenges by leveraging implicit neural representations

(INR). CORAL encodes functions into compact, low-dimensional latent spaces and

infers mappings between function representations in the latent space. Unlike com-

peting models that are often task-specific, CORAL is highly flexible and applicable

to various problem domains. We showcase its versatility in PDE solving, spatio-

temporal dynamics forecasting, and design problems.

Our contributions are summarized as follows:

• CORAL can learn mappings between functions sampled on an irregular mesh

and maintains consistent performance when applied to new grids not seen dur-

ing training. This characteristic makes it well-suited for solving problems in

domains characterized by complex geometries or non-uniform grids.

• We highlight the versatility of CORAL by applying it to a range of represen-

tative physical modeling tasks, such as initial value problems (IVP), geometry-

aware inference, dynamics modeling, and forecasting. Through extensive ex-

periments on diverse datasets, we consistently demonstrate its state-of-the-art

performance across various geometries, including convex and non-convex do-

mains, as well as planar and spherical surfaces. This distinguishes CORAL

from alternative models that are often confined to specific tasks.

• CORAL is fast. Functions are represented using a compact latent code in

CORAL, capturing the essential information necessary for different inference

tasks in a condensed format. This enables fast inference within the compact

representation space, whereas alternative methods often operate directly within

a higher-dimensional representation of the function space.

5.2 Related Work

Mesh-based networks for physics. The initial attempts to learn physical dy-

namics primarily centered around convolutional neural networks (CNNs) and graph

neural networks (GNNs). Both leverage discrete convolutions to extract relevant

information from a given node’s neighborhood Hamilton (2020). CNNs expect in-

puts and outputs to be on regular grid. Their adaptation to irregular data through

interpolation (Chae et al., 2021) is limited to simple meshes. GNNs work on irreg-

ular meshes (Hamilton et al., 2017b; Veličković et al., 2018; Pfaff et al., 2021) and

have been used e.g. for dynamics modeling (Brandstetter et al., 2022d) or design

optimization (Allen et al., 2022). They typically select nearest neighbors within a

small radius, which can introduce biases towards the type of meshes seen during

training. In Section 5.4.2, we show that this bias can hinder their ability to gen-

eralize to meshes with different node locations or levels of sparsity. Additionally,

5.2. Related Work 81

they require significantly more memory resources than plain CNNs to store nodes’

neighborhoods, which limits their deployment for complex meshes.

Initial Value Problem

(a) Cylinder

Dynamics modeling

(b) Navier-Stokes (c) Shallow-Water

Geometry-aware inference

(d) Elasticity (e) NACA-Euler

Figure 5.1: Illustration of the problem classes addressed in this work: Initial Value
Problem (IVP) (a), dynamic forecasting (b and c) and geometry-aware inference (d
and e).

Operator learning. Operator learning is a burgeoning field in deep learning for

physics that focuses on learning mappings between infinite-dimensional functions.

Two prominent approaches are DeepONet (Lu et al., 2021a) and Fourier Neural Op-

erator (FNO; Li et al., 2021). DeepONet can query any coordinate in the domain

for a value of the output function. However, the input function must be observed

on a set of predefined locations, requiring the same observation grid for all obser-

vations, for training and testing. FNO is an instance of neural operators (Kovachki

et al., 2021), a family of approaches that integrate kernels over the spatial domain.

Since this operation can be expensive, FNO addresses the problem by employing

the fast Fourier transform (FFT) to transform the inputs into the spectral domain.

As a consequence it cannot be used with irregular grids. Li et al. (2022a) intro-

duce an FNO extension to handle more flexible geometries, but it is tailored for

design problems. To summarize, despite promising for several applications, current

operator approaches still face limitations to extrapolate to new geometries; they

do not adapt to changing observation grids or are limited to fixed observation lo-

cations. Recently, Li et al. (2023a); Hao et al. (2023) explored transformer-based

82
Chapter 5. Operator Learning with Neural Fields: Tackling PDEs on General

Geometries

architectures as an alternative approach.

Spatial INRs. Spatial INRs are a class of coordinate-based neural networks that

model data as the realization of an implicit function of a spatial location x ∈ Ω 7→
fθ(x) (Tancik et al., 2020b; Sitzmann et al., 2020c; Fathony et al., 2021b; Lindell

et al., 2022). An INR can be queried at any location, but encodes only one data

sample or function. Previous works use meta-learning (Tancik et al., 2021; Sitzmann

et al., 2020a), auto-encoders (Chen and Zhang, 2019; Mescheder et al., 2019), or

modulation (Park et al., 2019a; Dupont et al., 2022a) to address this limitation by

enabling an INR to decode various functions using per-sample parameters. INRs

have started to gain traction in physics, where they have been successfully applied to

spatio-temporal forecasting (Yin et al., 2022b) and reduced-order modeling (Chen

et al., 2022). The former work is probably the closest to ours but it is designed

for forecasting and cannot handle the range of tasks that CORAL can address.

Moreover, its computational cost is significantly higher than CORAL’s, which limits

its application in real-world problems. The work by Chen et al. (2022) aims to inform

the INR with known PDEs, similar to PINNs, whereas our approach is entirely data-

driven and without physical prior.

5.3 The CORAL Framework

In this section, we present the CORAL framework, a novel approach that employs an

encode-process-decode structure to achieve the mapping between continuous func-

tions. We first introduce the model and then the training procedure.

5.3.1 Problem Description

Let Ω ⊂ Rd be a bounded open set of spatial coordinates. We assume the existence

of a mapping G∗ from one infinite-dimensional space A ⊂ L2(Ω,Rda) to another one

U ⊂ L2(Ω,Rdu), such that for any observed pairs (ai, ui) ∈ A × U , ui = G∗(ai).
We have ai ∼ νa, ui ∼ νu where νa is a probability measure supported on A and

νu the pushforward measure of νa by G∗. We seek to approximate this operator

by an i.i.d. collection of point-wise evaluations of input-output functions through

a highly flexible formulation that can be adapted to multiple tasks. In this work,

we target three different tasks as examples: • solving an initial value problem, i.e.

mapping the initial condition u0
.
= x 7→ u(x, t = 0) to the solution at a predefined

time uT
.
= x 7→ u(x, t = T), • modeling the dynamics of a physical system over

time (ut → ut+∆t) over a given forecasting horizon • or prediction based on geo-

metric configuration. At training time, we have access to ntr pairs of input and

output functions (ai, ui)
ntr
i=1 evaluated over a free-form spatial grid Xi. We denote

a|Xi
= (a(x))x∈Xi

and u|Xi
= (u(x))x∈Xi

the vectors of the function values over the

5.3. The CORAL Framework 83

sample grid. In the context of the initial value and geometry-aware problems, every

sample is observed on a specific grid Xi. For dynamics modeling, we use a unique

grid Xtr for all the examples to train the model and another grid Xte for testing.

obs.
space

input
function

output
function

output
space

predicted output
values on query

grid

encode
inputs

forecasted
code

Figure 5.2: Inference for CORAL. First, the model embeds the input function a
without constraints on the locations of the observed sensors into an input latent
code za, then infers the output latent code ẑu and finally predicts the output value
û(x) for any query coordinate x ∈ Ω. For the grid X , we use the vector notation
a|X = (a(x))x∈X , û|X = (û(x))x∈X .

5.3.2 Model

CORAL makes use of two modulated INRs, fθa,ϕa and fθu,ϕu , for respectively rep-

resenting the input and output functions of an operator. While θa and θu denote

shared INR parameters that contribute in representing all functions ai and ui, the

modulation parameters ϕai and ϕui are specific to each function ai and ui. Given

input/output INR functions representation, CORAL then learns a mapping be-

tween latent representations inferred from the two INRs’ modulation spaces. The

latent representations zai , zui are low dimensional embeddings, capturing within a

compact code information from the INRs’ parameters. They are used as inputs to

hypernetworks ha and hu to compute the modulation parameters ϕai = ha(zai) and

ϕui = hu(zui). The weights of the input and output hypernetworks are respectively

denoted wa and wu.

CORAL proceeds in three steps: encode, to project the input data into the

latent space; process, to perform transformations in the latent space; and decode, to

project the code back to the output function space. First, the input function a is

encoded into the small input latent code za using a spatial encoder ea : A 7→ Rdz .

Next, a parameterized model gψ : Rdz 7→ Rdz is used to infer an output latent code.

Depending on the target task, gψ can be as simple as a plain MLP or more complex

as for example a neural ODE solver (as detailed later). Finally, the processed latent

84
Chapter 5. Operator Learning with Neural Fields: Tackling PDEs on General

Geometries

code is decoded into a spatial function using a decoder ξu : Rdz 7→ U . The resulting

CORAL operator then writes as G = ξu ◦ gψ ◦ ea, as shown in Figure 5.2. The three

steps are detailed below.

Encode Given an input function ai and a learned shared parameter θa, the encod-

ing process provides a code zai = ea(ai). This code is computed by solving an inverse

problem through a procedure known as auto-decoding, which proceeds as follows. We

want to compress into a compact code zai the information required for reconstructing

the original field ai through the input INR, i.e.: ∀x ∈ Xi, fθa,ϕai (x) = ãi(x) ≈ ai(x)

with ϕai = ha(zai). See Figure A.1a in Appendix A.2 for details. The approxi-

mate solution to this inverse problem is computed as the solution ea(ai) = z
(K)
ai of a

gradient descent optimization:

z(0)ai
= 0 ; z(k+1)

ai
= z(k)ai

−α∇
z
(k)
ai

Lµi(fθa,ϕ(k)ai

, a); with ϕ(k)
ai

= ha(z
(k)
ai

) for 0 ≤ k ≤ K−1

(5.1)

where α is the inner loop learning rate, K the number of inner steps, and Lµi(v, w) =

Ex∼µi [(v(x) − w(x))2] for a measure µi over Ω. Note that in practice, µi is defined

through the observation grid Xi, µi(·) =
∑

x∈Xi
δx(·) where δx(·) is the Dirac mea-

sure. Since we can query the INRs anywhere within the domain, we can hence

freely encode functions without mesh constraints. This is the essential part of the

architecture that enables us to feed data defined on different grids to the model. We

show the encoding flow in Appendix A.2, Figure A.2.

Process Once we obtain zai , we can infer the latent output code ẑui = gψ(zai).

For simplification, we consider first that gψ is implemented through an MLP with

parameters ψ. For dynamics modeling, in Section 5.4.2, we will detail why and how

to make use of a Neural ODE solver for gψ.

Decode We decode ẑui with the output hypernetwork hu and modulated INR

and denote ξu the mapping that associates to code ẑui the function fθu,ϕ̂ui
, where

ϕ̂ui = hu(ẑui). Since fθu,ϕ̂ui
is an INR, i.e. a function of spatial coordinates, it can

be freely queried at any point within the domain. We thus have ∀x ∈ Ω, ûi(x) =

ξu(ẑui)(x) = fθu,ϕ̂ui
(x). See Figure A.1b in Appendix A.2 for details.

During training, we will need to learn to reconstruct the input and output

functions ai and ui. This requires training a mapping associating an input code

to the corresponding input function ξa : Rdz 7→ A and a mapping associating a

function to its code in the output space eu : U 7→ Rdz , even though they are not

used during inference.

5.3. The CORAL Framework 85

5.3.3 Practical implementation: decoding by INR Modula-

tion

We choose SIREN (Sitzmann et al., 2020c) – a state-of-the-art coordinate-based

network – as the INR backbone of our framework. SIREN is a neural network that

uses sine activations with a specific initialization scheme (Appendix A.2).

fθ(x) = WL

(
σL−1 ◦ σL−2 ◦ · · · ◦ σ0(x)

)
+ bL,with σi(ηi) = sin

(
ω0(Wiηi + bi)

)
(5.2)

where η0 = x and (ηi)i≥1 are the hidden activations throughout the network. ω0 ∈
R∗

+ is a hyperparameter that controls the frequency bandwidth of the network, W

and b are the network weights and biases. We implement shift modulations (Perez

et al., 2018b) to have a small modulation space and reduce the computational cost

of the overall architecture. This yields the modulated SIREN:

fθ,ϕ(x) = WL

(
σL−1 ◦ σL−2 ◦ · · · ◦ σ0(x)

)
+ bL,with σi(ηi) = sin

(
ω0(Wiηi + bi + ϕi)

)
(5.3)

with shared parameters θ = (Wi, bi)
L
i=0 and example associated modulations ϕ =

(ϕi)
L−1
i=0 . We compute the modulations ϕ from z with a linear hypernetwork , i.e. for

0 ≤ i ≤ L − 1 ,ϕi = Viz + ci. The weights Vi and ci constitute the parameters of

the hypernetwork w = (Vi, ci)
L−1
i=0 . This implementation is similar to that of Dupont

et al. (2022a), which use a modulated SIREN for representing their modalities.

5.3.4 Training

We implement a two-step training procedure that first learns the modulated INR

parameters, before training the forecast model gψ. It is very stable and much faster

than end-to-end training while providing similar performance: once the input and

output INRs have been fitted, the training of gψ is performed in the small dimen-

sional modulated INR z-code space. Formally, the optimization problem is defined

as:
arg min

ψ
Ea,u∼νa,νu∥gψ(ẽa(a))− ẽu(u)∥2

s.t. ẽa = arg min
ξa,ea

Ea∼νaL(ξa ◦ ea(a), a)

and ẽu = arg min
ξu,eu

Eu∼νuL(ξu ◦ eu(u), u)

(5.4)

Note that functions (eu, ξu) and (ea, ξa) are parameterized respectively by the

weights (θu, wu) and (θa, wa), of the INRs and of the hypernetworks. In Equa-

tion (5.4), we used the (eu, ξu) & (ea, ξa) description for clarity, but as they are

functions of (θu, wu) & (θa, wa), optimization is tackled on the latter parameters.

We outline the training pipeline in Appendix A.2, Figure A.3. During training, we

constrain eu, ea to take only a few steps of gradient descent to facilitate the proces-

86
Chapter 5. Operator Learning with Neural Fields: Tackling PDEs on General

Geometries

sor task. This regularization prevents the architecture from memorizing the training

set into the individual codes and facilitates the auto-decoding optimization process

for new inputs. In order to obtain a network that is capable of quickly encoding

new physical inputs, we employ a second-order meta-learning training algorithm

based on CAVIA (Zintgraf et al., 2019b). Compared to a first-order scheme such as

Reptile (Nichol et al., 2018), the outer loop back-propagates the gradient through

the K inner steps, consuming more memory as we need to compute gradients of

gradients but yielding higher reconstruction results with the modulated SIREN. We

experimentally found that using 3 inner-steps for training, or testing, was sufficient

to obtain very low reconstruction errors for most applications.

5.4 Experiments

To demonstrate the versatility of our model, we conducted experiments on three

distinct tasks (Figure 5.1): (i) solving an initial value problem (Section 5.4.1), (ii)

modeling the dynamics of a physical system (Section 5.4.2), and (iii) learning to

infer the steady state of a system based on the domain geometry (Section 5.4.3) plus

an associated design problem in Appendix A.4. Since each task corresponds to a

different scenario, we utilized task-specific datasets and employed different baselines

for each task. This approach was necessary because existing baselines typically

focus on specific tasks and do not cover the full range of problems addressed in our

study, unlike CORAL. We provide below an introduction to the datasets, evaluation

protocols, and baselines for each task setting. All experiments were conducted on a

single GPU: NVIDIA RTX A5000 with 25 Go. The code is accessible at this github

repository: https://github.com/LouisSerrano/coral.

5.4.1 Initial Value Problem

An IVP is specified by an initial condition (here the input function providing the

state variables at t = 0) and a target function figuring the state variables value at

a given time T . Solving an IVP is a direct application of the CORAL framework

introduced in Section 5.3.2.

Datasets We benchmark our model on two problems with non-convex domains

proposed in Pfaff et al. (2021). In both cases, the fluid evolves in a domain – which

includes an obstacle – that is more densely discretized near the boundary conditions

(BC). The boundary conditions are provided by the mesh definition, and the models

are trained on multiple obstacles and evaluated at test time on similar but different

obstacles. • Cylinder simulates the flow of water around a cylinder on a fixed

2D Eulerian mesh, and is characteristic of incompressible fluids. For each node j

we have access to the node position x(j), the momentum w(x(j)) and the pressure

https://github.com/LouisSerrano/coral

5.4. Experiments 87

p(x(j)). We seek to learn the mapping (x,w0(x), p0(x))x∈X → (wT (x), pT (x))x∈X .

• Airfoil simulates the aerodynamics around the cross-section of an airfoil wing,

and is an important use-case for compressible fluids. In this dataset, we have in

addition for each node j the fluid density ρ(x(j)), and we seek to learn the mapping

(x,w0(x), p0(x), ρ0(x))x∈X → (wT (x), pT (x), ρT (x))x∈X . For both datasets, each ex-

ample is associated to a mesh and the meshes are different for each example. For

Airfoil the average number of nodes per mesh is 5233 and for Cylinder 1885.

Evaluation protocols Training is performed using all the mesh points asso-

ciated to an example. For testing we evaluate the following two settings. • Full,

we validate that the trained model generalizes well to new examples using all the

mesh location points of these examples. • Sparse We assess the capability of our

model to generalize on sparse meshes: the original input mesh is down-sampled by

randomly selecting 20% of its nodes. We use a train, validation, test split of 1000 /

100 / 100 samples for all the evaluations.

Baselines We compare our model to • NodeMLP, a FeedForward Neural Net-

work that ignores the node neighbors and only learns a local mapping • Graph-

SAGE (Hamilton et al., 2017b), a popular GNN architecture that uses SAGE con-

volutions • MP-PDE (Brandstetter et al., 2022d), a message passing GNN that

builds on (Pfaff et al., 2021) for solving PDEs.

Results. We show in Table 5.1 the performance on the test sets for the two

datasets and for both evaluation settings. Overall, CORAL is on par with the best

models for this task. For the Full setting, it is best on Cylinder and second on

Airfoil behind MP-PDE. However, for the sparse protocol, it can infer the values

on the full mesh with the lowest error compared to all other models. Note that

this second setting is more challenging for Cylinder than for Airfoil given their

respective average mesh size. This suggests that the interpolation of the model

outputs is more robust on the Airfoil dataset, and explains why the performance

of NodeMLP remains stable between the two settings. While MP-PDE is close

to CORAL in the sparse setting, GraphSAGE fails to generalize, obtaining worse

predictions than the local model. This is because the model aggregates neighborhood

information regardless of the distance between nodes, while MP-PDE does consider

node distance and difference between features.

Table 5.1: Initial Value Problem - Test results. MSE on normalized data.

Model Cylinder Airfoil

Full Sparse Full Sparse

NodeMLP 1.48e-1 ± 2.00e-3 2.29e-1 ± 3.06e-3 2.88e-1 ± 1.08e-2 2.83e-1 ± 2.12e-3
GraphSAGE 7.40e-2 ± 2.22e-3 2.66e-1 ± 5.03e-3 2.47e-1 ± 7.23e-3 5.55e-1 ± 5.54e-2
MP-PDE 8,72e-2 ± 4.65e-3 1.84e-1 ± 4.58e-3 1.97e-1 ± 1.34e-2 3.07e-1 ± 2.56e-2
CORAL 7.03e-2 ± 5.96e-3 1.70e-1 ± 2.53e-2 2.40e-1 ± 4.36e-3 2.43e-1 ± 4.14e-3

88
Chapter 5. Operator Learning with Neural Fields: Tackling PDEs on General

Geometries

5.4.2 Dynamics Modeling

For the IVP problem, in Section 5.4.1, the objective was to infer directly the state of

the system at a given time T given an initial condition (IC). We can extend this idea

to model the dynamics of a physical system over time, so as to forecast state values

over a given horizon. We have developed an autoregressive approach operating on

the latent code space for this problem. Let us denote (u0, u∆t, ..., uL∆t) a target

sequence of observed functions of size L + 1. Our objective will be to predict the

functions uk∆t, k = 1, ..., L, starting from an initial condition u0. For that we will

encode z0 = e(u0), then predict sequentially the latent codes zk∆t, k = 1, ..., L using

the processor in an auto regressive manner, and decode the successive values to get

the predicted ûk∆t, k = 1, ..., L at the successive time steps.

5.4.2.1 Implementation with Neural ODE

The autoregressive processor is implemented by a Neural ODE solver operating

in the latent z-code space. Compared to the plain MLP implementation used for

the IVP task, this provides both a natural autoregressive formulation, and overall,

an increased flexibility by allowing to forecast at any time in a sequence, including

different time steps or irregular time steps. Starting from any latent state zt, a neural

solver predicts state zt+τ as zt+τ = zt +
∫ t+τ
t

ζψ(zs)ds with ζψ a neural network with

parameters to be learned, for any time step τ . The autoregressive setting directly

follows from this formulation. Starting from z0, and specifying a series of forecast

time steps k∆t for k = 1, ..., L, the solver call NODESolve(ζψ, z0, {k∆t}k=1,...,L) will

compute predictions zk∆t, k = 1, ..., L autoregressively, i.e. using zk∆t as a starting

point for computing z(k+1)∆t. In our experiments we have used a fourth-order Runge-

Kutta scheme (RK4) for solving the integral term. Therefore, the predicted field at

time step k can be obtained as ûk∆t = ξ ◦ NODESolve(ζψ, z0 = e(u0), k∆t). Note

that when solving the IVP problem from Section 5.4.1, two INRs are used, one for

encoding the input function and one for the output function; here a single modulated

INR fθ,ϕ is used to represent a physical quantity throughout the sequence at any

time. θ is then shared by all the elements of a sequence and ϕ is computed by a

hypernetwork to produce a function specific code.

We use the two-step training procedure from Section 5.3.4, i.e. first the INR is

trained to auto-decode the states of each training trajectory, and then the proces-

sor operating over the codes is learned through a Neural ODE solver according to

Equation (5.5).

arg min
ψ

Eu∼νu,t∼U(0,T]∥gψ(ẽu(u0), t)− ẽu(ut)∥2 (5.5)

The two training steps are separated and the codes are kept fixed during the

second step. This allows for a fast training as the Neural ODE solver operates on

5.4. Experiments 89

the low dimensional code embedding space.

5.4.2.2 Experiment details

Datasets We consider two fluid dynamics equations for generating the datasets

and refer the reader to Appendix A.1 for additional details. • 2D-Navier-Stokes

equation (Navier-Stokes) for a viscous, incompressible fluid in vorticity form on

the unit torus: ∂w
∂t

+ u · ∇w = ν∆w + f , ∇u = 0 for x ∈ Ω, t > 0, where ν = 10−3

is the viscosity coefficient. The train and test sets are composed of 256 and 16

trajectories respectively where we observe the vorticity field for 40 timestamps. The

original spatial resolution is 256× 256 and we sub-sample the data to obtain frames

of size 64 × 64. • 3D-Spherical Shallow-Water equation (Shallow-Water) can

be used as an approximation to a flow on the earth’s surface. The data consists

of the vorticity w, and height h of the fluid. The train and test sets are composed

respectively of 16 and 2 long trajectories, where we observe the vorticity and height

fields for 160 timestamps. The original spatial resolution is 128 (lat) × 256 (long),

which we sub-sample to obtain frames of shape 64 × 128. We model the dynamics

with the complete state (h,w). Each trajectory, for both datasets and for train and

test is generated from a different initial condition (IC).

Setting We evaluate the ability of the model to generalize in space and time.

• Temporal extrapolation: For both datasets, we consider sub-trajectories of 40

timestamps that we split in two equal parts of size 20, with the first half denoted

In-t and the second one Out-t. The training-In-t set is used to train the models at

forecasting the horizon t = 1 to t = 19. At test time, we unroll the dynamics from

a new IC until t = 39. Evaluation in the horizon In-t assesses CORAL’s capacity

to forecast within the training horizon. Out-t allows evaluation beyond In-t, from

t = 20 to t = 39. • Varying sub-sampling: We randomly sub-sample π percent

of a regular mesh to obtain the train grid Xtr, and a second test grid Xte, that are

shared across trajectories. The train and test grids are different, but have the same

level of sparsity. • Up-sampling: We also evaluate the up-sampling capabilities of

CORAL in Appendix A.3. In these experiments, we trained the model on a sparse,

low-resolution grid and evaluate its performance on high resolution-grids.

Baselines To assess the performance of CORAL, we implement several baselines:

two operator learning models, one mesh-based network and one coordinate-based

method. • DeepONet (Lu et al., 2021a): we train DeepONet in an auto-regressive

manner with time removed from the trunk net’s input. • FNO (Li et al., 2021): we

use an auto-regressive version of the Fourier Neural Operator. • MP-PDE (Brand-

stetter et al., 2022d) : we use MP-PDE as the irregular mesh-based baseline. We

fix MP-PDE’s temporal bundling to 1, and train the model with the push-forward

trick. • DINo (Yin et al., 2022b) : We finally compare CORAL with DINo, an

90
Chapter 5. Operator Learning with Neural Fields: Tackling PDEs on General

Geometries

INR-based model designed for dynamics modeling.

5.4.2.3 Results

Table 5.2: Temporal Extrapolation - Test results. Metrics in MSE.

xXtr ↓ Xte
dataset → Navier-Stokes Shallow-Water

In-t Out-t In-t Out-t

DeepONet 4.72e-2 ± 2.84e-2 9.58e-2 ± 1.83e-2 6.54e-3 ± 4.94e-4 8.93e-3 ± 9.42e-5
π = 100% FNO 5.68e-4 ± 7.62e-5 8.95e-3 ± 1.50e-3 3.20e-5 ± 2.51e-5 1.17e-4 ± 3.01e-5
regular grid MP-PDE 4.39e-4 ± 8.78e-5 4.46e-3 ± 1.28e-3 9.37e-5 ± 5.56e-6 1.53e-3 ± 2.62e-4

DINo 1.27e-3 ± 2.22e-5 1.11e-2 ± 2.28e-3 4.48e-5 ± 2.74e-6 2.63e-3 ± 1.36e-4
CORAL 1.86e-4 ± 1.44e-5 1.02e-3 ± 8.62e-5 3.44e-6 ± 4.01e-7 4.82e-4 ± 5.16e-5

DeepONet 8.37e-1 ± 2.07e-2 7.80e-1 ± 2.36e-2 1.05e-2 ± 5.01e-4 1.09e-2 ± 6.16e-4
π = 20% FNO + lin. int. 3.97e-3 ± 8.03e-4 9.92e-3 ± 2.36e-3 n.a. n.a.

irregular grid MP-PDE 3,98e-2 ± 1,69e-2 1,31e-1 ± 5,34e-2 5.28e-3 ± 5.25e-4 2.56e-2 ± 8.23e-3
DINo 9.99e-4 ± 6.71e-3 8.27e-3 ± 5.61e-3 2.20e-3 ± 1.06e-4 4.94e-3 ± 1.92e-4

CORAL 2.18e-3 ± 6.88e-4 6.67e-3 ± 2.01e-3 1.41e-3 ± 1.39e-4 2.11e-3 ± 5.58e-5

DeepONet 7.86e-1 ± 5.48e-2 7.48e-1 ± 2.76e-2 1.11e-2 ± 6.94e-4 1.12e-2 ± 7.79e-4
π = 5% FNO + lin. int. 3.87e-2 ± 1.44e-2 5.19e-2 ± 1.10e-2 n.a. n.a.

irregular grid MP-PDE 1.92e-1 ± 9.27e-2 4.73e-1 ± 2.17e-1 1.10e-2 ± 4.23e-3 4.94e-2 ± 2.36e-2
DINo 8.65e-2 ± 1.16e-2 9.36e-2 ± 9.34e-3 1.22e-3 ± 2.05e-4 1.52e-2 ± 3.74e-4

CORAL 2.44e-2 ± 1.96e-2 4.57e-2 ± 1.78e-2 8.77e-3 ± 7.20e-4 1.29e-2 ± 1.92e-3

Table 5.2 details the performance of the different models in a combined tem-

poral and spatial evaluation setting. • General remarks: CORAL demonstrates

strong performance across all scenarios for both datasets. Only DINo exhibits sim-

ilar properties, i.e., stability across spatial subsamplings and extrapolation horizon.

We observe that all models performance degrade with lower sampling ratio. Also,

as the models have been trained only on In-t horizon, error accumulates over time

and thus leads to lower performance for Out-t evaluation. • Analysis per model:

Although achieving strong performance on some specific scenarios, DeepONet, FNO

and MP-PDE results are dependent of the training grid, geometries or number of

points. FNO, can only be trained and evaluated on regular grids while DeepONet is

not designed to be evaluated on a different grid in the branch net. MP-PDE achieves

strong performance with enough sample positions, e.g. full grids here, but struggles

to compete on irregular grids scenarios in Navier-Stokes. • Inference Time: We

report in Appendix A.3, the inference time of the baselines considered. Despite op-

erator methods have better inference time, CORAL is faster than mesh-free methods

like DINo and MP-PDE. • Generalization across samplings: Coordinate-based

methods demonstrate robustness when it comes to changes in spatial resolution. In

contrast, MP-PDE model exhibits strong overfitting to the training grid, resulting

in a decline in performance. Although MP-PDE and DINo may outperform CORAL

in some settings, when changing the grid, CORAL remains stable and outperforms

the other models. See Appendix A.3 for details.

5.4. Experiments 91

5.4.3 Geometry-aware inference

In this section, we wish to infer the steady state of a system from its domain geom-

etry, all other parameters being equal. The domain geometry is partially observed

from the data in the form of point clouds or of a structured mesh Xi ⊂ Ωi. The posi-

tion of the nodes depends on the particular object shape. Each mesh Xi is obtained

by deforming a reference grid X to adjust to the shape of the sample object. This

grid deformation is the input function of the operator learning setting, while the

output function is the physical quantity ui over the domain Ωi. The task objective

is to train a model so as to generalize to new geometries, e.g. a new airfoil shape.

Once a surrogate model has been trained to learn the influence of the domain ge-

ometry on the steady state solution, it can be used to quickly evaluate a new design

and to solve inverse design problems (details in Appendix A.4).

Datasets. We used datasets generated from three different equations by Li

et al. (2022a) and provide more details in Appendix A.1. • Euler equation

(NACA-Euler) for a transonic flow over a NACA-airfoil. The measured quantity

at each node is the Mach number. • Navier-Stokes Equation (Pipe) for an in-

compressible flow in a pipe, expressed in velocity form. The measured quantity at

each node is the horizontal velocity. • Hyper-elastic material (Elasticity). Each

sample represents a solid body with a void in the center of arbitrary shape, on which

a tension is applied at the top. The material is the incompressible Rivlin-Saunders

material and the measured quantity is the stress value. We use 1000 samples for

training and 200 for test with all datasets.

Baselines We use • Geo-FNO (Li et al., 2022a) and • Factorized-FNO (Tran

et al., 2023) two SOTA models as the main baselines. We also compare our model

to regular-grid methods such as • FNO (Li et al., 2021) and • UNet (Ronneberger

et al., 2015a), for which we first interpolate the input.

Table 5.3: Geometry aware inference - Test results. Relative L2 error.

Model NACA-Euler Elasticity Pipe

FNO 3.85e-2 ± 3.15e-3 4.95e-2 ± 1.21e-3 1.53e-2 ± 8.19e-3
UNet 5.05e-2 ± 1.25e-3 5.34e-2 ± 2.89e-4 2.98e-2 ± 1.08e-2

Geo-FNO 1.58e-2 ± 1.77e-3 3.41e-2 ± 1.93e-2 6.59e-3 ± 4.67e-4
Factorized-FNO 6.20e-3 ± 3.00e-4 1.96e-2 ± 2.00e-2 7.33e-3 ± 4.66e-4

CORAL 5.90e-3 ± 1.00e-4 1.67e-2 ± 4.18e-4 1,20e-2 ± 8.74e-4

Results In Table 5.3 we can see that CORAL achieves state-of-the-art results

on Airfoil and Elasticity, with the lowest relative error among all models. It is

slightly below Factorized-FNO and Geo-FNO on Pipe. One possible cause is that

this dataset exhibits high frequency only along the vertical dimension, while SIREN

might be better suited for isotropic frequencies. Through additional experiments, we

92
Chapter 5. Operator Learning with Neural Fields: Tackling PDEs on General

Geometries

demonstrate in Appendix A.4, how CORAL can also be used for solving an inverse

problem corresponding to a design task: optimize the airfoil geometry to minimize

the drag over lift ratio. This additional task further highlights the versatility of this

model.

5.5 Discussion and limitations

Although a versatile model, CORAL inherits the limitations of INRs concerning

the training time and representation power. It is then faster to train than GNNs,

but slower than operators such as FNO, DeepONet and of course CNNs which

might limit large scale deployments. Also some physical phenomena might not be

represented via INRs. Although this is beyond the scope of this paper, it remains to

evaluate the methods on large size practical problems. An interesting direction for

future work would be to derive an efficient spatial latent representation for INRs,

taking inspiration from grid-based representation for INRs (Takikawa et al. (2022b),

Müller et al. (2022), Saragadam et al. (2022)). Another avenue would be to leverage

clifford layers (Brandstetter et al., 2022a) to model interactions between physical

fields.

5.6 Conclusion

We have presented CORAL, a novel approach for Operator Learning that removes

constraints on the input-output mesh. CORAL offers the flexibility to handle spatial

sampling or geometry variations, making it applicable to a wide range of scenarios.

Through comprehensive evaluations on diverse tasks, we have demonstrated that

it consistently achieves state-of-the-art or competitive results compared to baseline

methods. By leveraging compact latent codes to represent functions, it enables

efficient and fast inference within a condensed representation space.

Chapter 6

Infinity: Neural Field Modeling

for Reynolds-Averaged

Navier-Stokes Equations

For numerical design, the development of efficient and accurate surrogate models is

paramount. They allow us to approximate complex physical phenomena, thereby

reducing the computational burden of direct numerical simulations. We propose IN-

FINITY, a deep learning model that utilizes implicit neural representations (INRs)

to address this challenge. Our framework encodes geometric information and physi-

cal fields into compact representations and learns a mapping between them to infer

the physical fields. We use an airfoil design optimization problem as an example task

and we evaluate our approach on the challenging AirfRANS dataset, which closely

resembles real-world industrial use-cases. The experimental results demonstrate that

our framework achieves state-of-the-art performance by accurately inferring physical

fields throughout the volume and surface. Additionally we demonstrate its applica-

bility in contexts such as design exploration and shape optimization: our model can

correctly predict drag and lift coefficients while adhering to the equations.

Serrano, L., Migus, L., Yin, Y., Mazari, J. A., Gallinari, P. (2023). Infinity:

Neural field modeling for reynolds-averaged navier-stokes equations. ICML

2023 SynS ML workshop.

6.1 Introduction and motivation . 94

6.2 Method . 95

6.2.1 Problem setting . 95

6.2.2 Model . 97

6.2.3 Training . 98

93

94
Chapter 6. Infinity: Neural Field Modeling for Reynolds-Averaged Navier-Stokes

Equations

6.3 Experiments . 99

6.4 Conclusion . 101

6.1 Introduction and motivation

Numerical simulations are essential for analyzing systems governed by partial dif-

ferential equations (PDEs) in fields like fluid dynamics and climate science. These

simulations involve discretizing the domain and solving the equations using methods

such as finite differences, finite elements, or finite volumes (Reddy, 2019; Grossmann

et al., 2007; Eymard et al., 2000). Since direct numerical simulation (DNS) can be

computationally expensive or intractable, it is crucial to develop computationally

efficient yet accurate surrogate models to accelerate the design process. Surrogate

modeling for industrial applications, however, poses several challenges. The meshes

used in these applications are extensive, consisting of hundreds of thousands of cells,

and they also exhibit unstructured data and involve multi-scale phenomena. A typi-

cal example is the design of airfoils which will be our application focus, although the

ideas can be easily implemented for other design tasks. In this domain, a new costly

simulation must be run for each mesh during the optimization process, leading to

time-consuming processes. Additionally, the design process focuses on finding the

optimal shape for an airfoil that minimizes the force required for flight. Experts

typically maximize the lift-over-drag ratio by solving equations across the entire

mesh, with particular emphasis on the surface where various multi-scale phenomena

occur.

Recently, deep learning methods have emerged as promising approaches for con-

structing surrogate models. However, the progress in this field was initially hindered

by the lack of evaluation datasets representative of real-world data. The machine

learning community has begun to address this issue by developing benchmarks. In

this work, we utilize the a recent AirfRANS dataset Bonnet et al. (2022), which aims

to replicate real-world industrial scenarios. This comprehensive benchmark provides

an evaluation framework to assess the capabilities of deep learning (DL) in modeling

the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes

(RANS) equations for airfoils. Additionally, this 2D dataset encompasses a wide

range of airfoil shapes derived from NASA’s early works (Cummings et al., 2015),

various turbulence effects characterized by Reynolds numbers and different angles

of attack.

The Navier-Stokes equations are widely used in fluid dynamics, and as a re-

sult, numerous neural network surrogates have been proposed for their modeling in

different contexts. Initial attempts all relied on grid-based approaches such as con-

volutional Neural Networks (CNNs) (Um et al., 2020a; Thuerey et al., 2020; Mohan

et al., 2020; Wandel et al., 2020; Obiols-Sales et al., 2020; Gupta et al., 2021; Wang

6.2. Method 95

et al., 2020a). CNNs face challenges when dealing with the irregular meshes used in

computational fluid dynamics (CFD). Graph Neural Networks (GNNs) have shown

promise Pfaff et al. (2021) but they have limitations in terms of receptive field size

and information propagation across distant nodes, especially for large meshes. Addi-

tionally, GNNs struggle when the mesh is too dense and cannot fit into the memory

of GPUs, necessitating sub-sampling. This limitation restricts their application in

contexts where large meshes with multi-scale phenomena are prevalent. Further-

more, the evaluation of the models has primarily focused on traditional machine

learning scores, such as global error over the entire domain (a.k.a. volume), rather

than more design-oriented scores, including local error in the surface area surround-

ing the airfoil (a.k.a. surface) and errors in the aerodynamic forces of interest, such

as drag and lift.

Leveraging recent advances in implicit neural representations (INRs) (Sitzmann

et al., 2020b; Mildenhall et al., 2021), which have shown successful applications in

physics problems (Yin et al., 2023), we introduce INFINITY, a model that utilizes

coordinate-based networks to encode geometric information and physical fields into

concise representations. INFINITY establishes a mapping between variables repre-

senting the problem’s geometry and the corresponding physical fields, within this

representation space. It possesses several unique features: (i) it is robust to varying

mesh sampling, allowing for adaptability to different geometries, (ii) it effectively

captures multi-scale phenomena, resulting in state-of-the-art scores for both vol-

ume and surface evaluations, (iii) as a continuous surrogate model, it can be used

to accelerate the evaluation of different meshes during the design process, leading

to significant speed-up. Importantly, we verified that INFINITY’s field predictions

accurately produce the correct lift and drag forces clearly outperforming all the

baselines.

6.2 Method

6.2.1 Problem setting

We aim at proposing a surrogate model for airfoil design optimization in scenarios

where the amount of available training data is limited (ntr ≤ 1000). Each airfoil is

associated with a domain Ωi, which is linked to a specific geometry. Consequently,

different meshes Xi are generated within each domain. The characterization of an

airfoil involves defining boundary conditions on ∂Ωi corresponding to the airfoil

surface, which are discretized into a surface mesh Si.
The geometric inputs for our model include the following information: • Node

positions x represent the coordinates of each node within the airfoil’s domain. • Dis-

tance function d(x) provides the distance from each node to the surface of the airfoil.

• Normal vectors of the mesh nodes on the airfoil surface n(x) = (nx(x), ny(x))

96
Chapter 6. Infinity: Neural Field Modeling for Reynolds-Averaged Navier-Stokes

Equations

encode

encode

process

decode decode

decodedecode

1. 2. 3.Encode the airfoil's geometry Process the geometric representations
 and inlet velocities

Decode the processed representations and query the modulated INRs
on the airfoil mesh to obtain the physical fields

distance

normal

velocity velocity

turbulent viscositypressure

obs

latent representation

observed field inlet velocity
INR encoding INR decoding

Figure 6.1: The inference of INFINITY proceeds in three steps. 1. We encode the
distance function d and the normal components nx, ny into the latent representa-
tions zd and zn. 2. We process these codes along with the inlet velocities Vx, Vy
to obtain the predicted output codes ẑvx , ẑvy , ẑp, ẑνt corresponding respectively to
velocity, pressure and viscosity. 3. The processed codes are decoded with the mod-
ulated INRs, which can be queried directly at any mesh position x ∈ X .

specify the direction perpendicular to the airfoil surface at each node. In addition

to the geometric inputs, we also have access to the inlet velocity values Vx and Vy,

denoting the horizontal and vertical components of the velocity, respectively. It

is worth noting that, on average, a mesh consists of approximately 200,000 nodes,

providing a detailed representation of the airfoil’s geometry.

The primary objective of the design optimization process is to maximize the lift-

over-drag coefficient ratio, which serves as the key performance metric. To achieve

this, we place significant emphasis on evaluating the relative errors in both the drag

and lift coefficients, as well as assessing the Spearman correlation between predicted

and actual values.

Rather than directly predicting the drag and lift values, our approach focuses

on inferring various fluid fields associated with the airfoil’s geometry. This includes

calculating the velocities (vx, vy), pressure p, and turbulent kinematic viscosity νt
on the mesh nodes, following the experimental protocol proposed in Bonnet et al.

(2022). Therefore the inputs of our surrogate model are (Vx, Vy, d|Xi
, nx|Si

, ny|Si
)ntr
i=1,

and the outputs are (vx|Xi
, vy|Xi

, p|Xi
, νt|Xi

)ntr
i=1. The output physical fields provide

valuable insights into the underlying behavior of the fluid and its interaction with

the airfoil’s geometry. The drag and lift coefficients are calculated based on the

predictions of the trained model while respecting the form of the RANS equations.

This approach enables us to obtain a comprehensive understanding of the underlying

fluid behavior and its relationship with the airfoil’s geometry, thereby ultimately

enhancing the accuracy of drag and lift estimation.

6.2. Method 97

6.2.2 Model

We present INFINITY: Implicit Neural Fields for INterpretIng geomeTry and infer-

ring phYsics.

Modulated INR In our model, we will treat each geometric input (d or n) or

physical output function (v, p, or ν) separately and each will be modeled by an INR.

Let us then consider a generic function u, which will represent either an input geo-

metric field or an output physical field defined over a domain Ω or at its boundary

∂Ω. Let us denote ui the function corresponding to a specific airfoil example. ui will

be represented by an INR fθu,ϕui with two sets of parameters: parameters θu shared

by all the ui, and modulation parameters ϕui specific to each individual function ui.

In our airfoil example, ϕui enables the INR to handle different geometries. Overall,

this decomposition allows the modulated INR to capture both shared characteristics

among the example’s functions ui and the unique properties of each one. INFINITY

leverages latent representations inferred from the modulation spaces of the INRs.

These latent representations, denoted as zui , are compact codes that encode infor-

mation from the INRs’ parameters. They serve as inputs to a hypernetwork hu,

with weights wu, which computes the modulation parameters ϕui = hu(zui).

In this work we use Fourier Features (Tancik et al., 2020b) as an INR backbone

and apply shift modulation (Perez et al., 2018a): fθ,ϕui (x) = WL

(
χL−1 ◦χL−2 ◦ · · · ◦

χ0(x)
)

+ bL, with χj(ηj) = σ
(
Wjηj + bj + (ϕui

)j
)
. We note η0 = x and (ηj)j≥1 the

hidden activations throughout the network. Hence, the parameters θ = (Wj, bj)
L
j=0

are shared between all examples and the modulation ϕui = ((ϕui
)j)

L−1
j=0 is specific to

a single example. We compute the modulation parameters ϕui = ((ϕui
)j)

L−1
j=0 from

z with a linear hypernetwork.

With the learned shared parameters (θu, wu), the modulated INR enables two

processes: decoding and encoding (see Figure 6.1). Decoding refers to mapping a

given code zui to the corresponding INR function fθu,ϕui , where ϕui = hu(zui), while

encoding involves generating a code zui given a function ui, providing a compact

representation of the function within the modulation space of the INR.

To obtain the compact code zui for reconstructing the original field ui using

the INR, an inverse problem is solved through a procedure called auto-decoding.

The objective is to compress the necessary information into zui such that the re-

constructed value ũi(x) = fθu,ϕui (x) approximates the original value ui(x) for all

x ∈ Xi. The approximate solution to this inverse problem is computed iteratively

through a gradient descent optimization process:

z(0)ui
= 0,

z(k+1)
ui

= z(k)ui
− α∇

z
(k)
ui

Lµi(fθu,ϕ(k)ui

, ui),

with ϕ(k)
ui

= hu(z
(k)
ui

) for 0 ≤ k ≤ K − 1.

(6.1)

98
Chapter 6. Infinity: Neural Field Modeling for Reynolds-Averaged Navier-Stokes

Equations

where α is the inner loop learning rate, K the number of inner steps, and

Lµi(ui, ũi) = Ex∼µi [(ui(x) − ũi(x))2] where µi is a measure defined through the

observation grid Xi µi(·) =
∑

x∈Xi
δx(·), with δx(·) the Dirac measure.

As indicated before, we treat each input and output function independently:

there are two input functions denoted as (d, n) and four output functions denoted

as (vx, vy, p, νt). Each ui ∈ {d, n, vx, vy, p, νt} is represented by a modulated INR

fθu,ϕui , where ui stands for a field specific to an airfoil example. INFINITY then

learns a mapping between the latent representations of the geometric input fields

and the latent representations of the physics output fields.

Inference As illustrated in Figure 6.1, INFINITY follows a three-step procedure:

encode, process, and decode.

• Encode: Given the geometric input functions di, ni and the corresponding INR

learned parameters, respectively θd, wd and θn, wn, functions di, ni are encoded

into the latent codes zdi , zni
according to Equation (6.1). Since we can query

the INRs anywhere within the domain, we can hence freely encode functions

without mesh constraints. This lets us freely encode inputs with different

geometries.

• Process: Once we obtain zdi and zni
, we can infer the latent output codes(

ẑvxi
, ẑvyi

, ẑpi , ẑνti
)

= gψ

((
zdi , zni

, Vxi, Vyi
))

. We consider here that gψ is im-

plemented through an MLP with parameters ψ.

• Decode: We decode each processed output code
(
ẑvxi

, ẑvyi
, ẑpi , ẑνti

)
with their

associated hypernetwork and modulated INR. We make use of the INRs to

freely query a physical field at any point within its spatial domain. These

components generate the final output functions by mapping the latent codes

back to the output space.

We present the inference pipeline in details in Algorithm 1.

6.2.3 Training

We implement a two-step training procedure that first learns the modulated INR

parameters θu and ϕui for all input and output functions, before training the map

gψ. During the training of the INRs we force the auto-decoding process to take

only a few gradient steps to encode the geometric functions or physical fields. This

enhances the INR capability to encode new geometrical inputs in a few steps at test

time, and also reduces the space size of the target output codes. This regularization

prevents the different INRs to memorize the training sets into the individual codes.

In order to obtain a network that is capable of quickly encoding new geometrical and

6.3. Experiments 99

Algorithm 1: Inference given d, n, Vx, Vy
1: Set codes to zero: zd ← 0; zn ← 0
2: Perform input encoding inner loop:
3: for step in {1, ..., K} do
4: ϕd = hd(zd); ϕn = hn(zn)
5: zd ← zd − α∇zdLX (fθd,ϕd , d)
6: zn ← zn − α∇znLX (fθn,ϕn , n)
7: end for
8: Process geometry and inlet velocities:

9:
(
ẑvxi

, ẑvyi
, ẑpi , ẑνti

)
= gψ

((
zdi , zni

, Vxi, Vyi
))

10: Query the predicted fields at location x:
11: v̂x(x) = fθvx ,ϕ̂vx (x); v̂y(x) = fθvy ,ϕ̂vy (x)

12: p̂(x) = fθp,ϕ̂p(x); ν̂t(x) = fθν ,ϕ̂ν (x)

physical inputs, we employ a second-order meta-learning training algorithm based

on CAVIA (Zintgraf et al., 2019b). Compared to a first-order scheme such as Reptile

(Nichol et al., 2018), the outer loop back-propagates the gradient through the K

inner steps, consuming more memory. Indeed, we need to compute gradients of

gradients but this yields higher reconstruction results with the modulated INR. We

experimentally found that using 3 inner-steps for training, or testing, was sufficient

to obtain very low reconstruction errors for the geometric or physical fields. Using

more inner-steps would result in a higher computation cost with only a marginal

gain in reconstruction capacity. We outline the training pipeline of a modulated

INR in Algorithm 2.

Once the different INRs have been fitted, we encode the functions into the input

codes zdi , zni
and target codes zvxi

, zvyi
, zpi , zνti . The training of gψ is performed in

the small dimensional z-code space, and is supervised through the MSE loss with

the target codes (see Algorithm 3 for details).

6.3 Experiments

Baselines We use the same baselines as Bonnet et al. (2022); GraphSAGE (Hamil-

ton et al., 2017a), a PointNet (Qi et al., 2017), a Graph U-Net (Gao and Ji, 2019)

and a MLP. Those baselines have been initially chosen as they process in different

ways the inputs. The results are given for the setup “full data regime” of AirfRANS,

using 800 samples for training and 200 for testing.

Results In Table 6.1, the INFINITY model demonstrates superior inference ca-

pabilities on the volume and surface compared to the baselines. Indeed, It achieves

100
Chapter 6. Infinity: Neural Field Modeling for Reynolds-Averaged Navier-Stokes

Equations

Algorithm 2: Modulated INR training

1: while convergence is false do
2: Sample a batch B of data (ui)i∈B
3: Set codes to zero: zui ← 0 for i in B
4: Perform input encoding inner loop:
5: for i in B and step in {1, ..., Ku} do
6: ϕui = hu(zui)
7: zui ← zui − αu∇zui

LXi
(fθu,ϕui , ui)

8: end for
9: for i in B: do

10: ϕui = hu(zui)
11: end for
12: Perform outer loop update:
13: θu ← θu − η 1

|B|
∑

i∈B∇θuLXi
(fθu,ϕui , ui)

14: wu ← wu − η 1
|B|
∑

i∈B∇wuLXi
(fθu,ϕui , ui)

15: end while

Algorithm 3: Processor training

1: while convergence is false do
2: Sample a batch B of data:
3:

(
zdi , zni

, Vxi, Vyi, zvxi
, zvyi

, zpi , zνti
)
i∈B

4:

5: Process geometry and inlet velocities:

6:
(
ẑvxi

, ẑvyi
, ẑpi , ẑνti

)
= gψ

((
zdi , zni

, Vxi, Vyi
))

7:

8: Update parameters using the MSE Loss :
9: MSE = 1

|B|
∑

i∈B
1
4
(||ẑvxi

− zvxi
||2 + ||ẑvyi

− zvyi
||2 + ||ẑpi− zpi ||2 + ||ẑνti− zνti||2)

10: end while

6.4. Conclusion 101

INFINITY GraphSAGE MLP Graph U-Net PointNet

Volume

vx 0.06 ± 0.01 0.83 ± 0.01 0.95 ± 0.06 1.52 ± 0.34 3.50 ± 1.04
vy 0.06 ± 0.01 0.99 ± 0.05 0.98 ± 0.17 2.03 ± 0.39 3.64 ± 1.26
p 0.25 ± 0.01 0.66 ± 0.05 0.74 ± 0.13 0.66 ± 0.08 1.15 ± 0.23
νt 1.32 ± 0.08 1.60 ± 0.21 1.90 ± 0.10 1.46 ± 0.14 2.92 ± 0.48

Surface p|S 0.07 ± 0.01 0.66 ± 0.10 1.13 ± 0.14 0.39 ± 0.07 0.93 ± 0.26

Relative error
CD 0.366 ± 0.023 4.050 ± 0.704 4.289 ± 0.679 10.385 ± 1.895 14.637 ± 3.668
CL 0.081 ± 0.007 0.517 ± 0.162 0.767 ± 0.108 0.489 ± 0.105 0.742 ± 0.186

Spearman correlation
ρD 0.578 ± 0.050 -0.303 ± 0.124 -0.117 ± 0.256 -0.138 ± 0.258 -0.022 ± 0.097
ρL 0.997 ± 0.001 0.965 ± 0.011 0.913 ± 0.018 0.967 ± 0.019 0.938 ± 0.023

Inference time (µs) 98 ± 70 20.9 ± 2.3 13.3 ± 0.2 357.8 ± 36.9 33.9 ± 3.5

Table 6.1: Test results on AirfRANS. Mean squared error (MSE) on normalized
fields expressed with factor (×10−2) for the volume and (×10−1) for the surface.
Relative errors CD, CL on the drag and lift and Spearman correlations ρD, ρL on the
drag and lift. The results from the baselines are taken from Bonnet et al. (2022).

significantly lower error values on the volume velocity and pressure fields, while ex-

hibiting an order-of-magnitude lower MSE on the surface pressure. This substantial

gain in prediction power translates to order of magnitude lower relative errors on

the drag and lift forces, accompanied by high positive Spearman correlations. These

results indicate a strong alignment between INFINITY’s predictions and the true

drag and lift forces. Consequently, INFINITY emerges as the only model capable

of predicting accurately physical fields on the volume and surface while maintaining

coherent and accurate drag and lift estimations. On the downside, the INFINITY

model has a longer inference time compared to GraphSAGE and PointNet. How-

ever, this increased inference time is still within an acceptable range, considering its

superior performance and that a numerical solver needs approximately 20 minutes

to complete a simulation. Furthermore, it is counterbalanced by the ability to query

the full mesh directly, in stark contrast to graph-based methods that necessitate

sub-sampling to process the inputs.

6.4 Conclusion

We introduce INFINITY, a model that utilizes coordinate-based networks to encode

geometric information and physical fields into compact representations. INFINITY

establishes a mapping between geometry and physical fields within a reduced rep-

resentation space. We validated our model on AirfRANS, a challenging dataset for

the Reynolds-Averaged Navier-Stokes equation, where it significantly outperforms

previous baselines across all relevant performance metrics. At post-processing stage,

the predicted fields yield accurate lift and drag forces. This validates INFINITY’s

potential as a surrogate design model, where it could be plugged in any design

optimization or exploration loop.

Chapter 7

Preserving Spatial Structure for

Latent PDE Modeling with Local

Neural Fields

We present AROMA (Attentive Reduced Order Model with Attention), a framework

designed to enhance the modeling of partial differential equations (PDEs) using lo-

cal neural fields. Our flexible encoder-decoder architecture can obtain smooth la-

tent representations of spatial physical fields from a variety of data types, including

irregular-grid inputs and point clouds. This versatility eliminates the need for patch-

ing and allows efficient processing of diverse geometries. The sequential nature of our

latent representation can be interpreted spatially and permits the use of a conditional

transformer for modeling the temporal dynamics of PDEs. By employing a diffusion-

based formulation, we achieve greater stability and enable longer rollouts compared

to conventional MSE training. AROMA’s superior performance in simulating 1D

and 2D equations underscores the efficacy of our approach in capturing complex

dynamical behaviors. Github page: https://github.com/LouisSerrano/aroma

Serrano, L., Wang, T. X., Naour, E. L., Vittaut, J. N., Gallinari, P. (2024).

AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields. Neurips 2024.

7.1 Introduction . 103

7.2 Problem setting . 104

7.3 Model Description . 105

7.3.1 Model overview . 105

7.3.2 Encoder-decoder description 106

7.3.3 Transformer-based diffusion 108

102

https://github.com/LouisSerrano/aroma

7.1. Introduction 103

7.4 Experiments . 109

7.4.1 Dynamics on regular grids . 109

7.4.2 Dynamics on irregular grids with shared geometries 111

7.4.3 Dynamics on different geometries 113

7.4.4 Long rollouts and uncertainty quantification 113

7.5 Related Work . 115

7.6 Conclusion and Limitations . 116

7.1 Introduction

In recent years, many deep learning (DL) surrogate models have been introduced to

approximate solutions to partial differential equations (PDEs) (Lu et al., 2021a; Li

et al., 2021; Brandstetter et al., 2022d; Stachenfeld et al., 2022). Among these, the

family of neural operators has been extensively adopted and tested across various

scientific domains, demonstrating the potential of data-centric DL models in science

(Pathak et al., 2022; Vinuesa and Brunton, 2022).

Neural Operators were initially constrained by discretization and domain ge-

ometry limitations. Recent advancements, such as neural fields (Yin et al., 2022b;

Serrano et al., 2023) and transformer architectures (Li et al., 2023a; Hao et al.,

2023), have partially addressed these issues, improving both dynamic modeling and

steady-state settings. However, Neural Fields struggle to model spatial information

and local dynamics effectively, and existing transformer architectures, while being

flexible, are computationally expensive due to their operation in the original physical

space and require large training datasets.

Our hypothesis is that considering spatiality is essential in modeling spatio-

temporal phenomena, yet applying attention mechanisms directly is computation-

ally expensive. We propose a new framework that models the dynamics in a reduced

latent space, encoding spatial information compactly, by one or two orders of mag-

nitude relative to the original space. This approach addresses both the complexity

issues of transformer architectures and the spatiality challenges of Neural Fields.

Our novel framework leverages attention blocks and neural fields, resulting in a

model that is easy to train and achieves state-of-the-art results on most datasets,

particularly for complex geometries, without requiring prior feature engineering.

To the best of our knowledge, we are the first to propose a fully attention-based

architecture for processing domain geometries and unrolling dynamics. Compared

to existing transformer architectures for PDEs, our framework first encapsulates

the domain geometry and observation values in a compact latent representation,

efficiently forecasting the dynamics at a lower computational cost. Transformer-

based methods such as (Li et al., 2023a; Hao et al., 2023) unroll the dynamics in

the original space, leading to high complexity.

104
Chapter 7. Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields

Our contributions are summarized as follows:

• A principled and versatile encode-process-decode framework for solving PDEs

that operate on general input geometries, including point sets, grids, or meshes,

and can be queried at any location within the spatial domain.

• A new spatial encode / process / decode approach: Variable-size inputs are

mapped onto a fixed-size compact latent token space that encodes local spatial

information. This latent representation is further processed by a transformer

architecture that models the dynamics while exploiting spatial relations both

at the local token level and globally across tokens. The decoding exploits a

conditional neural field, allowing us to query forecast values at any point in

the spatial domain of the equation.

• We include stochastic components at the encoding and processing levels to

enhance stability and forecasting accuracy.

• Experiments performed on representative spatio-temporal forecasting prob-

lems demonstrate that AROMA is on par with or outperforms state-of-the-art

baselines in terms of both accuracy and complexity.

7.2 Problem setting

In this paper, we focus on time-dependent PDEs defined over a spatial domain Ω

(with boundary ∂Ω) and temporal domain [0, T]. In the general form, their solutions

u(x, t) satisfy the following constraints :

∂u

∂t
= F

(
ν, t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
, ∀x ∈ Ω,∀t ∈ (0, T] (7.1)

B(u)(t, x) = 0 ∀x ∈ ∂Ω,∀t ∈ (0, T] (7.2)

u(0, x) = u0 ∀x ∈ Ω (7.3)

where ν represents a set of PDE coefficients, Equations (2) and (3) represent

the constraints with respect to the boundary and initial conditions. We aim to

learn, using solutions data obtained with classical solvers, the evolution operator G
that predicts the state of the system at the next time step: ut+∆t = G(ut). We

have access to training trajectories obtained with different initial conditions, and

we want to generate accurate trajectory rollouts for new initial conditions at test

time. A rollout is obtained by the iterative application of the evolution operator

um∆t = Gm(u0).

7.3. Model Description 105

7.3 Model Description

7.3.1 Model overview

coordinate query

predicted value

SA CA

Decoder

MLP

Latent
Refiner

Diffusion
Transformer

latent tokens with a
compressed dimension

predicted tokens

...

Encode
geometry

Q

coordinates function values

K

Aggregate
function
values

...

V VK

Q

Encoder

learnable tokens geometry-aware tokens

Figure 7.1: AROMA inference: The discretization-free encoder compresses the in-
formation of a set of N input values to a sequence of M latent tokens, where M < N .
The conditional diffusion transformer is used to model the dynamics, acting as a la-
tent refiner. The continuous decoder leverages self-attentions (SA), cross-attention
(CA) and a local INR to map back to the physical space. Learnable tokens are
shared and encode spatial relations. Latent token Zt represents ut and Zt+∆t is the
prediction corresponding to ut+∆t.

We provide below an overview of the global framework and each component is

described in a subsequent section. The model comprises three key components, as

detailed in Figure 7.1.

• Encoder Ew : utX → Zt. The encoder takes input values utX sampled over the

domain Ω at time t, where X denotes the discrete sample space and could be a grid,

an irregular mesh or a point set. utX is observed at locations x = (x1, . . .xN), with

values ut = (ut(x1), · · · ,ut(xN)). N is the number of observations and can vary

across samples. utX is projected through a cross attention mechanism onto a set of

M tokens Zt = (zt1, · · · , ztM) with M a fixed parameter. This allows mapping any

discretized input utX onto a fixed dimensional latent representation Zt encoding

implicit local spatial information from the input domain. The encoder is trained

as a VAE and Zt is sampled from a multivariate normal statistics as detailed in

Section 7.3.2.

• Latent time-marching refiner Rθ : Zt → Ẑt+∆t. We model the dynamics

in the latent space through a transformer. The dynamics can be unrolled auto-

106
Chapter 7. Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields

regressively in the latent space for any time horizon without requiring to project

back in the original domain Ω. Self-attention operates on the latent tokens, which

allows modeling global spatial relations between the local token representations.

The transformer is enriched with a conditional diffusion mechanism operating be-

tween two successive time steps of the transformer. We experimentally observed

that this probabilistic model was more robust than a baseline deterministic trans-

former for temporal extrapolation.

• Decoder Dψ : Ẑt+∆t → ût+∆t. The decoder uses the latent tokens Ẑt+∆t to

approximate the function value ût+∆t(x) = Dψ(x, Ẑt+∆t) for any query coordinate

x ∈ Ω. We therefore denote ût+∆t = Dψ(Zt+∆t) the predicted function.

Inference We encode the initial condition and unroll the dynamics in the latent

space by successive denoisings: ûm∆t = Dψ ◦ Rm
θ ◦ Ew(u0). We then decode along

the trajectory to get the reconstructions. We outline the full inference pipeline in

Figure 7.1 and detail its complexity analysis in Appendix B.3.1.

Training We perform a two-stage training: we first train the encoder and decoder,

secondly train the refiner. This is more stable than end-to-end training.

7.3.2 Encoder-decoder description

The encoder-decoder components are jointly trained using a VAE setting. The en-

coder is specifically designed to capture local input observation from any sampled

point set in the spatial domain and encodes this information into a fixed number of

tokens. The decoder can be queried at any position in the spatial domain, irrespec-

tive of the input sample.

Encoder The encoder maps an arbitrary number N of observations (x,u(x)) :=

((x1,u(x1)), . . . , (xN ,u(xN)) onto a latent representation Z of fixed size M through

the following series of transformations:

(i) (x,u(x))
(positional, value) embeddings
−−−−−−−−−−−−−−−−−→ (γ(x),v(x)) ∈ RN×d

(ii) (T,γ(x))
geometry encoding−−−−−−−−−−−−−−−−−→ Tgeo ∈ RM×d

(iii) (Tgeo,v(x))
observation spatial encoding−−−−−−−−−−−−−−−−−→ Tobs ∈ RM×d

(iv) Tobs dimension reduction−−−−−−−−−−−−−−−−−→ Z ∈ RM×h

where (γ(x),v(x)) = ((γ(x1), v(x1)), . . . , (γ(xN), v(xN))), and h≪ d.

7.3. Model Description 107

(i) Embed positions and observations: Given an input sequence of

coordinate-value pairs (x1,u(x1)), . . . , (xN ,u(xN)), we construct sequences of

positional embeddings γ = (γ(x1), . . . , γ(xN)) and value embeddings v =

(v(x1), . . . , v(xN)), where γ(x) = FourierFeatures(x;ω) and v(x) = Linear(u(x)),

with ω a fixed set of frequencies. These embeddings are aggregated onto a smaller

set of learnable query tokens T = (T1, . . . , TM) and then T′ = (T ′
1, . . . , T

′
M) with

M fixed, to compress the information and encode the geometry and spatial latent

representations.

(ii) Encode geometry: Geometry-aware tokens T are obtained with a multi-

head cross-attention layer and a feedforward network (FFN), expressed as Tgeo =

T + FFN(CrossAttention(Q = WQT,K = WKγ,V = WV γ)). This step does

not include information on the observations, ensuring that similar geometries yield

similar query tokens Tgeo irrespective of the u values.

(iii) Encode observations: The Tgeo tokens are then used to aggre-

gate the observation values via a cross-attention mechanism: Tobs = Tgeo +

FFN(CrossAttention(Q = W′
QT

geo,K = W′
Kγ,V = W′

V v)). Here, the values

contain information on the observation values, and the keys contain information on

the observation locations.

(iv) Reduce channel dimension and sample Z: The information in the

channel dimension of T′ is compressed using a bottleneck linear layer. To avoid ex-

ploding variance in this compressed latent space, we regularize it with a penalty on

the L2 norm of the latent code ∥Z∥2. Introducing stochasticity through a variational

formulation further helps to regularize the auto-encoding and obtain smoother repre-

sentations for the forecasting step. For this, we learn the components of a Gaussian

multivariate distribution µ = Linear(Tobs) and log(σ) = Linear(Tobs) from which

the final token embedding Z is sampled.

Decoder The decoder’s role is to reconstruct ût+∆t from Ẑt+∆t, see Figure 7.1.

Since training is performed in two steps (“encode-decode” first and then “process”),

the decoder is trained to reconstruct ût for input ut. One proceeds as follows. (i)

Increase channel dimensions and apply self-attention: The decoder first lifts

the latent tokens Z to a higher channel dimension (this is the reverse operation of the

one performed by the encoder) and then apply several layers of self-attention to get

tokens Z
′
. (ii) Cross-attend: The decoder applies cross-attention to obtain feature

vectors that depend on the query coordinate x, (fuq (x)) = CrossAttention(Q =

WQ(γq(x)),K = WKZ
′
,V = WVZ

′
), where γq is a Fourier features embedding of

bandwidth ωq. (iii) Decode with MLP: Finally, we use a small MLP to decode

this feature vector and obtain the reconstruction û(x) = MLP(fuq (x)). In contrast

with existing neural field methods for dynamics modeling, the feature vector here

is local. In practice, one uses multiple cross attentions to get feature vectors with

different frequencies (see Appendix Figures B.4 and B.5 for further details).

108
Chapter 7. Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields

...

Figure 7.2: Spatial interpretation of the tokens through cross attention between T geo

and γ(x) for each x in the domain. Here we visualize the cross-attention of three
different tokens for a given head. The cross attentions can have varying receptive
fields depending on the geometries.

Training The encoder and decoder are jointly optimized as a variational autoen-

coder (VAE) (Kingma and Welling, 2013) to minimize the following objective :

L = Lrecon +β ·LKL; where Lrecon = MSE(utX , û
t
X) is the reconstruction loss between

the input and the reconstruction Dψ(Zt,X) on the grid X , with Zt ∼ N (µt, (σt)2)

and µt,σt = Ew(utX). The KL divergence loss LKL = DKL(N (µt, (σt)2) || N (0, I))

helps regularize the network and prevents overfitting. We found that using a varia-

tional formulation was essential to obtain smooth latent representations while train-

ing the encoder-decoder.

7.3.3 Transformer-based diffusion

Modeling the dynamics is performed in the latent Z space. This space encodes spa-

tial information present in the original space while being a condensed, smaller-sized

representation, allowing for reduced complexity dynamics modeling. As indicated,

the dynamics can be unrolled auto-regressively in this space for any time horizon

without the need to map back to the original space. We use absolute positional

embeddings Epos and a linear layer to project onto a higher dimensional space:

Z[0] = Linear(Z) + Epos. The backbone then applies several self-attention blocks,

which process tokens as follows:

Z[l+1] ← Z[l] + Attention(LayerNorm(Z[l])) (7.4)

Z[l+1] ← Z[l+1] + FFN(LayerNorm(Z[l+1]) (7.5)

We found out that adding a diffusion component to the transformer helped en-

hance the stability and allowed longer forecasts. Diffusion steps are inserted between

two time steps t and t + ∆t of the time-marching process transformer. The diffu-

sion steps are denoted by k and are different from the ones of the time-marching

7.4. Experiments 109

process (several diffusion steps k are performed between two time-marching steps t

and t+ ∆t).

We then use a conditional diffusion transformer architecture close to Peebles and

Xie (2023) for Rθ, where we detail the main block in Appendix B.2. At diffusion

step k, the input to the network is a sequence stacking the tokens at time t and

the current noisy targets estimate (Zt, Z̃t+∆t
k). See Appendix B.2, Figure B.1 and

Figure B.2 for more details. To train the diffusion transformer Rθ, we freeze the

encoder and decoder, and use the encoder to sample pairs of successive latent tokens

(Zt,Zt+∆t). We employ the “v-predict” formulation of DDPM (Salimans and Ho,

2022) for training and sampling.

7.4 Experiments

In this section, we systematically evaluate the performance of our proposed model

across various experimental settings, focusing on its ability to handle dynamics

on both regular and irregular grids. First, we investigate the dynamics on regu-

lar grids, where we benchmark our model against state-of-the-art neural operators,

including Fourier Neural Operators (FNO), ResNet, Neural Fields, and Transform-

ers. This comparison highlights the efficacy of our approach in capturing complex

spatio-temporal patterns on structured domains. Second, we extend our analysis

to dynamics on irregular grids and shared geometries, emphasizing the model’s ex-

trapolation capabilities in data-constrained regimes. Here, we compare our results

with Neural Fields and Transformers, demonstrating the robustness of our model in

handling less structured and more complex spatial configurations. Lastly, we assess

the model’s capacity to process diverse geometries and underlying spatial represen-

tations by comparing its performance on irregular grids and different geometries.

This evaluation highlights the flexibility and generalization ability of our model

in encoding and learning from varied spatial domains, showcasing its potential in

accurately representing and predicting dynamics across a wide range of geometric

settings. We include additional results from ablation studies in Appendix B.3.6.

7.4.1 Dynamics on regular grids

We begin our analysis with dynamics modeling on regular grid settings. Though

our model is targeted for complex geometries, we believe this scenario remains an

important benchmark to assess the efficiency of surrogate models.

Datasets • 1D Burgers’ Equation (Burgers): Models shock waves, using a

dataset with periodic initial conditions and forcing term as in Brandstetter et al.

(2022d). It includes 2048 training and 128 test trajectories, at resolutions of

110
Chapter 7. Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields

Table 7.1: Model Performance Comparison - Test results. Metrics in Relative L2.

Model Burgers Navier-Stokes Navier-Stokes
1× 10−4 1× 10−5

FNO 5.00× 10−2 1.53× 10−1 1.24× 10−1

ResNet 8.50× 10−2 3.77× 10−1 2.56× 10−1

DINO 4.57× 10−1 7.25× 10−1 3.72× 10−1

CORAL 6.20× 10−2 3.77× 10−1 3.11× 10−1

GNOT 1.28× 10−1 1.85× 10−1 1.65× 10−1

OFormer 4.92× 10−2 1.36× 10−1 2.40× 10−1

AROMA 3.65× 10−2 1.05× 10−1 1.24× 10−1

(250, 100). We create sub-trajectories of 50 timestamps and treat them indepen-

dently. • 2D Navier Stokes Equation: for a viscous and incompressible fluid.

We use the data from Li et al. (2021). The equation is expressed with the vorticity

form on the unit torus: ∂w
∂t

+u ·∇w = ν∆w+ f , ∇u = 0 for x ∈ Ω, t > 0, where ν is

the viscosity coefficient. We consider two different versions ν = 10−4 (Navier-Stokes

1×10−4) and ν = 10−5 (Navier-Stokes 1×10−5), and use train and test sets of 1000

and 200 trajectories with a base spatial resolution of size 64 × 64. We consider a

horizon of T = 30 for ν = 10−4 and T = 20 for ν = 10−5 since the phenomenon is

more turbulent. At test time, we use the vorticity at t0 = 10 as the initial condition.

Setting We train all the models with supervision on the next state prediction to

learn to approximate the time-stepping operator ut+∆t = G(ut). At test time, we

unroll the dynamics auto-regressively with each model and evaluate the prediction

with a relative L2 error defined as Ltest
2 = 1

Ntest

∑
j∈test

||ûtrajectoryj −utrajectoryj ||2
||utrajectoryj ||2

.

Baselines We use a diverse panel of baselines including state of the art regular-

grid methods such as FNO (Li et al., 2021) and ResNet (He et al., 2016b; Lippe

et al., 2023), flexible transformer architectures such as OFormer (Li et al., 2023a),

and GNOT (Hao et al., 2023), and finally neural-field based methods with DINO

(Yin et al., 2022b) and CORAL (Serrano et al., 2023).

Results Table 7.1 presents a comparison of model performance on the Burgers,

Navier-Stokes1e-4, and Navier-Stokes1e-5 datasets, with metrics reported in Rel-

ative L2. Our method, AROMA, demonstrates excellent performance across the

board, highlighting its ability to capture the dynamics of turbulent phenomena, as

reflected in the Navier-Stokes datasets.

In contrast, DINO and CORAL, both global neural field models, perform poorly

in capturing turbulent phenomena, exhibiting significantly higher errors compared

to other models. This indicates their limitations in handling complex fluid dynamics.

7.4. Experiments 111

On the other hand, AROMA outperforms GNOT on all datasets, though it performs

reasonably well compared to the neural field based method.

Regarding the regular-grid methods, ResNet shows suboptimal performance in

the pure teacher forcing setting, rapidly accumulating errors over time during infer-

ence. FNO stands out as the best baseline, demonstrating competitive performance

on all datasets. We hypothesize that FNO’s robustness to error accumulation dur-

ing the rollout can be attributed to its Fourier block, which effectively cuts off

high-frequency components. Overall, the results underscore AROMA’s effectiveness

and highlight the challenges Neural Field-based models face in accurately modeling

complex phenomena.

7.4.2 Dynamics on irregular grids with shared geometries

We continue our experimental analysis with dynamics on unstructured grids, where

we observe trajectories only through sparse spatial observations over time. We adopt

a data-constrained regime and show that our model can still be competitive with

existing Neural Fields in this scenario.

Datasets To evaluate our framework, we utilize two fluid dynamics datasets com-

monly used as a benchmark for this task (Yin et al., 2022b; Serrano et al., 2023)

with unique initial conditions for each trajectory: • 2D Navier-Stokes Equation

(Navier-Stokes 1× 10−3): We use the same equation as in Section 7.4.1 but with a

higher viscosity coefficient ν = 1e−3. We have 256 trajectories of size 40 for training

and 32 for testing. We used a standard resolution of 64x64. • 3D Shallow-Water

Equation (Shallow-Water): This equation approximates fluid flow on the Earth’s

surface. The data includes the vorticity w and height h of the fluid. The training

set comprises 64 trajectories of size 40, and the test set comprises 8 trajectories with

40 timestamps. We use a standard spatial resolution of 64× 128.

Setting • Temporal Extrapolation: For both datasets, we split trajectories

into two equal parts of 20 timestamps each. The first half is denoted as In-t and the

second half as Out-t. The training set consists of In-t. During training, we supervise

with the next state only. During testing, the model unrolls the dynamics from a new

initial condition (IC) up to the end of Out-t, i.e. for 39 steps. Evaluation within the

In-t horizon assesses the model’s ability to forecast within the training regime. The

Out-t evaluation tests the model’s extrapolation capabilities beyond the training

horizon. • Sparse observations: For the train and test set we randomly select π

percent of the available regular mesh to create a unique grid for each trajectory, both

in the train and in the test. The grid is kept fixed along a given trajectory. While

each grid is different, they maintain the same level of sparsity across trajectories.

In our case, π = 100% amounts to the fully observable case, while in π = 25% each

112
Chapter 7. Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields

grid contains around 1020 points for Navier-Stokes 1 × 10−3 and 2040 points for

Shallow-Water.

Baselines We compare our model to OFormer (Li et al., 2023a), GNOT (Hao

et al., 2023), and choose DINO (Yin et al., 2022b) and CORAL (Serrano et al.,

2023) as the neural field baselines.

Training and evaluation During training, we only use the data from the training

horizon (In-t). At test time, we evaluate the models to unroll the dynamics for new

initial conditions in the training horizon (In-t) and for temporal extrapolation (Out-

t).

Results Table 7.2 demonstrates that AROMA consistently achieves low MSE

across all levels of observation sparsity and evaluation horizons for both datasets.

Overall, our method performs best with some exceptions. On Shallow-Water our

model is slightly outperformed by CORAL in the fully observed regime, potentially

because of a lack of data. Similarly, on Navier-Stokes 1× 10−3 CORAL has slightly

better scores in the very sparse regime π = 5%. Overall, this is not surprising as

meta-learning models excel in data-constrained regimes. We believe our geometry-

encoding block is crucial for obtaining good representations of the observed values

in the sparse regimes, potentially explaining the performance gap with GNOT and

OFormer.

Table 7.2: Temporal Extrapolation - Test results. Metrics in MSE.

Xtr ↓ Xte
dataset → Navier-Stokes 1× 10−3 Shallow-Water

In-t Out-t In-t Out-t

DINO 2.51× 10−2 9.91× 10−2 4.15× 10−4 3.55× 10−3

π = 100% CORAL 5.76× 10−4 3.00× 10−3 2.12× 10−5 6.00× 10−4

OFormer 7.76× 10−3 6.39× 10−2 1.00× 10−2 2.23× 10−2

GNOT 3.21× 10−4 2.33× 10−3 2.48× 10−4 2.17× 10−3

AROMA 1.32× 10−4 2.23× 10−3 3.10× 10−5 8.75× 10−4

DINO 3.27× 10−2 1.40× 10−1 4.12× 10−4 3.26× 10−3

π = 25% CORAL 1.54× 10−3 1.07× 10−2 3.77× 10−4 1.44× 10−3

irregular grid OFormer 3.73× 10−2 1.60× 10−1 6.19× 10−3 1.40× 10−2

GNOT 2.07× 10−2 6.24× 10−2 8.91× 10−4 4.66× 10−3

AROMA 7.02× 10−4 6.31× 10−3 1.49× 10−4 1.02× 10−3

DINO 3.63× 10−2 1.35× 10−1 4.47× 10−3 9.88× 10−3

π = 5% CORAL 2.87× 10−3 1.48× 10−2 2.72× 10−3 6.58× 10−3

irregular grid OFormer 3.23× 10−2 1.12× 10−1 8.67× 10−3 1.72× 10−2

GNOT 7.43× 10−2 1.89× 10−1 5.05× 10−3 1.49× 10−2

AROMA 4.73× 10−3 2.01× 10−2 1.93× 10−3 3.14× 10−3

7.4. Experiments 113

7.4.3 Dynamics on different geometries

Finally, we extend our analysis to learning dynamics over varying geometries.

Datasets We evaluate our model on two problems involving non-convex domains,

as described by Pfaff et al. (2021). Both scenarios involve fluid dynamics in a

domain with an obstacle, where the area near the boundary conditions (BC) is

more finely discretized. The boundary conditions are specified by the mesh, and

the models are trained with various obstacles and tested on different, yet similar,

obstacles. • Cylinder (CylinderFlow): This dataset simulates water flow around

a cylinder using a fixed 2D Eulerian mesh, representing incompressible fluids. For

each node j in the mesh X , we have data on the node position x(j), momentum

w(x(j)), and pressure p(x(j)). Our task is to learn the mapping from (wt(x), pt(x))x∈X
to (wt+∆t(x), pt+∆t(x))x∈X for a fixed ∆t. • Airfoil (AirfoilFlow): This dataset

simulates the aerodynamics around an airfoil, relevant for compressible fluids. In

addition to the data available in the Cylinder dataset, we also have the fluid density

ρ(x(j)) for each node j. Our goal is to learn the mapping from (wt(x), pt(x), ρt(x))x∈X
to (wt+∆t(x), pt+∆t(x), ρt+∆t(x))x∈X . Each example in the dataset corresponds to a

unique mesh. On average, there are 5233 nodes per mesh for AirfoilFlow and 1885

for CylinderFlow. We temporally subsample the original trajectories by taking one

timestamp out of 10, forming trajectories of 60 timestamps. We use the first 40

timestamps for training (In-t) and keep the last 20 timestamps for evaluation (Out-

t).

Setting We train all the models with supervision on the next state prediction. At

test time, we unroll the dynamics auto-regressively with each model and evaluate

the prediction with a mean squared error (MSE) both in the training horizon (In-t)

and beyond the training horizon (Out-t).

Results The results in Table 7.3 show that AROMA outperforms other models in

predicting flow dynamics on both CylinderFlow and AirfoilFlow geometries, achiev-

ing the lowest MSE values across all tests. This indicates AROMA’s superior ability

to encode geometric features accurately. Additionally, AROMA maintains stability

over extended prediction horizons, as evidenced by its consistently low Out-t MSE

values.

7.4.4 Long rollouts and uncertainty quantification

After training different models on Burgers, we compare them on long trajectory

rollouts. We start from t0 = 50 (i.e. use a numerical solver for 50 steps), and

unroll our dynamics auto-regressively for 200 steps. Note that all the models were

114
Chapter 7. Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields

Table 7.3: Dynamics on different geometries - Test results. MSE on normalized
data.

Model CylinderFlow AirfoilFlow

In-t Out-t In-t Out-t

CORAL 4.458× 10−2 8.695× 10−2 1.690× 10−1 3.420× 10−1

DINO 1.349× 10−1 1.576× 10−1 3.770× 10−1 4.740× 10−1

OFormer 5.020× 10−1 1.080× 100 5.620× 10−1 7.620× 10−1

AROMA 1.480× 10−2 2.780× 10−2 5.720× 10−2 1.940× 10−1

0 25 50 75 100 125 150 175 200
Rollout Steps

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
la

tio
n

FNO
ResNet
AROMA
AROMA No Diffusion

Figure 7.3: Correlation over time for long rollouts with different methods on Burgers.

only trained to predict the next state. We plot the correlation over rollout steps of

different methods, including our model without the diffusion process, in Figure 7.3.

We can clearly see the gain in stability in using the diffusion for long rollouts.

Still, the predictions will eventually become uncorrelated over time as the solver

accumulates errors compared with the numerical solution. As we employ a generative

model, we can generate several rollouts and estimate the uncertainty of the solver

with standard deviations. We can see in Appendix Figure B.8 that this uncertainty

increases over time. This uncertainty is not a guarantee that the solution lies within

the bounds, but is an indication that the model is not confident in its predictions.

7.5. Related Work 115

7.5 Related Work

Our model differs from existing models in the field of operator learning and more

broadly from existing neural field architectures. The works most related to ours are

the following.

Neural Fields for PDE Neural Fields have recently emerged as powerful tools to

model dynamical systems. DINO (Yin et al., 2022b) is a space-time continuous ar-

chitecture based on a modulated multiplicative filter network (Fathony et al., 2021b)

and a NeuralODE (Chen and Zhang, 2019) for modeling the dynamics. DINO is

capable of encoding and decoding physical states on irregular grids thanks to the spa-

tial continuity of the INR and through auto-decoding (Park et al., 2019a). CORAL

is another neural-field based architecture, which tackles the broader scope of oper-

ator learning, also builds on meta-learning (Zintgraf et al., 2019b; Dupont et al.,

2022a) to freely process irregular grids. CORAL and DINO are the most similar

works to ours, as they are both auto-regressive and capable of processing irregular

grids. On the other hand Chen et al. (2022) and Hagnberger et al. (2024) make use

of spatio-temporal Neural Fields, for obtaining smooth and compact latent repre-

sentations in the first or to directly predict trajectory solutions within a temporal

horizon in the latter. Moreover, they either use a CNN or rely on patches for encod-

ing the observations and are therefore not equipped for the type of tasks AROMA

is designed for.

Transformers for PDE Several PDE solvers leverage transformers and cross-

attention as a backbone for modeling PDEs. Transformers, which operate on token

sequences, provide a natural solution for handling irregular meshes and point sets.

Li et al. (2023a) and Hao et al. (2023) introduced transformer architectures tailored

for operator learning. Hao et al. (2023) incorporated an attention mechanism and

employed a mixture of experts strategy to address multi-scale challenges. However,

their architecture relies on linear attention without reducing spatial dimensions,

resulting in linear complexity in sequence size, but quadratic in the hidden dimen-

sions, which can be prohibitive for deep networks and large networks. Similarly, Li

et al. (2023a) utilized cross-attention to embed both regular and irregular meshes

into a latent space and applied a recurrent network for time-marching in this latent

space. Nonetheless, like GNOT, their method operates point-wise on the latent

space. Transolver (Wu et al., 2024) decomposes a discrete input function into a

mixture of ”slices,” each corresponding to a prototype in a mixture model, with

attention operating in this latent space. This approach, akin to our model, reduces

complexity. However, it has not been designed for temporal problems. (Alkin et al.,

2024) recently proposed a versatile model capable of operating on Eulerian and

Lagrangian (particles) representations. They reduce input dimensionality by ag-

116
Chapter 7. Preserving Spatial Structure for Latent PDE Modeling with Local

Neural Fields

gregating information from input values onto ”supernodes” selected from the input

mesh via message passing while decoding is performed with a Perceiver-like architec-

ture. In contrast, AROMA performs implicit spatial encoding with cross-attention

to encode the geometry and aggregate obsevation values. Finally, their training in-

volves complex end-to-end optimization, whereas we favor two simple training steps

that are easier to implement.

7.6 Conclusion and Limitations

AROMA offers a novel and flexible neural operator approach for modeling the spatio-

temporal evolution of physical processes. It is able to deal with general geometries

and to forecast at any position of the spatial domain. It incorporates in an encode-

process-decode framework attention mechanisms, a latent diffusion transformer for

spatio-temporal dynamics and neural fields for decoding. Thanks to a very compact

spatial encoding, its complexity is lower than most SOTA models. Experiments

with small-size datasets demonstrate its effectiveness. Its reduced complexity holds

potential for effective scaling to larger datasets. As for the limitations, the perfor-

mance of AROMA are still to be demonstrated on larger and real world examples.

Moreover, like all dynamical models that operate over a latent space, the recon-

struction capabilities of the decoder is a bottleneck for the rollout accuracy. Since

the encoder and decoder are learning spatial relationships from scratch, conferring

the framework a high flexibility, the training efficiency does not match that of CNN-

based auto-encoders on regular grids. We therefore believe there could be further

improvements to be made to achieve a similar performance while keeping the same

level of flexibility. Finally, even though our model has some potential for uncertainty

modeling, this aspect has still to be further explored and analyzed.

Chapter 8

Zebra: In-Context and Generative

Pretraining for Solving Parametric

PDEs

Solving time-dependent parametric partial differential equations (PDEs) is challeng-

ing for data-driven methods, as these models must adapt to variations in parameters

such as coefficients, forcing terms, and initial conditions. State-of-the-art neural sur-

rogates perform adaptation through gradient-based optimization and meta-learning

to implicitly encode the variety of dynamics from observations. This often comes

with increased inference complexity. Inspired by the in-context learning capabilities

of large language models (LLMs), we introduce Zebra, a novel generative auto-

regressive transformer designed to solve parametric PDEs without requiring gra-

dient adaptation at inference. By leveraging in-context information during both

pre-training and inference, Zebra dynamically adapts to new tasks by conditioning

on input sequences that incorporate context example trajectories. As a genera-

tive model, Zebra can be used to generate new trajectories and allows quantifying

the uncertainty of the predictions. We evaluate Zebra across a variety of challeng-

ing PDE scenarios, demonstrating its adaptability, robustness, and superior perfor-

mance compared to existing approaches.

Serrano, L., Koupäı, A. K., Wang, T. X., Erbacher, P., Gallinari, P. (2024).

Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs.

arXiv preprint.

8.1 Introduction . 118

8.2 Problem setting . 121

8.2.1 Solving parametric PDEs . 121

117

118
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

8.2.2 Adaptation for parametric PDE 121

8.3 Zebra Framework . 122

8.3.1 Learning a finite vocabulary of physical phenomena 123

8.3.2 In-context modeling . 123

8.3.3 Next-token pretraining . 124

8.3.4 Flexible inference: prompting and sampling 124

8.4 Experiments . 125

8.4.1 Datasets details . 125

8.4.2 In-distribution generalization 126

8.4.3 Out-of-distribution generalization 128

8.4.4 Generative ability of the model 129

8.4.5 Accelerating inference . 131

8.5 Limitations . 132

8.6 Conclusion . 133

8.1 Introduction

A major challenge for training neural solvers for time dependent partial differen-

tial equations (PDEs) or more generally for modeling spatio-temporal dynamics is

to capture the variety of behaviors arising from complex physical phenomena. In

particular, neural solvers, trained from a limited number of situations often fail to

generalize to new physical contexts and situations (Chen et al., 2018; Raissi et al.,

2019; Li et al., 2021; Koupäı et al., 2024).

We address the parametric PDE problem (Cohen and Devore, 2015), where the

goal is to train models on a limited set of scenarios representing a given physical phe-

nomenon so that they can generalize across a wide range of new contexts, including

different PDE parameters. These parameters may encompass initial and boundary

conditions, physical coefficients, and forcing terms. In this work, we focus on purely

data-driven approaches that do not incorporate prior knowledge of the underlying

equations.

A basic approach to this problem is to sample from the distribution of physical

parameters, i.e., to train on different instances of a PDE characterized by varying

parameter values, with the goal of generalizing to unseen instances. This approach

relies on an i.i.d. assumption and requires a training set that adequately represents

the distribution of the underlying dynamical system—a condition that is often dif-

ficult to satisfy in practice due to the complexity of physical phenomena. Other

approaches explicitly condition on specific PDE parameters (Brandstetter et al.,

2022d; Takamoto et al., 2023), relying on the availability of such prior knowledge.

This assumes that a physical model of the observed system is known, making the

incorporation of PDE parameters into neural solvers challenging beyond physical

8.1. Introduction 119

quantities. Moreover, in many cases, this prior knowledge is incomplete or entirely

unknown.

An alternative approach involves adaptation to new PDE instances by leverag-

ing observations from novel environments. Here we consider that an environment is

characterized by a set of parameters. For data-driven models, adaptation is often

performed through fine tuning, which usually requires a significant amount of ex-

amples for the new environment. This is for example the setting adopted in many

recent development of foundation models (Subramanian et al., 2023; Herde et al.,

2024; McCabe et al., 2023). This involves training a large model on a variety of

physics-based numerical simulations, each requiring a large amount of simulations

with the expectation that it will generalize.

More principled frameworks for adaptation leverage meta-learning, where the

model is trained on simulations corresponding to different environments—i.e., vary-

ing PDE parameter values—so that it can quickly adapt to new and unseen PDE

simulation instances using a few trajectory examples (Park et al., 2023; Kirchmeyer

et al., 2022; Yin et al., 2022a). These flexible methods rely on gradient updates for

adaptation, adding computational overhead.

We explore a new direction for adaptation inspired by the successes of in-context

learning (ICL) in natural language processing (NLP) and its demonstrated ability

to generalize to downstream tasks without retraining (Brown et al., 2020; Touvron

et al., 2023). We propose a framework, denoted Zebra, relying on ICL for solving

parametric PDEs with new parameter values, without any additional update of the

model parameters.

As for ICL in NLP, the model is trained to generate appropriate responses given

context examples and a query. The context examples will be trajectories from the

same dynamics starting from different initial conditions. The query will consist for

example of a new initial state condition, that will serve as inference starting point for

the new forecast. The proposed model is inspired from NLP approaches: it is a causal

generative model that processes discrete token sequences encoding observations. It

is trained to model the trajectory distributions of parameteric PDEs. This approach

offers key advantages and greater flexibility compared to existing methods. It can

leverage contexts of different types and sizes, requires only a few context examples

to adapt to new dynamics, and allows us to cover a wide range of situations. It

provides enhanced capabilities compared to more classical deterministic forecasting

models. Notably, generative probabilistic models have been developed for physical

problems such as weather forecasting Price et al. (2025); Couairon et al. (2024a)

and even PDE solving Lippe et al. (2023), demonstrating superior performance and

capabilities over their deterministic counterparts. However, their setting is different,

as they rely on diffusion models and are neither designed for adaptation nor intended

to address the parametric PDE problem.

Some recent works have also explored adaptation through in-context learning for

120
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

dynamics modeling. The closest to ours is probably Yang et al. (2023), which also

targets adaptation to multiple environments of an underlying physical dynamics

through prompting with examples. Their model employs a specific deterministic

encoder-decoder architecture and is limited to 1D ODEs or sparse 2D data due to

scalability issues. More details and further references are provided in Appendix C.1.

On the technical side, Zebra introduces a novel generative autoregressive solver

for parametric PDEs. It employs an encode-generate-decode framework: first, a

vector-quantized variational auto-encoder (VQ-VAE) (Oord et al., 2017) is learned

to compress physical states into discrete tokens and to decode it back to the original

physical space. Next, a generative autoregressive transformer is pre-trained with

arbitrary size context examples of trajectories using a next token objective. At

inference, Zebra can handle varying context sizes for conditioning and supports un-

certainty quantification, enabling generalization to unseen PDE parameters without

gradient updates.

Our main contributions include:

• We introduce a generative autoregressive transformer for modeling physical

dynamics. It operates on compact discretized representations of physical state

observations. This framework represents the first successful application of

causal generative modeling using quantized representations of physical sys-

tems.

• To harness the in-context learning strengths of autoregressive transformers,

we develop a new pretraining strategy that conditions the model on example

trajectories with similar dynamics but different initial conditions.

• Our generative model predicts trajectory distributions. This provides a richer

information than deterministic auto-regressive models. This comes with en-

hanced capabilities including more accurate predictions, uncertainty measures,

or the ability to sample and generate new trajectories conditioned on some ex-

amples.

• Zebra scales better than gradient based adaptation approaches. Furthermore,

we propose an accelerated inference procedure that scales order of magnitude

faster than other adaptation methods.

• We evaluate Zebra against adaptation methods in a one-shot setting. The

model infers dynamics from a context trajectory that shares similar behavior

with the target but differs in initial conditions, representing a one-shot set-

ting. Zebra’s performance is benchmarked against domain-adaptation base-

lines specifically trained for such tasks.

8.2. Problem setting 121

8.2 Problem setting

8.2.1 Solving parametric PDEs

We aim to solve parametric time-dependent PDEs beyond the typical variation in

initial conditions. Our goal is to train models capable of generalizing across a wide

range of PDE parameters. To this end, we consider time-dependent PDEs with

different initial conditions, and with additional degrees of freedom, namely: (1)

coefficient parameters — such as fluid viscosity or advection speed — denoted by

vector µ ; (2) boundary conditions B, e.g. Neumann or Dirichlet; (3) forcing terms

δ, including damping parameter or sinusoidal forcing with different frequencies. We

denote ξ := {µ,B, δ} and we define Fξ as the set of PDE solutions corresponding to

the PDE parameters µ, boundary conditions B and forcing term δ, and refer to Fξ
as a PDE environment. Formally, a solution u(x, t) within Fξ satisfies:

∂u

∂t
= F

(
δ, µ, t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
,

∀x ∈ Ω,∀t ∈ (0, T]

B(u)(x, t) = 0, ∀x ∈ ∂Ω,∀t ∈ (0, T]

u(0, x) = u0, ∀x ∈ Ω

(8.1)

where F is a function of the solution u and its spatial derivatives on the domain

Ω, and also includes the forcing term δ ; B is the boundary condition constraint (e.g.,

spatial periodicity, Dirichlet, or Neumann) that must be satisfied at the boundary of

the domain ∂Ω; and u0 is the initial condition sampled with a probability measure

u0 ∼ p0(.).

8.2.2 Adaptation for parametric PDE

Solving time-dependent parametric PDEs requires developing neural solvers capable

of generalizing to a whole distribution of PDE parameters. In practice, changes in

the PDE parameters often lead to distribution shifts in the trajectories which makes

the problem challenging. Different directions are currently being explored and are

briefly reviewed below. We focus on pure data-driven approaches that do not make

use of any prior knowledge on the equations. We make the assumption that the

models are learned from numerical simulations so that it is possible to generate from

multiple parameters. This emulates real situations where for example, a physical

phenomenon is observed in different contexts.

Fine tuning pre-trained models The classical strategy for adapting to new

settings is to fine tune models that have been pretrained on a distribution of the PDE

parameters. This approach often relies on large fine tuning samples and involves

122
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

Tokenize Tokenize

<bot> ... <bot><bos>

Transformer

generated tokens

Auto-regressive
generation

DeTokenize

Time

Generated Trajectory for IC
Query Initial
Condition (IC)Example Trajectory 1 Example Trajectory 2

Tokenize

<eot>

Figure 8.1: Zebra’s inference pipeline from context trajectories. The model leverages
a set of example trajectories (u1 and u2), which share similar dynamics but have
different initial conditions, to generate a sequence that follows the same underlying
physical behavior but coming from a new initial condition (query) u0∗. The example
trajectories and the initial condition are first tokenized into index sequences s1, s2
and s0∗, which are then concatenated according to the sequence design used during
pretraining. The transformer autoregressively predicts the next tokens to complete
the sequence. Finally, the generated indices are detokenized to reconstruct the
solution in the physical space.

updating all or a subset of parameters (Subramanian et al., 2023; Herde et al.,

2024). We do not consider this option that has been shown to underperform SOTA

adaptation approaches Koupäı et al. (2024).

Gradient-based adaptation A more flexible approach relies on adaptation at

inference time through meta-learning. It posits that a set of environments e are

available from which trajectories are sampled, each environment e being defined by

specific PDE parameter values (Zintgraf et al., 2019a; Kirchmeyer et al., 2022). The

model is trained from a sampling from the environments distribution to adapt fast

to a new environment. The usual formulation is to learn shared and specific envi-

ronment parameters Gθ+θξ , where θ and θξ are respectively the shared and specific

parameters. At inference, for a new environment, only a small number of parameters

θξ is adapted from a small sample of observations. This family of method will be

our reference baseline in the following.

8.3 Zebra Framework

We introduce Zebra, a novel framework designed to solve parametric PDEs through

in-context learning and flexible conditioning. Zebra utilizes a generative autoregres-

sive transformer to model partial differential equations (PDEs) within a compact,

8.3. Zebra Framework 123

discrete latent space. A spatial CNN encoder is employed to map physical spatial

observations into these latent representations, while a CNN decoder accurately re-

constructs them. Our pretraining pipeline consists of two key stages: 1) Learning

a finite vocabulary of physical phenomena, and 2) Training the transformer using

an in-context pretraining strategy, enabling the model to effectively condition on

contextual information. At inference, Zebra allows to perform in-context learning

from context trajectories as illustrated in Figure 8.1.

8.3.1 Learning a finite vocabulary of physical phenomena

In order to leverage the auto-regressive transformer architecture and adopt a next-

token generative pretraining, we need to convert physical observations into discrete

representations. We do not quantize the observations directly but rather quantize

compressed latent representations by employing a VQVAE (Oord et al., 2017), an

encoder-decoder architecture with a quantizer component. Our encoder spatially

compresses the input function ut through a convolutional model Ew, which maps

the input to a continuous latent variable zt = Ew(ut). The latent variables are then

quantized to a vector of discrete codes ztq using a codebook Z of sizeK = |Z| through

the quantization component q. For each spatial code zt[ij] in ztq, the nearest codebook

entry zk is selected. The decoder Dψ reconstructs the signal ût from the quantized

latent codes ẑtq. Both models are jointly trained to minimize the reconstruction error

between the function ut and its reconstruction ût = Dψ ◦ q ◦ Ew(ut).

Once this training step is done, we can tokenize a trajectory ut:t+m∆t by applying

our encoder in parallel on each timestamp to obtain vectors of discrete codes zt:t+m∆t
q

and retrieve the corresponding index entries st:t+m∆t from the codebook Z. Similarly,

we detokenize discrete indices with the decoder. We provide a brief description of

the VQVAE model and details on its architecture in Appendix C.3.

8.3.2 In-context modeling

We design sequences that enable Zebra to perform in-context learning on trajectories

that share underlying dynamics with different initial states. To incorporate varying

amounts of contextual information, we draw a number n ∈ {1, nmax }, then sample

n trajectories sharing the same dynamics, each with m snapshots starting from time

t, denoted as (ut:t+m∆t
1 , . . . ,ut:t+m∆t

n). These trajectories are tokenized into index

representations (st:t+m∆t
1 , . . . , st:t+m∆t

n), which are flattened into sequences s1, . . . , sn,

maintaining the temporal order from left to right. In practice, we fix nmax = 6 and

m = 9.

Since our model operates on tokens from a codebook, we found it advantageous

to introduce special tokens to structure the sequences. The tokens <bot> (beginning

of trajectory) and <eot> (end of trajectory) define the boundaries of each trajec-

124
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

tory within the sequence. Furthermore, as we sample sequences with varying context

sizes, we maximize the utilization of the transformer’s context window by stacking

sequences that could also represent different dynamics. To signal that these se-

quences should not influence each other, we use the special tokens <bos> (beginning

of sequence) and <eos> (end of sequence). The final sequence design is:

S = <bot>[s1]<eot> . . . <bot>[sn]<eot>

And our pretraining dataset is structured as follows:

<bos>[S1]<eos> . . . <bos>[Sl]<eos>

8.3.3 Next-token pretraining

The transformer is trained using self-supervised learning on a next-token prediction

task with teacher forcing (Radford et al., 2018). Given a sequence S of discrete

tokens of length N , the model is optimized to minimize the negative log-likelihood

(cross-entropy loss):

LTransformer = −ES
N∑
i=1

log p(S[i]|S[i′<i]),

where the model learns to predict each token S[i] conditioned on all previous tokens

S[i′<i]. Due to the transformer’s causal structure, earlier tokens in the sequence are

not influenced by later ones, while later tokens benefit from more context, allowing

for more accurate predictions. This structure naturally supports both generation

in a one-shot and few-shot setting within a unified framework. Our transformer

implementation is based on the Llama architecture (Touvron et al. (2023)). Addi-

tional details can be found in Appendix C.3. Up to our knowledge, this is the first

adaptation of generative auto-regressive transformers to the modeling of physical

dynamics.

8.3.4 Flexible inference: prompting and sampling

In this section, we outline the inference pipeline for Zebra across various scenarios.

For simplicity, we assume that all observations have already been tokenized and

omit the detokenization process. Let s∗ represent the target token sequence to be

predicted.

• Prompting with n examples and an initial condition: The prompt is

structured as S = <bos><bot>[s0:m∆t
1] . . . [s0:m∆t

n]<eot><bot>[s0∗], allowing the

model to adapt based on the provided examples and initial condition.

8.4. Experiments 125

• Prompting with n examples and ℓ frames : This setup combines context

from multiple trajectories with the initial timestamps, structured as S =

<bos><bot>[s0:m∆t
1] . . . [s0:m∆t

n]<bot>[s0:ℓ∆t∗].

At inference, we adjust the temperature parameter τ of the classifier layer to

calibrate the level of diversity of the next-token distributions. The temperature τ

scales the logits yi before the softmax function :

p(S[i] = k|S[i′<i]) = softmax
(yk
τ

)
=

exp
(
yk
τ

)∑
j exp

(yj
τ

)
When τ > 1, the distribution becomes more uniform, encouraging exploration,

whereas τ < 1 sharpens the distribution, favoring more deterministic predictions.

During training, it is kept fixed at τ = 1.

8.4 Experiments

In this section, we experimentally validate that our framework enables one-shot

adaptation at inference. We follow the pretraining procedure outlined in Section 8.3

for each dataset described in Section 8.4.1 and evaluate Zebra across distinct scenar-

ios. We first assess its performance in the one-shot setting for in-distribution param-

eters, comparing it to adaptation-based baselines (Section 8.4.2). We then examine

its generalization in out-of-distribution settings in Section 8.4.3. Next we illustrate

and analyze the generative abilities of Zebra through two example tasks: uncertainty

quantification and new trajectory generation in Section 8.4.4, with further analysis

on this topic in Appendix C.4.2 and Appendix C.4.3. Finally, in Section 8.4.5, we

show how we can drastically accelerate the adaptation at inference compared to

gradient-based methods. Additional results can be found Appendix C.4.

8.4.1 Datasets details

As in Kirchmeyer et al. (2022), we generate data in batches, where each batch of

trajectories corresponds to a single environment and shares the same PDE parame-

ters while having different initial conditions. We consider various factors of variation

across multiple datasets. To assess the generalization ability of our model across a

wide range of scenarios, we use a significantly larger number of environments—far

exceeding those in previous studies and available simulation datasets (Yin et al.

(2022a), Kirchmeyer et al. (2022), Blanke and Lelarge (2023), Nzoyem et al. (2024)).

We conduct experiments across seven datasets: five 1D—Advection, Heat, Burgers,

Wave-b, Combined—and two 2D—Wave 2D, Vorticity. These datasets were selected

to encompass different physical phenomena and test generalization under changes

to various types of PDE parameters, as described below.

126
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

Table 8.1: One-shot adaptation. Conditioning from a similar trajectory. Test results
in relative L2 on the trajectory. ‘–‘ indicates inference has diverged.

Advection Heat Burgers Wave b Combined Wave 2D Vorticity 2D

CAPE 0.00941 0.223 0.213 0.978 0.00857 – –
CODA 0.00687 0.546 0.767 1.020 0.0120 0.777 0.678

[CLS] ViT 0.140 0.136 0.116 0.971 0.0446 0.271 0.972

ViT-in-context 0.0902 0.472 0.582 0.472 0.0885 0.390 0.173

Zebra 0.00794 0.154 0.115 0.245 0.00965 0.207 0.119

Varying PDE coefficients The changing factor is the set of coefficients µ in

Equation (1). For Burgers, Heat, and Vorticity 2D equations, the viscosity coefficient

ν varies across environments. For Advection, the advection speed β changes. In

Wave-c and Wave-2D, the wave’s celerity c is unique to each environment, and

the damping coefficient k varies across environments in Wave-2D. In the Combined

equation, three coefficients (α, β, γ) vary, each influencing different derivative terms

respectively: −∂u2

∂x
,+∂2u

∂x2
,−∂3u

∂x3
on the right-hand side of Equation (8.1).

Varying boundary conditions In this case, the varying parameter is the bound-

ary condition B from Equation (8.1). For Wave-b, we explore two types of boundary

conditions—Dirichlet and Neumann—applied independently to each boundary, re-

sulting in four distinct environments.

Varying forcing term The varying parameter is the forcing term δ in Equation

(1). In Burgers and Heat, the forcing terms vary by the amplitude, frequency, and

shift coefficients of δ(t, x) =
∑5

j=1Aj sin
(
ωjt+ 2π

ljx

L
+ ϕj

)
.

A detailed description of the datasets is provided in Appendix C.2, while Ta-

ble C.1 summarizes the number of environments used during training, the number

of trajectories sharing the same dynamics, and the varying PDE parameters across

environments. For testing, all methods are evaluated on trajectories with new initial

conditions in previously unseen environments. These unseen environments include

trajectories with both novel initial conditions and varying parameters, which remain

within the training distribution for in-distribution evaluation and extend beyond it

for out-of-distribution testing. For each testing, we use 120 unseen environments for

the 2D datasets and 12 for the 1D datasets, with each environment containing 10

trajectories.

8.4.2 In-distribution generalization

Setting We evaluate Zebra’s ability to perform in-context learning by leveraging

example trajectories that follow the same underlying dynamics as the target. For-

8.4. Experiments 127

mally, in the n-shot adaptation setting, we assume access to a set of n context

trajectories {u0:m∆t
1 , . . . ,u0:m∆t

n } at inference time, all of which belong to the same

dynamical system Fξ. The goal of the adaptation task is to accurately predict a fu-

ture trajectory u∆t:m∆t
∗ from a new initial condition u0

∗, knowing that the underlying

target dynamics is shared with the provided context example trajectories.

Sampling For Zebra, we use here a random sampling procedure at inference for

generating the next tokens for all datasets, setting a low temperature (τ = 0.1) to

prioritize accuracy over diversity. Predictions are generated using a single sample

under this configuration.

Baselines We evaluate Zebra against 4 baselines, CODA (Kirchmeyer et al., 2022)

and CAPE (Takamoto et al., 2023), two SOTA adaptation methods. We also com-

pare to two specifically designed ViT architectures: [CLS]ViT that performs adap-

tation by learning a [CLS] embedding and ViT-in-context designed for in-context

training. CODA is a meta-learning framework designed for learning parametric

PDEs. It leverages common knowledge from multiple environments where trajec-

tories from a same environment e share the same PDE parameter values. CODA

training performs adaptation in the parameter space by learning shared parameters

across all environments and a context vector ce specific to each environment. At

inference, CODA adapts to a new environment by tuning ce with several gradient

steps. CAPE was not designed to perform adaptation via extra-trajectories, but

instead needs the correct parameter values as input to condition a neural solver. We

adapt it to our setting, by learning a context ce instead of using the real parame-

ter values. During adaptation, we only tune this context ce via gradient updates.

[CLS]ViT is a specifically designed baseline based on a vision transformer (Peebles

and Xie, 2023), integrating a [CLS] token that serves as a learned parameter for

each environment. This token lets the model handle different dynamics, and during

inference, we adapt the [CLS] vector via gradient updates, following the same ap-

proach used in CODA and CAPE. ViT-in-context is a transformer with separate

temporal and spatial attention (Ho et al., 2019), where we stack context examples

and preceding target frames in the temporal axis to provide in-context examples.

Note that all these baselines are deterministic.

Metrics We evaluate the performance using the Relative L2 norm between the

predicted rollout trajectory ûtrajectory
∗ and the ground truth utrajectory

∗ : L2
test =

1
Ntest

∑
j∈test

||ûtrajectoryj −utrajectoryj ||2
||utrajectoryj ||2

.

Results As evidenced in Table 8.1, Zebra demonstrates strong overall perfor-

mance in the one-shot adaptation setting, often surpassing gradient-based adapta-

tion methods. For the more challenging datasets, such as Burgers, Wave-b, and

128
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

the 2D cases, Zebra consistently achieves lower relative L2 errors, highlighting its

capacity to model complex dynamics effectively. Notably, Zebra excels in 2D envi-

ronments, outperforming both CODA and [CLS]ViT and avoiding the divergence

issues encountered by CAPE. While Zebra performs comparably to CODA on sim-

pler datasets like Advection and Combined, its overall stability and versatility across

a range of scenarios, particularly in 2D settings, highlight its competitiveness. Over-

all, Zebra stands out as a reliable and scalable solution for adaptation for solving

parametric PDEs, demonstrating that in-context learning offers a robust alternative

to existing gradient-based adaptation methods. The experiments also demonstrate

a first benefit of the generative ability of Zebra. Deterministic models tend to pre-

dict conditional ”blurry” expectations so that errors accumulate during the auto-

regressive process (see Appendix C.4.1 for more details). Zebra on his side has been

trained to learn trajectory distributions, and is able to sample from this distribution

at inference, generating more precise trajectories, less prone to error accumulation.

8.4.3 Out-of-distribution generalization

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 8.2: One-shot prediction on Vorticity in the turbulent OoD regime ν ∈
[1e − 5, 1e − 4]. Top-row is the example given in context, mid-row is the ground
truth trajectory, and the bottom-row is the generation with Zebra.

Datasets We evaluate here our models on new PDE instances, focusing on the

following distribution shifts: (i) Heat : The forcing coefficients are varied from Ap-

pendix C.2.3, with parameters sampled as Aj ∈ [−1.0, 1.0], ωj ∈ [−0.8, 0.8] com-

pared to the training ranges [−0.5, 0.5] and [−0.4, 0.4]; (ii) Vorticity 2D : In the close

setting, we sample viscosity within [5× 10−4, 10−3], whereas during training, it was

sampled from [10−3, 10−2]. We also evaluate a far setting, shifting to a more tur-

bulent regime with viscosity sampled in [10−5, 10−4], see Figure 8.2; (iii) Wave 2D :

The wave celerity c is sampled from [500, 550] (compared to [100, 500] for training),

and the damping term k is sampled from [50, 60] (compared to [0, 50] for training).

Setting We evaluate all the models in a one-shot setting on trajectories with out-

of-distribution PDE parameters on new initial conditions, making this a particularly

8.4. Experiments 129

challenging test of generalization.

Results We report the scores in Table 8.2. Overall, all methods experience per-

formance degradation due to the distribution shift, with Zebra achieving the best

results in three out of four experiments, while CODA and CAPE perform the worst.

This poor performance for CAPE and CODA is expected on the 2D datasets, as they

already struggled to generalize within the training distribution. However, for the

Heat equation, errors for CAPE and CODA double, whereas Zebra maintains sim-

ilar accuracy, demonstrating greater robustness to distribution shifts. Comparing

Zebra and ViT-in-context to CAPE and CODA, it is remarkable that adapta-

tion through in-context learning appears to be a more effective alternative than

gradient-based adaptation for out-of-distribution generalization.

Out-of-distribution generalization remains a challenging task, particularly under

strong shifts. On the Vorticity dataset, Zebra adapts to large shifts in viscosity and

predicts the large-scale component of the dynamics. As shown in Figure 8.2, the

predictions are not as sharp as the ground truths, as the VQVAE was not explicitly

trained to capture the part of the spectrum present in turbulent trajectories.

Table 8.2: Out-of-distribution results. Test results in relative L2 on the trajectory.
‘–‘ indicates inference has diverged.

Heat Wave 2D Vorticity 2D
close far

CAPE 0.47 – – –
CODA 1.03 1.51 1.71 –

ViT-in-context 0.52 0.68 0.30 0.368

Zebra 0.15 0.68 0.24 0.317

8.4.4 Generative ability of the model

The evaluation in Section 8.4.2 already shows that as a generative model, Zebra is

less prone to error accumulation that deterministic auto-regressive models. We illus-

trate here additional benefits from the generative capabilities of Zebra through two

example tasks: uncertainty quantification and new trajectory generation. Further

analysis of the behavior of Zebra is provided in Appendix C.4.2 and Appendix C.4.3.

Uncertainty quantification Given a context example and an initial condition,

Zebra can generate multiple trajectories thanks to the sampling operation at the

classifier level. Statistics can then be derived from this sample of the trajectory dis-

tribution in order to assess for example the uncertainty associated to a prediction.

An illustration is provided in Figure 8.3, the red curve represents the ground truth,

130
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

the blue curve is the predicted mean and the blue shading indicates the empiri-

cal confidence interval (3 × standard deviation). Mean and standard deviation are

calculated pointwise. We provide a more detailed analysis in Appendix C.4.2. In

particular, it shows as expected that (i) uncertainty can be calibrated via the tem-

perature parameter τ (Figure C.13), and (ii) it decreases with additional context

(Table C.4).
0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0
Time 1

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure 8.3: Uncertainty quantification with Zebra in a one-shot setting on Heat
equation.

New trajectory generation As a second illustration, we assess Zebra’s ability

to generate relevant new trajectories conditioned on in-context examples alone, i.e.

without prompting with an initial state query. This is similar to conditional image

or text generation in LLMs. The generated trajectories are sampled conditioned

on a context trajectory from a new unseen environment. The key finding here is

that Zebra effectively generates faithful trajectory distributions that closely match

the real simulated trajectory distribution. Hence, given some examples from an un-

known environment, Zebra could be used to generate trajectories that comply with

the distribution in this environment. Qualitatively, Figure 8.4 illustrates how the

real (from a held out sample) and the generated distributions match at two different

8.4. Experiments 131

time steps (t = 0, t = 9): the PCA projection, indicates a strong alignment. Quanti-

tatively, Table 8.3 shows that the Wasserstein distance of the generated trajectories

is comparable to the Wasserstein distance between validation and test samples. As a

calibration measure, we also provide in Table 8.3 the Wasserstein distance between

the real distribution and a Gaussian distribution. Further details are provided in

Appendix C.4.3.

PCA Component 1

PC
A

Co
m

po
ne

nt
 2

PCA at time t=0
Generated Data
Real Data

t = 0.

PCA Component 1

PC
A

Co
m

po
ne

nt
 2

PCA at time t=9
Generated Data
Real Data

t = 9.

Figure 8.4: PCA Visualization of generated (blue) vs. real (orange) trajectories on
Combined Equation.

Table 8.3: Comparison of distributions using the Wasserstein distance between gen-
erated trajectories and real trajectories.

Distance Metric Advection Combined Equation

Gaussian noise vs. real data 18.22 16.15
Validation data vs. test data 5.11 1.87

Zebra-generated data vs. real data 5.57 2.21

8.4.5 Accelerating inference

Since Zebra requires no gradient steps at inference, it is already faster than gradient-

based adaptation (see Table 8.4). However, its autoregressive nature introduces

significant overhead at inference: generating trajectories token by token increases

solver calls by one to two orders of magnitude compared to direct surrogate modeling,

making inference costly. To address this, we propose a fast inference method that

accelerates inference by orders of magnitude relative to both the original model and

gradient-based adaptation (Table 8.4). Instead of token-wise autoregressive genera-

tion, we predict entire frames at once. This is achieved by replacing the token-wise

132
Chapter 8. Zebra: In-Context and Generative Pretraining for Solving Parametric

PDEs

autoregressive generation process with a frame-wise autoregressive surrogate, imple-

mented as a UNet. The UNet, conditioned on a context embedding output by the

transformer, takes frame ut as input and predicts ût+∆t. A crucial component is the

context embedding, which captures underlying dynamics from example trajectories.

This is learned by introducing a new token, [DYN], at the transformer’s input, anal-

ogous to [CLS] in BERT, allowing attention to encode context dynamics effectively.

The implementation is detailed in Appendix C.3 and in Figure C.3. Table 8.4 shows

that this reduces inference time by one to two orders of magnitude, making Zebra

highly efficient.

Table 8.4: Inference times for one-shot adaptation. Average time in seconds to
predict a single trajectory given a context trajectory and an initial condition. Times
include adaptation and forecast for CODA and CAPE, while for Zebra, they include
encoding, autoregressive prediction, and decoding.

Advection Vorticity 2D

CAPE 18s 23s
CODA 31s 28s

Zebra 3s 21s
Zebra + UNet 0.10s 0.14s

As shown in Table 8.5, this framework matches or outperforms pretrained Zebra

in most cases. The dynamics embedding captures meaningful context, enabling

efficient UNet training. In contrast, methods like CAPE and CODA must learn

both model weights and environment embeddings simultaneously, making training

less efficient.

Table 8.5: Zebra vs Zebra + UNet, for the in-distribution one-shot setting. Test
results in relative L2 error.

Advection Combined Wave 2D Vorticity 2D

Zebra 0.00794 0.00965 0.207 0.119
Zebra+UNet 0.0072 0.0138 0.150 0.0869

8.5 Limitations

The quality of the generated trajectories is limited by the decoder’s ability to recon-

struct details from the quantized latent space. While reconstructions are excellent

for many applications, scaling the codebook size (Yu et al., 2023a; Mentzer et al.,

2023) or exploring alternatives to vector quantization (Li et al., 2024b) could further

enhance reconstruction, provided in-context capability is preserved. Additionally,

8.6. Conclusion 133

replacing convolutional blocks with more flexible architectures, such as those in

Serrano et al. (2024b), could extend the model to irregularly sampled or complex

systems.

8.6 Conclusion

This study introduces Zebra, a novel generative model that adapts language model

pretraining techniques for solving parametric PDEs. We propose a pretraining strat-

egy that enables Zebra to develop in-context learning capabilities. Our experiments

demonstrate that the pretrained model performs competitively against specialized

baselines across various scenarios. Additionally, as a generative model, Zebra facil-

itates uncertainty quantification and can generate new trajectories, providing valu-

able flexibility in applications.

Part III

Conclusion

134

Chapter 9

Conclusion

We have now reached the final chapter of the core section of this thesis. In what

follows, I summarize the main contributions presented throughout this manuscript

and reflect on their limitations and the research directions they open for the future.

9.1 Synthesis

In this thesis, we have developed several novel frameworks for training surrogate

models from numerical simulations. Our work addresses key limitations of prior deep

learning approaches to solving partial differential equations, through the design of

four methods: CORAL, Infinity, AROMA, and Zebra. In particular, we introduced

new frameworks for learning meshless operators in the context of PDE modeling, and

proposed a novel approach to enable in-context adaptation, fostering generalization

to previously unseen dynamics.

9.1.1 Meshless operators

• Handling irregular domains : We proposed two distinct approaches for han-

dling irregular domains: CORAL and AROMA. Both can process obervations

on irregular grids and allow a continuous spatial representation of the PDE

solutions but differ in how they encode observations, process and decode fea-

tures. CORAL relies on autodecoding, which is elegant but computationally

intensive during both training and inference, it also struggles with complex

dynamics. In contrast, AROMA employs attention blocks at all stages, mak-

ing it more effective for challenging dynamics. Both methods generalize across

different discretization levels and adapt to various geometries.

• Encoding domain geometry : We explored two different strategies to encode

domain geometry. In Infinity, we explicitly encoded the signed distance func-

tion (SDF) into a latent representation, which was then used by a process

135

136 Chapter 9. Conclusion

network for geometry-aware inference. In AROMA, we adopted a different

approach: a set of tokens attends to the positions of all observations to encode

domain geometry. While the first approach requires preprocessing to extract

SDF features, the second can be applied directly to any new geometry.

• Temporal extrapolation: In CORAL and AROMA, the dynamics evolve in

a structured latent space with key properties. CORAL learns a compact

and smooth latent representation that facilitates temporal extrapolation.

AROMA, while less compact, maintains spatial structure, enabling more stable

long-term predictions. Additionally, in AROMA we demonstrated that using

a denoising objective for training improves stability and allows for longer tem-

poral extrapolation.

9.1.2 In-context adaptation for solving PDEs

• Adaptive solutions at inference: We introduced Zebra, a framework that en-

ables neural surrogates to dynamically adapt to variations in PDE coeffi-

cients, forcing terms, and boundary conditions, without requiring finetuning

or gradient-based adaptation. Zebra leverages in-context learning through au-

toregressive transformers, a paradigm originally developed for language mod-

eling. By reformulating PDE modeling as a sequence modeling task, Zebra

achieves strong generalization across a wide range of physical systems. In

particular, it outperforms existing meta-learning approaches for PDEs in the

setting of one-shot adaptation.

• Uncertainty quantification: Both AROMA and Zebra are generative models,

allowing for the sampling of probable trajectories conditioned on observations.

In AROMA, we showed that the standard deviation of predictions could serve

as a measure of uncertainty, providing information on the reliability of the

model. In Zebra, we further quantified the uncertainty through relative L2

loss, standard deviation analysis, and confidence intervals. This uncertainty

can be potentially calibrated via the temperature parameter and is sensitive

to the amount of contextual information provided.

9.2 Limitations

Our contributions, while meaningful for the field, also have limitations.

Neural Fields Autoencoder While AROMA and CORAL are designed to han-

dle irregular grids, they do not perform as efficiently on regular grids as classical

CNN autoencoders. This presents a challenge, as an ideal model should generalize

9.3. Perspectives 137

across diverse dynamics and geometries within a unified framework. This limita-

tion also suggests that there is room for improvement in the encoding and decoding

mechanisms of neural fields and transformers when applied to irregular grids.

Discrete Tokenization In Zebra, the tokenization process is discrete, enabling

the use of efficient autoregressive transformers originally designed for language mod-

eling. However, this approach has certain limitations. Continuous tokenizers are

generally known to yield better reconstruction performance than their discrete coun-

terparts. In the context of surrogate modeling, we conducted preliminary experi-

ments using a continuous VAE-based tokenizer, coupled with a transformer that

models distributions as a mixture of Gaussians on relatively simple datasets Serrano

et al. (2024a). This approach remains preliminary and requires further investigation.

9.3 Perspectives

Deep learning for physical simulation is still in its early stages, and given the com-

plexity of the tasks, many challenges remain. Building on the limitations discussed

above, I believe that addressing the following aspects could have a significant impact

on the field.

A More Efficient Autoencoder The approaches introduced with AROMA and

Zebra, both relying on different autoencoder architectures, open promising avenues

for PDE modeling. Developing an autoencoder that matches the efficiency of CNNs

on regular grids while simultaneously improving performance on irregular grids

would be a major breakthrough in the field. Such an architecture would enable

a universal model capable of encoding and decoding data from diverse numerical

simulations and potentially across different geometries. Furthermore, improving au-

toencoder architectures could also impact frameworks based on the encode-process-

decode paradigm.

Transformers with Continuous Tokens Developing adaptive methods like Ze-

bra that leverage continuous tokenization could enhance accuracy and mitigate the

limitations of discrete tokenization. Unlike images, physical signals often lack pre-

defined ranges, making discretization a potential bottleneck in surrogate modeling.

Addressing this challenge would require replacing Zebra’s discrete autoregressive

transformer with an alternative architecture that operates on continuous represen-

tations. A promising research direction is to explore the interplay between diffusion

models and autoregression, investigating how these generative paradigms can be

effectively combined to model continuous physical phenomena. This could lead to

more expressive and flexible representations, reducing the information loss intro-

duced by token quantization.

138 Chapter 9. Conclusion

Self-Supervised Learning for Physics Early work on foundation models for

physics (McCabe et al. (2023)) has primarily relied on temporal autoregressive pre-

training. These models are first trained on a given dataset and can be fine-tuned on

others, demonstrating improved generalization over training from scratch. Although

effective, this approach requires fine-tuning large models, which can be computa-

tionally expensive and limit scalability.

An alternative strategy would be to train a smaller model that leverages mean-

ingful features extracted from a foundation model, acting as a backbone for down-

stream tasks. In computer vision, this principle is exemplified by foundation models

such as DINO (Caron et al., 2021) and CLIP (Radford et al., 2021), which, unlike

large language models, do not generate data but rather extract high-level semantic

information from images. Applying a similar approach to physics could be particu-

larly useful for modeling physical dynamics, allowing models to capture underlying

physical parameters from trajectories or to infer the influence of boundary condi-

tions.

Determining whether such foundation models can be effectively obtained for

physics remains an open question. Although some preliminary works, such as Mi-

alon et al. (2023), have explored self-supervised learning in this domain, the di-

rection is still largely unexplored. Unlike vision models, which often rely on data

augmentations, this approach may be suboptimal for physics-based modeling, as

arbitrary transformations may not preserve the underlying physical structure. A

promising direction is to draw inspiration from the recent work of Darcet et al.

(2025), which eliminates the need for data augmentation altogether. This raises the

exciting possibility that similar self-supervised methodologies could be extended to

other modalities, potentially unlocking new avenues for self-supervised learning in

physics.

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-

flow: Large-scale machine learning on heterogeneous distributed systems. ArXiv,

abs/1603.04467, 2016. URL https://api.semanticscholar.org/CorpusID:

5707386.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv

preprint arXiv:2303.08774, 2023.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann

machines. Cognitive science, 9(1):147–169, 1985.

N. Agarwal, A. Ali, M. Bala, Y. Balaji, E. Barker, T. Cai, P. Chattopadhyay,

Y. Chen, Y. Cui, Y. Ding, et al. Cosmos world foundation model platform for

physical ai, 2025.

B. Alkin, A. Fürst, S. Schmid, L. Gruber, M. Holzleitner, and J. Brandstetter.

Universal Physics Transformers. In Advances in Neural Information Processing

Systems (NeurIPS), 2024. URL http://arxiv.org/abs/2402.12365.

K. R. Allen, T. Lopez-Guevara, K. Stachenfeld, A. Sanchez-Gonzalez, P. Battaglia,

J. Hamrick, and T. Pfaff. Physical design using differentiable learned simulators,

2 2022. URL http://arxiv.org/abs/2202.00728.

A. Arakawa. Computational design for long-term numerical integration of the

equations of fluid motion: Two-dimensional incompressible flow. part i. Jour-

nal of Computational Physics, 1(1):119–143, 1966. ISSN 0021-9991. doi: https:

//doi.org/10.1016/0021-9991(66)90015-5. URL https://www.sciencedirect.

com/science/article/pii/0021999166900155.

139

https://api.semanticscholar.org/CorpusID:5707386
https://api.semanticscholar.org/CorpusID:5707386
http://arxiv.org/abs/2402.12365
http://arxiv.org/abs/2202.00728
https://www.sciencedirect.com/science/article/pii/0021999166900155
https://www.sciencedirect.com/science/article/pii/0021999166900155

140 Bibliography

J. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. ArXiv, abs/1607.06450,

2016. URL https://api.semanticscholar.org/CorpusID:8236317.

A. Baevski, Y. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0: A framework for

self-supervised learning of speech representations. Advances in neural information

processing systems, 33:12449–12460, 2020.

D. Bahdanau. Neural machine translation by jointly learning to align and translate.

arXiv preprint arXiv:1409.0473, 2014.

G. A. Baker. Essentials of padé approximants, 1975. URL https://api.

semanticscholar.org/CorpusID:118128264.

F. Bartolucci, E. de Bézenac, B. Raonic, R. Molinaro, S. Mishra, and R. Alaifari.

Representation equivalent neural operators: a framework for alias-free operator

learning. Advances in Neural Information Processing Systems, 36, 2024.

M. Bauer, E. Dupont, A. Brock, D. Rosenbaum, J. Schwarz, and H. Kim. Spa-

tial functa: Scaling functa to imagenet classification and generation. CoRR,

abs/2302.03130, 2023.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence

prediction with recurrent neural networks. CoRR, abs/1506.03099, 2015. URL

http://arxiv.org/abs/1506.03099.

E. D. Bézenac, A. Pajot, and P. Gallinari. Deep learning for physical processes:

incorporating prior scientific knowledge. Journal of Statistical Mechanics: The-

ory and Experiment, 2019, 2017. URL https://api.semanticscholar.org/

CorpusID:2808403.

C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning,

volume 4. Springer, 2006.

M. Blanke and M. Lelarge. Interpretable meta-learning of physical systems. arXiv

preprint arXiv:2312.00477, 2023.

F. Bonnet, J. A. Mazari, P. Cinnella, and P. Gallinari. Airfrans : High fidelity

computational fluid dynamics dataset for approximating reynolds-averaged navier

– stokes solutions. In Neurips 2022, 2022.

L. L. Boudec, E. De Bézenac, L. Serrano, R. D. Regueiro-Espino, Y. Yin, and P. Gal-

linari. Learning a neural solver for parametric pde to enhance physics-informed

methods. In International Conference on Learning Representations, 2025.

https://api.semanticscholar.org/CorpusID:8236317
https://api.semanticscholar.org/CorpusID:118128264
https://api.semanticscholar.org/CorpusID:118128264
http://arxiv.org/abs/1506.03099
https://api.semanticscholar.org/CorpusID:2808403
https://api.semanticscholar.org/CorpusID:2808403

Bibliography 141

K. D. Brabanter, J. D. Brabanter, B. D. Moor, and I. Gijbels. Derivative estimation

with local polynomial fitting. J. Mach. Learn. Res., 14:281–301, 2013. URL

https://api.semanticscholar.org/CorpusID:19018224.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,

G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang.

JAX: composable transformations of Python+NumPy programs, 2018. URL

http://github.com/jax-ml/jax.

J. Brandstetter, R. van den Berg, M. Welling, and J. K. Gupta. Clifford neural

layers for pde modeling. In The Eleventh International Conference on Learning

Representations, 2022a.

J. Brandstetter, M. Welling, and D. E. Worrall. Lie point symmetry data aug-

mentation for neural pde solvers. ArXiv, abs/2202.07643, 2022b. URL https:

//api.semanticscholar.org/CorpusID:246863584.

J. Brandstetter, M. Welling, and D. E. Worrall. Lie point symmetry data augmen-

tation for neural pde solvers. In International Conference on Machine Learning,

pages 2241–2256. PMLR, 2022c.

J. Brandstetter, D. E. Worrall, and M. Welling. Message passing neural pde solvers.

International Conference on Learning Representations, 2022d.

M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning:

Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,

2021.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,

M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-

dlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot

learners, 2020.

S. L. Brunton and J. N. Kutz. Data-Driven Science and Engineering: Machine

Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.

K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown. Dedalus:

A flexible framework for numerical simulations with spectral methods. Physical

Review Research, 2, 2020. ISSN 26431564. doi: 10.1103/PhysRevResearch.2.

023068.

S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis. Physics-informed neural

networks (pinns) for fluid mechanics: a review. Acta Mechanica Sinica/Lixue

Xuebao, 37, 2021. ISSN 16143116. doi: 10.1007/s10409-021-01148-1.

https://api.semanticscholar.org/CorpusID:19018224
http://github.com/jax-ml/jax
https://api.semanticscholar.org/CorpusID:246863584
https://api.semanticscholar.org/CorpusID:246863584

142 Bibliography

Z. Cai, H. Zhu, Q. Shen, X. Wang, and X. Cao. Batch normalization alleviates the

spectral bias in coordinate networks. 2024 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 25160–25171, 2024. URL https:

//api.semanticscholar.org/CorpusID:272724642.

M. Cameron. Notes on burgers’ equation, 2016. URL https://www.math.umd.edu/

~mariakc/burgers.pdf. Accessed: [17/02/2025].

J. R. Cannon. The One-Dimensional Heat Equation. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1984.

Y. Cao, Y. Liu, L. Yang, R. Yu, H. Schaeffer, and S. Osher. Vicon: Vision in-

context operator networks for multi-physics fluid dynamics prediction, 11 2024.

URL http://arxiv.org/abs/2411.16063.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin.

Emerging properties in self-supervised vision transformers. In Proceedings of the

IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997. URL https:

//api.semanticscholar.org/CorpusID:45998148.

G. Catalani, S. Agarwal, X. Bertrand, F. Tost, M. Bauerheim, and J. Morlier.

Neural fields for rapid aircraft aerodynamics simulations. Scientific Reports, 14,

2024. URL https://api.semanticscholar.org/CorpusID:271533723.

S. Chae, J. Shin, S. Kwon, S. Lee, S. Kang, and D. Lee. Pm10 and pm2.5 real-time

prediction models using an interpolated convolutional neural network. Scientific

Reports, 11, 2021. ISSN 20452322. doi: 10.1038/s41598-021-91253-9.

N. Chalapathi, Y. Du, and A. Krishnapriyan. Scaling physics-informed hard con-

straints with mixture-of-experts. ArXiv, abs/2402.13412, 2024. URL https:

//api.semanticscholar.org/CorpusID:267770212.

H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman. Maskgit: Masked

generative image transformer. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 11315–11325, 2022.

M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative

pretraining from pixels. In International conference on machine learning, pages

1691–1703. PMLR, 2020a.

P. Y. Chen, J. Xiang, D. H. Cho, Y. Chang, G. A. Pershing, H. T. Maia, M. Chiara-

monte, K. Carlberg, and E. Grinspun. Crom: Continuous reduced-order modeling

of pdes using implicit neural representations. International Conference on Learn-

ing Representation, 6 2022. URL http://arxiv.org/abs/2206.02607.

https://api.semanticscholar.org/CorpusID:272724642
https://api.semanticscholar.org/CorpusID:272724642
https://www.math.umd.edu/~mariakc/burgers.pdf
https://www.math.umd.edu/~mariakc/burgers.pdf
http://arxiv.org/abs/2411.16063
https://api.semanticscholar.org/CorpusID:45998148
https://api.semanticscholar.org/CorpusID:45998148
https://api.semanticscholar.org/CorpusID:271533723
https://api.semanticscholar.org/CorpusID:267770212
https://api.semanticscholar.org/CorpusID:267770212
http://arxiv.org/abs/2206.02607

Bibliography 143

R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary

differential equations. Advances in neural information processing systems, 31,

2018.

R. T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/

torchdiffeq.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for con-

trastive learning of visual representations. In International conference on machine

learning, pages 1597–1607. PMLR, 2020b.

W. Chen, J. Song, P. Ren, S. Subramanian, D. Morozov, and M. W. Mahoney. Data-

efficient operator learning via unsupervised pretraining and in-context learning.

arXiv preprint arXiv:2402.15734, 2024.

Y. Chen and X. Wang. Transformers as meta-learners for implicit neural repre-

sentations. In European Conference on Computer Vision, 2022. URL https:

//api.semanticscholar.org/CorpusID:251320414.

Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling.

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2019-June, 2019. ISSN 10636919. doi: 10.1109/CVPR.2019.

00609.

Clay Mathematics Institute. The millennium prize problems, 2000. URL https:

//www.claymath.org/millennium-problems. Accessed: [17/02/2025].

D.-A. Clevert. Fast and accurate deep network learning by exponential linear units

(elus). arXiv preprint arXiv:1511.07289, 2015.

A. Cohen and R. Devore. Approximation of high-dimensional parametric pdes. Acta

Numerica, 2015.

F. Cole, Y. Lu, R. O’Neill, and T. Zhang. Provable in-context learning of linear sys-

tems and linear elliptic pdes with transformers. arXiv preprint arXiv:2409.12293,

2024.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20:273–297,

1995.

G. Couairon, R. Singh, A. Charantonis, C. Lessig, and C. Monteleoni. Archesweather

and archesweathergen: a deterministic and generative model for efficient ml

weather forecasting, 12 2024a. URL http://arxiv.org/abs/2412.12971.

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq
https://api.semanticscholar.org/CorpusID:251320414
https://api.semanticscholar.org/CorpusID:251320414
https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems
http://arxiv.org/abs/2412.12971

144 Bibliography

P. Couairon, M. Shukor, J.-E. Haugeard, M. Cord, and N. Thome. Diffcut:

Catalyzing zero-shot semantic segmentation with diffusion features and recur-

sive normalized cut. In Neural Information Processing Systems, 2024b. URL

https://api.semanticscholar.org/CorpusID:270258028.

R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of

mathematical physics. IBM Journal of Research and Development, 11(2):215–

234, 1967. doi: 10.1147/rd.112.0215.

K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference.

Proceedings of the National Academy of Sciences, 117:30055 – 30062, 2019. URL

https://api.semanticscholar.org/CorpusID:207871083.

R. M. Cummings, W. H. Mason, S. A. Morton, and D. R. McDaniel. Applied com-

putational aerodynamics: A modern engineering approach, volume 53. Cambridge

University Press, 2015.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Ad-

vances in neural information processing systems, 26, 2013.

D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei. Why can

gpt learn in-context? language models implicitly perform gradient descent as

meta-optimizers. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics, pages 4005–4019, 2023. ISBN 9781959429623. doi:

10.18653/v1/2023.findings-acl.247.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-

efficient exact attention with io-awareness. Advances in Neural Information Pro-

cessing Systems, 35:16344–16359, 2022.

T. Darcet, F. Baldassarre, M. Oquab, J. Mairal, and P. Bojanowski. Cluster and

predict latents patches for improved masked image modeling. arXiv preprint

arXiv:2502.08769, 2025.

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated

convolutional networks. In International conference on machine learning, pages

933–941. PMLR, 2017.

F. de Avila Belbute-Peres, T. D. Economon, and J. Z. Kolter. Combining dif-

ferentiable pde solvers and graph neural networks for fluid flow prediction.

In International Conference on Machine Learning, 2020. URL https://api.

semanticscholar.org/CorpusID:220424832.

T. De Ryck, F. Bonnet, S. Mishra, and E. de Bézenac. An operator precondition-

ing perspective on training in physics-informed machine learning. arXiv preprint

arXiv:2310.05801, 2023.

https://api.semanticscholar.org/CorpusID:270258028
https://api.semanticscholar.org/CorpusID:207871083
https://api.semanticscholar.org/CorpusID:220424832
https://api.semanticscholar.org/CorpusID:220424832

Bibliography 145

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the em - algorithm plus discussions on the paper. Journal of the Royal

Statistical Society. Series B (Methodological), 39(1):1–38, 1977. URL https:

//api.semanticscholar.org/CorpusID:4193919.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu, B. Chang,

X. Sun, L. Li, and Z. Sui. A survey on in-context learning. In Proceedings

of the 2024 Conference on Empirical Methods in Natural Language Process-

ing, pages 1107–1128, Miami, Florida, USA, Nov. 2024. Association for Com-

putational Linguistics. doi: 10.18653/v1/2024.emnlp-main.64. URL https:

//aclanthology.org/2024.emnlp-main.64/.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth

16x16 words: Transformers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby.

An image is worth 16x16 words: Transformers for image recognition at scale.

International Conference on Learning Representations., 10 2021. URL http:

//arxiv.org/abs/2010.11929.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,

A. Schelten, A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint

arXiv:2407.21783, 2024.

E. Dupont, H. Kim, S. M. A. Eslami, D. Rezende, and D. Rosenbaum. From

data to functa: Your data point is a function and you can treat it like one.

Proceedings of the 39 th International Conference on Machine Learning, 1 2022a.

URL http://arxiv.org/abs/2201.12204.

E. Dupont, H. Loya, M. Alizadeh, A. Goliński, Y. W. Teh, and A. Doucet. Coin++:

Neural compression across modalities. Transactions on Machine Learning Re-

search, 1 2022b. URL http://arxiv.org/abs/2201.12904.

https://api.semanticscholar.org/CorpusID:4193919
https://api.semanticscholar.org/CorpusID:4193919
https://aclanthology.org/2024.emnlp-main.64/
https://aclanthology.org/2024.emnlp-main.64/
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2201.12204
http://arxiv.org/abs/2201.12904

146 Bibliography

P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution

image synthesis, 2020.

P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution

image synthesis. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pages 12873–12883, 2021.

P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Muller, H. Saini, Y. Levi,

D. Lorenz, A. Sauer, F. Boesel, D. Podell, T. Dockhorn, Z. English, K. Lacey,

A. Goodwin, Y. Marek, and R. Rombach. Scaling rectified flow transform-

ers for high-resolution image synthesis. ArXiv, abs/2403.03206, 2024. URL

https://api.semanticscholar.org/CorpusID:268247980.

R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of

numerical analysis, 7:713–1018, 2000.

V. S. Fanaskov and I. V. Oseledets. Spectral neural operators. In Doklady Mathe-

matics, volume 108, pages S226–S232. Springer, 2023.

R. Fathony, A. K. Sahu, D. Willmott, and J. Z. Kolter. Multiplicative filter networks.

In International Conference on Learning Representations, 2021a.

R. Fathony, A. K. Sahu, D. Willmott, and J. Z. Kolter. Multiplicative filter networks.

International Conference on Learning Representations., 2021b.

J. Feldman. Solution of the heat equation by separation of variables,

2007. URL https://personal.math.ubc.ca/~feldman/m267/heatSln.pdf. Ac-

cessed: [17/02/2025].

J. H. Ferziger and M. Peric. Computational methods for fluid dynamics. Springer,

1996. URL https://api.semanticscholar.org/CorpusID:63211967.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geo-

metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,

2019.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation

of deep networks. In International conference on machine learning, pages 1126–

1135. PMLR, 2017.

S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell. Meta-

learning with warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable representation

learning for multivariate time series. ArXiv, abs/1901.10738, 2019. URL https:

//api.semanticscholar.org/CorpusID:59413908.

https://api.semanticscholar.org/CorpusID:268247980
https://personal.math.ubc.ca/~feldman/m267/heatSln.pdf
https://api.semanticscholar.org/CorpusID:63211967
https://api.semanticscholar.org/CorpusID:59413908
https://api.semanticscholar.org/CorpusID:59413908

Bibliography 147

J. Galewsky, R. K. Scott, and L. M. Polvani. An initial-value problem for test-

ing numerical models of the global shallow-water equations. Tellus, Series

A: Dynamic Meteorology and Oceanography, 56, 2004. ISSN 02806495. doi:

10.1111/j.1600-0870.2004.00071.x.

H. Gao and S. Ji. Graph u-nets. In international conference on machine learning,

pages 2083–2092. PMLR, 2019.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In International Conference on Artificial Intelligence and

Statistics, 2010. URL https://api.semanticscholar.org/CorpusID:5575601.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estima-

tion. Journal of the American Statistical Association, 102:359 – 378, 2007. URL

https://api.semanticscholar.org/CorpusID:1878582.

G. H. Golub and C. H. Reinsch. Singular value decomposition and least squares

solutions. Numerische Mathematik, 14:403–420, 1970. URL https://api.

semanticscholar.org/CorpusID:123532178.

I. Goodfellow. Deep learning, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural

information processing systems, 27, 2014.

C. Grossmann, H.-G. Roos, and M. Stynes. Numerical treatment of partial differen-

tial equations, volume 154. Springer, 2007.

G. Gupta, X. Xiao, and P. Bogdan. Multiwavelet-based operator learning for differ-

ential equations. Advances in neural information processing systems, 34:24048–

24062, 2021.

J. K. Gupta and J. Brandstetter. Towards multi-spatiotemporal-scale generalized

pde modeling. Transactions on Machine Learning (TMLR) 07/2023, 2022.

D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint arXiv:1609.09106,

2016.

J. Hagnberger, M. Kalimuthu, D. Musekamp, and M. Niepert. Vectorized Condi-

tional Neural Fields: A Framework for Solving Time-dependent Parametric Par-

tial Differential Equations. In Proceedings of the 41st International Conference

on Machine Learning (ICML 2024), 2024.

https://api.semanticscholar.org/CorpusID:5575601
https://api.semanticscholar.org/CorpusID:1878582
https://api.semanticscholar.org/CorpusID:123532178
https://api.semanticscholar.org/CorpusID:123532178

148 Bibliography

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems. Springer Series in Computational Mathematics,

2010. URL https://api.semanticscholar.org/CorpusID:117014104.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large

graphs. Advances in neural information processing systems, 30, 2017a.

W. L. Hamilton. Graph Representation Learning: Foundations, Methods, Appli-

cations and Systems. Morgan and Claypool, 2020. ISBN 9781450383325. doi:

10.1145/3447548.3470824.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on

large graphs. In Advances in Neural Information Processing Systems, volume

2017-December, 2017b.

Z. Hao, Z. Wang, H. Su, C. Ying, Y. Dong, S. Liu, Z. Cheng, J. Song, and J. Zhu.

Gnot: A general neural operator transformer for operator learning. In Interna-

tional Conference on Machine Learning, pages 12556–12569. PMLR, 2023.

Z. Hao, C. Su, S. Liu, J. Berner, C. Ying, H. Su, A. Anandkumar, J. Song, and

J. Zhu. Dpot: Auto-regressive denoising operator transformer for large-scale pde

pre-training. 41th International Conference on Machine Learning (ICML 2024),

2024.

A. Hassani, S. Walton, J. Li, S. Li, and H. Shi. Neighborhood attention transformer.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6185–6194, 2023.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of

statistical learning: data mining, inference, and prediction, volume 2. Springer,

2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 2015a. URL https://api.semanticscholar.org/CorpusID:

206594692.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. 2015 IEEE International

Conference on Computer Vision (ICCV), pages 1026–1034, 2015b. URL https:

//api.semanticscholar.org/CorpusID:13740328.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2016-December, 2016a. ISSN 10636919. doi: 10.1109/CVPR.

2016.90.

https://api.semanticscholar.org/CorpusID:117014104
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:13740328
https://api.semanticscholar.org/CorpusID:13740328

Bibliography 149

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016b.

K. He, X. Chen, S. Xie, Y. Li, P. Doll’ar, and R. B. Girshick. Masked autoencoders

are scalable vision learners. 2022 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 15979–15988, 2021. URL https://api.

semanticscholar.org/CorpusID:243985980.

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint

arXiv:1606.08415, 2016.

M. Herde, B. Raonić, T. Rohner, R. Käppeli, R. Molinaro, E. de Bézenac, and

S. Mishra. Poseidon: Efficient foundation models for pdes. In Advances in Neural

Information Processing Systems 38 (NeurIPS 2024), 2024.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. science, 313(5786):504–507, 2006.

G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural net-

work. ArXiv, abs/1503.02531, 2015. URL https://api.semanticscholar.org/

CorpusID:7200347.

J. Ho, N. Kalchbrenner, D. Weissenborn, and T. Salimans. Axial attention in mul-

tidimensional transformers. arXiv preprint arXiv:1912.12180, 2019.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances

in neural information processing systems, 33:6840–6851, 2020.

J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video

diffusion models. Advances in Neural Information Processing Systems, 35:8633–

8646, 2022.

S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning to learn using gradient

descent. In International Conference on Artificial Neural Networks, 2001. URL

https://api.semanticscholar.org/CorpusID:267810281.

E. Hopf. The partial differential equation ut + uux = µxx. Communica-

tions on Pure and Applied Mathematics, 3:201–230, 1950. URL https://api.

semanticscholar.org/CorpusID:121837938.

J. J. Hopfield. Neural networks and physical systems with emergent collective com-

putational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–

2558, 1982. doi: 10.1073/pnas.79.8.2554. URL https://www.pnas.org/doi/abs/

10.1073/pnas.79.8.2554.

https://api.semanticscholar.org/CorpusID:243985980
https://api.semanticscholar.org/CorpusID:243985980
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:267810281
https://api.semanticscholar.org/CorpusID:121837938
https://api.semanticscholar.org/CorpusID:121837938
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554

150 Bibliography

H. Hotelling. Analysis of a complex of statistical variables into principal com-

ponents. Journal of Educational Psychology, 24:498–520, 1933. URL https:

//api.semanticscholar.org/CorpusID:144828484.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and

W. Chen. Lora: Low-rank adaptation of large language models. arXiv preprint

arXiv:2106.09685, 2021.

A. Ibrahim, de Bézenac Emmanueland Pajot Arthur, and G. Patrick. Modelling

spatiotemporal dynamics from Earth observation data with neural differential

equations. Machine Learning, 111(6):2349–2380, 2022. ISSN 15730565. URL

https://doi.org/10.1007/s10994-022-06139-2.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. ArXiv, abs/1502.03167, 2015. URL https:

//api.semanticscholar.org/CorpusID:5808102.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and gen-

eralization in neural networks. Advances in neural information processing systems,

31, 2018.

L. Jiaqi, J. Cui, J. Yang, and B. Yang. Stochastic neural simulator for generalizing

dynamical systems across environments, 08 2024.

C. Johnson. Finite element methods for flow problems, 1992. URL https://api.

semanticscholar.org/CorpusID:118090226.

J. M. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,

K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland, C. Meyer,

S. A. A. Kohl, A. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain,

J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steineg-

ger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W.

Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate pro-

tein structure prediction with alphafold. Nature, 596:583 – 589, 2021. URL

https://api.semanticscholar.org/CorpusID:235959867.

T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila.

Alias-free generative adversarial networks. Advances in neural information pro-

cessing systems, 34:852–863, 2021.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast

autoregressive transformers with linear attention. In International conference on

machine learning, pages 5156–5165. PMLR, 2020.

https://api.semanticscholar.org/CorpusID:144828484
https://api.semanticscholar.org/CorpusID:144828484
https://doi.org/10.1007/s10994-022-06139-2
https://api.semanticscholar.org/CorpusID:5808102
https://api.semanticscholar.org/CorpusID:5808102
https://api.semanticscholar.org/CorpusID:118090226
https://api.semanticscholar.org/CorpusID:118090226
https://api.semanticscholar.org/CorpusID:235959867

Bibliography 151

B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis. 3d gaussian splatting for

real-time radiance field rendering. ACM Transactions on Graphics (TOG), 42:1

– 14, 2023. URL https://api.semanticscholar.org/CorpusID:259267917.

G. Kerschen, J.-C. Golinval, A. F. Vakakis, and L. A. Bergman. The method of

proper orthogonal decomposition for dynamical characterization and order reduc-

tion of mechanical systems: An overview. Nonlinear Dynamics, 41:147–169, 2005.

URL https://api.semanticscholar.org/CorpusID:17625377.

P. Kidger. On Neural Differential Equations. PhD thesis, University of Oxford,

2021.

D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

M. Kirchmeyer, Y. Yin, J. Donà, N. Baskiotis, A. Rakotomamonjy, and P. Gallinari.

Generalizing to new physical systems via context-informed dynamics model. In

International Conference on Machine Learning, pages 11283–11301. PMLR, 2022.

D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Machine

learning–accelerated computational fluid dynamics. Proceedings of the National

Academy of Sciences, 118(21):e2101784118, 2021.

D. Kochkov, J. Yuval, I. Langmore, P. C. Norgaard, J. A. Smith, G. Mooers,

M. Klöwer, J. Lottes, S. Rasp, P. D. Düben, S. Hatfield, P. W. Battaglia,

A. Sanchez-Gonzalez, M. Willson, M. P. Brenner, and S. Hoyer. Neural gen-

eral circulation models for weather and climate. Nature, 632:1060 – 1066, 2023.

URL https://api.semanticscholar.org/CorpusID:265150435.

D. Kondratyuk, L. Yu, X. Gu, J. Lezama, J. Huang, R. Hornung, H. Adam,

H. Akbari, Y. Alon, V. Birodkar, Y. Cheng, M.-C. Chiu, J. Dillon, I. Essa,

A. Gupta, M. Hahn, A. Hauth, D. Hendon, A. Martinez, D. C. Minnen, D. A.

Ross, G. Schindler, M. Sirotenko, K. Sohn, K. Somandepalli, H. Wang, J. Yan,

M. Yang, X. Yang, B. Seybold, and L. Jiang. Videopoet: A large language

model for zero-shot video generation. ArXiv, abs/2312.14125, 2023. URL

https://api.semanticscholar.org/CorpusID:266435847.

A. K. Koupäı, J. M. Benet, Y. Yin, J.-N. Vittaut, and P. Gallinari. Geps: Boosting

generalization in parametric pde neural solvers through adaptive conditioning.

arXiv preprint arXiv:2410.23889, 2024.

https://api.semanticscholar.org/CorpusID:259267917
https://api.semanticscholar.org/CorpusID:17625377
https://api.semanticscholar.org/CorpusID:265150435
https://api.semanticscholar.org/CorpusID:266435847

152 Bibliography

N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Journal of machine learning research. arxiv, 8 2021. URL

http://arxiv.org/abs/2108.08481.

A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. Charac-

terizing possible failure modes in physics-informed neural networks. Advances in

neural information processing systems, 34:26548–26560, 2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems,

25, 2012.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60, 2017. ISSN

15577317. doi: 10.1145/3065386.

Y. Kuramoto. Diffusion-induced chaos in reaction systems. Progress of Theoretical

Physics Supplement, 64:346–367, 1978. URL https://api.semanticscholar.

org/CorpusID:122049161.

W. Kutta. Beitrag zur naherungsweisen integration totaler differentialgleichungen,

1901. URL https://api.semanticscholar.org/CorpusID:237071170.

E. Le Naour, G. Agoua, N. Baskiotis, and V. Guigue. Interpretable time series

neural representation for classification purposes. In 2023 IEEE 10th International

Conference on Data Science and Advanced Analytics (DSAA), pages 1–10, 2023.

doi: 10.1109/DSAA60987.2023.10302534.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

computation, 1(4):541–551, 1989.

D. Lee, C. Kim, M. Cho, and W.-S. Han. Locality-aware generalizable implicit

neural representation. Advances in Neural Information Processing Systems, 2023.

K. Leung. Neural network architecture diagrams. https://github.com/

kennethleungty/Neural-Network-Architecture-Diagrams, 2020. Accessed:

2025-03-26.

T. Li, Y. Tian, H. Li, M. Deng, and K. He. Autoregressive image genera-

tion without vector quantization. ArXiv, abs/2406.11838, 2024a. URL https:

//api.semanticscholar.org/CorpusID:270560593.

T. Li, Y. Tian, H. Li, M. Deng, and K. He. Autoregressive image generation without

vector quantization. arXiv preprint arXiv:2406.11838, 2024b.

http://arxiv.org/abs/2108.08481
https://api.semanticscholar.org/CorpusID:122049161
https://api.semanticscholar.org/CorpusID:122049161
https://api.semanticscholar.org/CorpusID:237071170
https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
https://api.semanticscholar.org/CorpusID:270560593
https://api.semanticscholar.org/CorpusID:270560593

Bibliography 153

Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to learn quickly for few shot

learning. ArXiv, abs/1707.09835, 2017a. URL https://api.semanticscholar.

org/CorpusID:25316837.

Z. Li, F. Zhou, F. Chen, H. Li, T. Liu, and T.-S. Chen. Meta-sgd: Learning to learn

quickly for few-shot learning. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pages 2111–2120. JMLR. org, 2017b.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Fourier neural operator for parametric partial differential equa-

tions. arXiv preprint arXiv:2010.08895, 2020a.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Neural operator: Graph kernel network for partial differential

equations. arXiv preprint arXiv:2003.03485, 2020b.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Fourier neural operator for parametric partial differential equa-

tions. International Conference on Learning Representations., 10 2021. URL

http://arxiv.org/abs/2010.08895.

Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar. Fourier Neural Operator with

Learned Deformations for PDEs on General Geometries. In arXiv:2207.05209v1,

2022a.

Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and

A. Anandkumar. Physics-informed neural operator for learning partial differential

equations. 39th International Conference on Machine Learning (ICML2022), 11

2022b. URL http://arxiv.org/abs/2111.03794.

Z. Li, K. Meidani, and A. B. Farimani. Transformer for partial differential equations’

operator learning. Transactions on Machine Learning Research (April/2023),

2023a.

Z.-Y. Li, N. B. Kovachki, C. Choy, B. Li, J. Kossaifi, S. P. Otta, M. A. Nabian,

M. Stadler, C. Hundt, K. Azizzadenesheli, and A. Anandkumar. Geometry-

informed neural operator for large-scale 3d pdes. ArXiv, abs/2309.00583, 2023b.

URL https://api.semanticscholar.org/CorpusID:261494027.

D. B. Lindell, D. V. Veen, J. J. Park, and G. Wetzstein. Bacon: Band-limited

coordinate networks for multiscale scene representation. Conference on Computer

Vision and Pattern Recognition, 12 2022. URL http://arxiv.org/abs/2112.

04645.

https://api.semanticscholar.org/CorpusID:25316837
https://api.semanticscholar.org/CorpusID:25316837
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2111.03794
https://api.semanticscholar.org/CorpusID:261494027
http://arxiv.org/abs/2112.04645
http://arxiv.org/abs/2112.04645

154 Bibliography

Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow match-

ing for generative modeling. ArXiv, abs/2210.02747, 2022. URL https://api.

semanticscholar.org/CorpusID:252734897.

P. Lippe, B. S. Veeling, P. Perdikaris, R. E. Turner, and J. Brandstetter. Pde-

refiner: Achieving accurate long rollouts with neural pde solvers. arXiv preprint

arXiv:2308.05732, 2023.

H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel. Few-

shot parameter-efficient fine-tuning is better and cheaper than in-context learning.

Advances in Neural Information Processing Systems, 35:1950–1965, 2022a.

X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and

transfer data with rectified flow. ArXiv, abs/2209.03003, 2022b. URL https:

//api.semanticscholar.org/CorpusID:252111177.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin trans-

former: Hierarchical vision transformer using shifted windows. 2021 IEEE/CVF

International Conference on Computer Vision (ICCV), pages 9992–10002, 2021.

URL https://api.semanticscholar.org/CorpusID:232352874.

Z. Long, Y. Lu, X. Ma, and B. Dong. Pde-net: Learning pdes from data. In 35th

International Conference on Machine Learning, ICML 2018, volume 7, 2018.

E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sci-

ences, 20:130–141, 1963. URL https://api.semanticscholar.org/CorpusID:

15359559.

A. J. Lotka. Elements of physical biology. Nature, 116:461–461, 1925. URL https:

//api.semanticscholar.org/CorpusID:4103581.

L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear opera-

tors for identifying differential equations based on the universal approximation

theorem of operators. Nat Mach Intell, 3:218–229, 10 2021a. doi: 10.1038/

s42256-021-00302-5. URL http://arxiv.org/abs/1910.03193http://dx.doi.

org/10.1038/s42256-021-00302-5.

L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson. Physics-

informed neural networks with hard constraints for inverse design. SIAM Journal

on Scientific Computing, 43(6):B1105–B1132, 2021b.

L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E. Karniadakis.

A comprehensive and fair comparison of two neural operators (with practical

extensions) based on FAIR data, volume 393. Elsevier B.V., 4 2022. doi:

10.1016/j.cma.2022.114778.

https://api.semanticscholar.org/CorpusID:252734897
https://api.semanticscholar.org/CorpusID:252734897
https://api.semanticscholar.org/CorpusID:252111177
https://api.semanticscholar.org/CorpusID:252111177
https://api.semanticscholar.org/CorpusID:232352874
https://api.semanticscholar.org/CorpusID:15359559
https://api.semanticscholar.org/CorpusID:15359559
https://api.semanticscholar.org/CorpusID:4103581
https://api.semanticscholar.org/CorpusID:4103581
http://arxiv.org/abs/1910.03193 http://dx.doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/1910.03193 http://dx.doi.org/10.1038/s42256-021-00302-5

Bibliography 155

Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. Fantastically ordered

prompts and where to find them: Overcoming few-shot prompt order sensitiv-

ity. ArXiv, abs/2104.08786, 2021c. URL https://api.semanticscholar.org/

CorpusID:233296494.

L. D. Luigi, A. Cardace, R. Spezialetti, P. Z. Ramirez, S. Salti, and L. di Ste-

fano. Deep learning on implicit neural representations of shapes. ArXiv,

abs/2302.05438, 2023. URL https://api.semanticscholar.org/CorpusID:

256808600.

A. L. Maas. Rectifier nonlinearities improve neural network acoustic models. In

International Conference on Ma- chine Learning, 2013. URL https://api.

semanticscholar.org/CorpusID:16489696.

J. MacQueen. Some methods for classification and analysis of multivariate ob-

servations. In Fifth Berkeley Symposium on Mathematical Statistics and Prob-

ability, Volume 1: Statistics, 1967. URL https://api.semanticscholar.org/

CorpusID:6278891.

P. Marion, Y.-H. Wu, M. E. Sander, and G. Biau. Implicit regularization of deep

residual networks towards neural odes. ArXiv, abs/2309.01213, 2023. URL https:

//api.semanticscholar.org/CorpusID:261530353.

M. McCabe, B. R.-S. Blancard, L. H. Parker, R. Ohana, M. Cranmer, A. Bietti,

M. Eickenberg, S. Golkar, G. Krawezik, F. Lanusse, et al. Multiple physics pre-

training for physical surrogate models. arXiv preprint arXiv:2310.02994, 2023.

F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen. Finite scalar quantization:

Vq-vae made simple. International Conference on Learning Representations, 2023.

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy

networks: Learning 3d reconstruction in function space. Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2019-

June, 2019. ISSN 10636919. doi: 10.1109/CVPR.2019.00459.

G. Mialon, Q. Garrido, H. Lawrence, D. Rehman, Y. LeCun, and B. T. Kiani. Self-

supervised learning with lie symmetries for partial differential equations. ArXiv,

abs/2307.05432, 2023. URL https://api.semanticscholar.org/CorpusID:

259766697.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and

R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.

Communications of the ACM, 65(1):99–106, 2021.

https://api.semanticscholar.org/CorpusID:233296494
https://api.semanticscholar.org/CorpusID:233296494
https://api.semanticscholar.org/CorpusID:256808600
https://api.semanticscholar.org/CorpusID:256808600
https://api.semanticscholar.org/CorpusID:16489696
https://api.semanticscholar.org/CorpusID:16489696
https://api.semanticscholar.org/CorpusID:6278891
https://api.semanticscholar.org/CorpusID:6278891
https://api.semanticscholar.org/CorpusID:261530353
https://api.semanticscholar.org/CorpusID:261530353
https://api.semanticscholar.org/CorpusID:259766697
https://api.semanticscholar.org/CorpusID:259766697

156 Bibliography

S. Min, M. Lewis, L. Zettlemoyer, and H. Hajishirzi. Metaicl: Learning to learn in

context. arXiv preprint arXiv:2110.15943, 2021.

S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettle-

moyer. Rethinking the role of demonstrations: What makes in-context learning

work? ArXiv, abs/2202.12837, 2022. URL https://api.semanticscholar.org/

CorpusID:247155069.

R. M. Miura, C. S. Gardner, and M. D. Kruskal. Korteweg-de vries equation and gen-

eralizations. ii. existence of conservation laws and constants of motion. Journal of

Mathematical Physics, 9:1204–1209, 1968. URL https://api.semanticscholar.

org/CorpusID:121335529.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller. Playing atari with deep reinforcement learning, 12 2013.

A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov. Embedding hard physical

constraints in neural network coarse-graining of 3d turbulence. arXiv preprint

arXiv:2002.00021, 2020.

K. W. Morton and D. F. Mayers. Numerical solution of partial differential equations:

An introduction, 2005.

M. Mosbach, T. Pimentel, S. Ravfogel, D. Klakow, and Y. Elazar. Few-shot fine-

tuning vs. in-context learning: A fair comparison and evaluation. arXiv preprint

arXiv:2305.16938, 2023.

A. Muench. Partial differential equations (michaelmas term), 2023. URL https://

courses.maths.ox.ac.uk/course/view.php?id=4986. Accessed: [17/02/2025].

T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives

with a multiresolution hash encoding. ACM Transactions on Graphics (TOG), 41:

1 – 15, 2022. URL https://api.semanticscholar.org/CorpusID:246016186.

T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives

with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–

15, jul 2022. doi: 10.1145/3528223.3530127. URL https://doi.org/10.1145%

2F3528223.3530127.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 807–814, 2010.

G. Negiar, M. W. Mahoney, and A. S. Krishnapriyan. Learning differentiable solvers

for systems with hard constraints. ArXiv, abs/2207.08675, 2022. URL https:

//api.semanticscholar.org/CorpusID:250627507.

https://api.semanticscholar.org/CorpusID:247155069
https://api.semanticscholar.org/CorpusID:247155069
https://api.semanticscholar.org/CorpusID:121335529
https://api.semanticscholar.org/CorpusID:121335529
https://courses.maths.ox.ac.uk/course/view.php?id=4986
https://courses.maths.ox.ac.uk/course/view.php?id=4986
https://api.semanticscholar.org/CorpusID:246016186
https://doi.org/10.1145%2F3528223.3530127
https://doi.org/10.1145%2F3528223.3530127
https://api.semanticscholar.org/CorpusID:250627507
https://api.semanticscholar.org/CorpusID:250627507

Bibliography 157

A. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. Proceed-

ings of the twenty-first international conference on Machine learning, 2004. URL

https://api.semanticscholar.org/CorpusID:11258400.

A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms,

2018.

R. D. Nzoyem, D. A. Barton, and T. Deakin. Neural context flows for meta-learning

of dynamical systems. arXiv preprint arXiv:2405.02154, 2024.

O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowliswharan. Cfdnet: A

deep learning-based accelerator for fluid simulations. In Proceedings of the 34th

ACM international conference on supercomputing, pages 1–12, 2020.

R. Ohana, M. McCabe, L. T. Meyer, R. Morel, F. J. Agocs, M. Beneitez, M. Berger,

B. Burkhart, S. B. Dalziel, D. B. Fielding, D. Fortunato, J. A. Goldberg, K. Hi-

rashima, Y.-F. Jiang, R. Kerswell, S. Maddu, J. M. Miller, P. Mukhopadhyay,

S. S. Nixon, J. Shen, R. Watteaux, B. R.-S. Blancard, F. Rozet, L. H. Parker,

M. Cranmer, and S. Ho. The well: a large-scale collection of diverse physics

simulations for machine learning. In The Thirty-eight Conference on Neural

Information Processing Systems Datasets and Benchmarks Track, 2024. URL

https://openreview.net/forum?id=00Sx577BT3.

T. OLMo, P. Walsh, L. Soldaini, D. Groeneveld, K. Lo, S. Arora, A. Bhagia, Y. Gu,

S. Huang, M. Jordan, et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656,

2024.

P. J. Olver. Introduction to partial differential equations, 2007. URL https://api.

semanticscholar.org/CorpusID:52096086.

P. J. Olver. Introduction to partial differential equations. Undergraduate Texts in

Mathematics. Springer Cham, 2014.

A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation

learning. arXiv preprint arXiv:1711.00937, 2017.

OpenAI. Sora: Creating video from text, 2024. URL https://openai.com/sora.

Accessed: 2024-01-16.

J. Pan, T. Gao, H. Chen, and D. Chen. What in-context learning ”learns” in-

context: Disentangling task recognition and task learning. In Annual Meeting

of the Association for Computational Linguistics, 2023. URL https://api.

semanticscholar.org/CorpusID:258740972.

https://api.semanticscholar.org/CorpusID:11258400
https://openreview.net/forum?id=00Sx577BT3
https://api.semanticscholar.org/CorpusID:52096086
https://api.semanticscholar.org/CorpusID:52096086
https://openai.com/sora
https://api.semanticscholar.org/CorpusID:258740972
https://api.semanticscholar.org/CorpusID:258740972

158 Bibliography

J. Park, F. Berto, A. Jamgochian, M. Kochenderfer, and J. Park. First-order

context-based adaptation for generalizing to new dynamical systems, 2023. URL

https://openreview.net/forum?id=AW0i0lOhzqJ.

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learn-

ing continuous signed distance functions for shape representation. Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, 2019-June, 2019a. ISSN 10636919. doi: 10.1109/CVPR.2019.00025.

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learn-

ing continuous signed distance functions for shape representation. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pages

165–174, 2019b.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Rai-

son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala.

Pytorch: An imperative style, high-performance deep learning library. ArXiv,

abs/1912.01703, 2019a. URL https://api.semanticscholar.org/CorpusID:

202786778.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala. Pytorch: An imperative style, high-performance deep learning

library. In Advances in Neural Information Processing Systems 32, pages 8024–

8035. Curran Associates, Inc., 2019b. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mar-

dani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, et al. Fourcastnet: A global

data-driven high-resolution weather model using adaptive fourier neural opera-

tors. arXiv preprint arXiv:2202.11214, 2022.

G. Peano. Démonstration de l’intégrabilité des équations différentielles or-

dinaires. Mathematische Annalen, 37:182–228, 1890. URL https://api.

semanticscholar.org/CorpusID:120698124.

W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pages 4195–4205,

2023.

https://openreview.net/forum?id=AW0i0lOhzqJ
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:202786778
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://api.semanticscholar.org/CorpusID:120698124
https://api.semanticscholar.org/CorpusID:120698124

Bibliography 159

E. Perez, F. Strub, H. D. Vries, V. Dumoulin, and A. Courville. Film: Visual

reasoning with a general conditioning layer. 32nd AAAI Conference on Artificial

Intelligence, AAAI 2018, 2018a. ISSN 2159-5399. doi: 10.1609/aaai.v32i1.11671.

E. Perez, F. Strub, H. D. Vries, V. Dumoulin, and A. Courville. Film: Visual

reasoning with a general conditioning layer. 32nd AAAI Conference on Artificial

Intelligence, AAAI 2018, 2018b. ISSN 2159-5399. doi: 10.1609/aaai.v32i1.11671.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-

based simulation with graph networks. International Conference on Learning

Representations., 10 2021. URL http://arxiv.org/abs/2010.03409.

B. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.

Siam Journal on Control and Optimization, 30:838–855, 1992. URL https://

api.semanticscholar.org/CorpusID:3548228.

A. D. Polyanin. Handbook of linear partial differential equations for engi-

neers and scientists, 2001. URL https://api.semanticscholar.org/CorpusID:

203122873.

I. Price, A. Sanchez-Gonzalez, F. Alet, et al. Probabilistic weather forecasting with

machine learning. Nature, 637:84–90, 2025. doi: 10.1038/s41586-024-08252-9.

URL https://doi.org/10.1038/s41586-024-08252-9.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets

for 3d classification and segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 652–660, 2017.

A. M. Quarteroni and A. Valli. Numerical Approximation of Partial Differential

Equations. Springer Series in Computational Mathematics, 2008. URL https:

//api.semanticscholar.org/CorpusID:120584359.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language

understanding by generative pre-training, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and

I. Sutskever. Language models are unsupervised multitask learn-

ers, 2019. URL https://www.semanticscholar.org/paper/

Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/

9405cc0d6169988371b2755e573cc28650d14dfe.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,

A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from

natural language supervision. In International conference on machine learning,

pages 8748–8763. PMLR, 2021.

http://arxiv.org/abs/2010.03409
https://api.semanticscholar.org/CorpusID:3548228
https://api.semanticscholar.org/CorpusID:3548228
https://api.semanticscholar.org/CorpusID:203122873
https://api.semanticscholar.org/CorpusID:203122873
https://doi.org/10.1038/s41586-024-08252-9
https://api.semanticscholar.org/CorpusID:120584359
https://api.semanticscholar.org/CorpusID:120584359
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe

160 Bibliography

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations. Journal of Computational physics, 378:

686–707, 2019.

P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. arXiv

preprint arXiv:1710.05941, 2017.

B. Raoni’c, R. Molinaro, T. D. Ryck, T. Rohner, F. Bartolucci, R. Alaifari,

S. Mishra, and E. de B’ezenac. Convolutional neural operators for robust and

accurate learning of pdes. In Neural Information Processing Systems, 2023. URL

https://api.semanticscholar.org/CorpusID:258968120.

J. N. Reddy. Introduction to the finite element method. McGraw-Hill Education,

2019.

L. F. Richardson and P. Lynch. Weather prediction by numerical process, 1922.

URL https://api.semanticscholar.org/CorpusID:62588316.

H. E. Robbins. A stochastic approximation method. Annals of Mathematical Statis-

tics, 22:400–407, 1951. URL https://api.semanticscholar.org/CorpusID:

16945044.

M. Rolinek, D. Zietlow, and G. Martius. Variational autoencoders pursue pca direc-

tions (by accident). In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 12406–12415, 2019.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution

image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 10674–10685, 2021.

URL https://api.semanticscholar.org/CorpusID:245335280.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-

ical image segmentation. In Medical image computing and computer-assisted

intervention–MICCAI 2015: 18th international conference, Munich, Germany,

October 5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015a.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for

biomedical image segmentation. ArXiv, abs/1505.04597, 2015b. URL https:

//api.semanticscholar.org/CorpusID:3719281.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

https://api.semanticscholar.org/CorpusID:258968120
https://api.semanticscholar.org/CorpusID:62588316
https://api.semanticscholar.org/CorpusID:16945044
https://api.semanticscholar.org/CorpusID:16945044
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:3719281
https://api.semanticscholar.org/CorpusID:3719281

Bibliography 161

S. Rühling Cachay, B. Zhao, H. Joren, and R. Yu. DYffusion: a dynamics-informed

diffusion model for spatiotemporal forecasting. In Advances in Neural Information

Processing Systems (NeurIPS), 2023.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. nature, 323(6088):533–536, 1986.

C. Runge. Ueber die numerische auflösung von differentialgleichungen. Mathema-

tische Annalen, 46:167–178, 1895. URL https://api.semanticscholar.org/

CorpusID:119924854.

T. K. Rusch, M. M. Bronstein, and S. Mishra. A survey on oversmoothing in graph

neural networks. arXiv preprint arXiv:2303.10993, 2023.

T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models.

arXiv preprint arXiv:2202.00512, 2022.

V. Saragadam, J. Tan, G. Balakrishnan, R. G. Baraniuk, and A. Veeraraghavan.

Miner: Multiscale implicit neural representations, 2022.

L. Serrano, L. L. Boudec, A. K. Koupäı, T. X. Wang, Y. Yin, J.-N. Vittaut, and

P. Gallinari. Operator learning with neural fields: Tackling pdes on general ge-

ometries. Advances in Neural Information Processing Systems, 2023.

L. Serrano, P. ERBACHER, J.-N. Vittaut, and patrick gallinari. Zebra: a continuous

generative transformer for solving parametric PDEs. In ICLR 2024 Workshop

on AI4DifferentialEquations In Science, 2024a. URL https://openreview.net/

forum?id=KpBK1ArdXM.

L. Serrano, T. X. Wang, E. L. Naour, J.-N. Vittaut, and P. Gallinari. Aroma:

Preserving spatial structure for latent pde modeling with local neural fields. arXiv

preprint arXiv:2406.02176, 2024b.

N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202,

2020.

W. Shi, S. Min, M. Lomeli, C. Zhou, M. Li, G. Szilvasy, R. James, X. V. Lin, N. A.

Smith, L. Zettlemoyer, et al. In-context pretraining: Language modeling beyond

document boundaries. arXiv preprint arXiv:2310.10638, 2023.

J. Shue, E. Chan, R. Po, Z. Ankner, J. Wu, and G. Wetzstein. 3d neural field

generation using triplane diffusion. 2023 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 20875–20886, 2022. URL https:

//api.semanticscholar.org/CorpusID:254095843.

https://api.semanticscholar.org/CorpusID:119924854
https://api.semanticscholar.org/CorpusID:119924854
https://openreview.net/forum?id=KpBK1ArdXM
https://openreview.net/forum?id=KpBK1ArdXM
https://api.semanticscholar.org/CorpusID:254095843
https://api.semanticscholar.org/CorpusID:254095843

162 Bibliography

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,

L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis.

Mastering chess and shogi by self-play with a general reinforcement learning al-

gorithm. ArXiv, abs/1712.01815, 2017a. URL https://api.semanticscholar.

org/CorpusID:33081038.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui,

L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the

game of go without human knowledge. Nature, 550:354–359, 2017b. URL

https://api.semanticscholar.org/CorpusID:205261034.

A. Simmons, D. M. Burridge, M. Jarraud, C. Girard, and W. Wergen. The ecmwf

medium-range prediction models development of the numerical formulations and

the impact of increased resolution. Meteorology and Atmospheric Physics, 40:

28–60, 1989. URL https://api.semanticscholar.org/CorpusID:121745059.

J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial

differential equations. Journal of computational physics, 375:1339–1364, 2018.

V. Sitzmann, E. R. Chan, R. Tucker, N. Snavely, and G. Wetzstein. Metasdf: Meta-

learning signed distance functions. Advances in Neural Information Processing

Systems, 2020-December, 2020a. ISSN 10495258.

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural

representations with periodic activation functions. Advances in Neural Informa-

tion Processing Systems, 33:7462–7473, 2020b.

V. Sitzmann, J. N. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein. Implicit

neural representations with periodic activation functions. Advances in Neural

Information Processing Systems, 2020-December, 2020c. ISSN 10495258.

V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein.

Implicit neural representations with periodic activation functions. In Advances in

Neural Information Processing Systems 33: Annual Conference on Neural Infor-

mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,

2020d.

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint

arXiv:2010.02502, 2020.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The journal

of machine learning research, 15(1):1929–1958, 2014.

https://api.semanticscholar.org/CorpusID:33081038
https://api.semanticscholar.org/CorpusID:33081038
https://api.semanticscholar.org/CorpusID:205261034
https://api.semanticscholar.org/CorpusID:121745059

Bibliography 163

K. Stachenfeld, D. B. Fielding, D. Kochkov, M. Cranmer, T. Pfaff, J. Godwin,

C. Cui, S. Ho, P. Battaglia, and A. Sanchez-Gonzalez. Learned coarse models for

efficient turbulence simulation. International Conference on Learning Represen-

tation), 2022.

J. C. Strikwerda. Finite difference schemes and partial differential equations, 1989.

URL https://api.semanticscholar.org/CorpusID:120263575.

S. Subramanian, P. Harrington, K. Keutzer, W. Bhimji, D. Morozov, M. W. Ma-

honey, and A. Gholami. Towards foundation models for scientific machine learn-

ing: Characterizing scaling and transfer behavior. Advances in Neural Information

Processing Systems 37 (NeurIPS 2023), 2023.

R. Sutton. The bitter lesson. Blog post, 2019.

M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani, D. Pflüger, and

M. Niepert. Pdebench: An extensive benchmark for scientific machine learning.

Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

M. Takamoto, F. Alesiani, and M. Niepert. Learning neural pde solvers with

parameter-guided channel attention. International Conference on Machine Learn-

ing (ICML), 2023.

T. Takikawa, A. Evans, J. Tremblay, T. Müller, M. McGuire, A. Jacobson, and S. Fi-

dler. Variable bitrate neural fields. ACM SIGGRAPH 2022 Conference Proceed-

ings, 2022a. URL https://api.semanticscholar.org/CorpusID:249674957.

T. Takikawa, A. Evans, J. Tremblay, T. Müller, M. McGuire, A. Jacobson, and

S. Fidler. Variable bitrate neural fields. ACM Transactions on Graphics, 2022b.

M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal,

R. Ramamoorthi, J. Barron, and R. Ng. Fourier features let networks learn high

frequency functions in low dimensional domains. Advances in Neural Information

Processing Systems, 33:7537–7547, 2020a.

M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Sing-

hal, R. Ramamoorthi, J. T. Barron, and R. Ng. Fourier features let networks

learn high frequency functions in low dimensional domains. Advances in Neural

Information Processing Systems, 2020-December, 2020b. ISSN 10495258.

M. Tancik, B. Mildenhall, T. Wang, D. Schmidt, P. P. Srinivasan, J. T. Bar-

ron, and R. Ng. Learned initializations for optimizing coordinate-based neu-

ral representations. Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2021. ISSN 10636919. doi:

10.1109/CVPR46437.2021.00287.

https://api.semanticscholar.org/CorpusID:120263575
https://api.semanticscholar.org/CorpusID:249674957

164 Bibliography

N. Thuerey, K. Weißenow, L. Prantl, and X. Hu. Deep learning methods for reynolds-

averaged navier–stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36,

2020.

K. Tian, Y. Jiang, Z. Yuan, B. Peng, and L. Wang. Visual autoregressive model-

ing: Scalable image generation via next-scale prediction. In Advances in neural

information processing systems, 2024.

Z. Tong, Y. Song, J. Wang, and L. Wang. Videomae: Masked autoencoders are

data-efficient learners for self-supervised video pre-training. Advances in neural

information processing systems, 35:10078–10093, 2022.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,

B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave,

and G. Lample. Llama: Open and efficient foundation language models. CoRR,

2023.

A. Tran, A. Mathews, L. Xie, and C. S. Ong. Factorized fourier neural operators.

In International Conference on Learning Representations, 11 2023. URL http:

//arxiv.org/abs/2111.13802.

K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey. Solver-in-the-loop: Learning

from differentiable physics to interact with iterative pde-solvers. Advances in

Neural Information Processing Systems, 33:6111–6122, 2020a.

K. Um, Y. Fei, P. Holl, R. Brand, and N. Thürey. Solver-in-the-loop: Learn-

ing from differentiable physics to interact with iterative pde-solvers. ArXiv,

abs/2007.00016, 2020b. URL https://api.semanticscholar.org/CorpusID:

220280657.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation

learning. In Advances in Neural Information Processing Systems 30, pages 6306–

6315, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Lukasz

Kaiser, and I. Polosukhin. Attention is all you need. Advances in Neural Infor-

mation Processing Systems, 2017-December, 2017. ISSN 10495258.

P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, and Y. Bengio.

Graph attention networks. In 6th International Conference on Learning Rep-

resentations, ICLR 2018 - Conference Track Proceedings, 2018. doi: 10.1007/

978-3-031-01587-8 7.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and com-

posing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on Machine learning, pages 1096–1103, 2008.

http://arxiv.org/abs/2111.13802
http://arxiv.org/abs/2111.13802
https://api.semanticscholar.org/CorpusID:220280657
https://api.semanticscholar.org/CorpusID:220280657

Bibliography 165

R. Vinuesa and S. L. Brunton. Enhancing computational fluid dynamics with ma-

chine learning. Nature Computational Science, 2(6):358–366, 2022.

V. Volterra. Variations and fluctuations of the number of individuals in animal

species living together. Ices Journal of Marine Science, 3:3–51, 1928. URL https:

//api.semanticscholar.org/CorpusID:85082375.

J. von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zh-

moginov, and M. Vladymyrov. Transformers learn in-context by gradient de-

scent. In International Conference on Machine Learning, 2022. URL https:

//api.semanticscholar.org/CorpusID:254685643.

N. Wandel, M. Weinmann, and R. Klein. Learning incompressible fluid dynam-

ics from scratch–towards fast, differentiable fluid models that generalize. arXiv

preprint arXiv:2006.08762, 2020.

R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. Towards physics-

informed deep learning for turbulent flow prediction. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pages 1457–1466, 2020a.

R. Wang, R. Walters, and R. Yu. Incorporating symmetry into deep dynamics

models for improved generalization. ArXiv, abs/2002.03061, 2020b. URL https:

//api.semanticscholar.org/CorpusID:211068821.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou,

et al. Chain-of-thought prompting elicits reasoning in large language models.

Advances in neural information processing systems, 35:24824–24837, 2022.

T. Wolf. Huggingface’s transformers: State-of-the-art natural language processing.

arXiv preprint arXiv:1910.03771, 2019.

H. Wu, H. Luo, H. Wang, J. Wang, and M. Long. Transolver: A Fast Transformer

Solver for PDEs on General Geometries. In International Conference on Machine

Learning, 2024. URL http://arxiv.org/abs/2402.02366.

Y. Wu and K. He. Group normalization. International Journal of Computer Vi-

sion, 128:742 – 755, 2018. URL https://api.semanticscholar.org/CorpusID:

4076251.

S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explanation of in-context

learning as implicit bayesian inference. In The Tenth International Conference on

Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. Open-

Review.net, 2022. URL https://openreview.net/forum?id=RdJVFCHjUMI.

https://api.semanticscholar.org/CorpusID:85082375
https://api.semanticscholar.org/CorpusID:85082375
https://api.semanticscholar.org/CorpusID:254685643
https://api.semanticscholar.org/CorpusID:254685643
https://api.semanticscholar.org/CorpusID:211068821
https://api.semanticscholar.org/CorpusID:211068821
http://arxiv.org/abs/2402.02366
https://api.semanticscholar.org/CorpusID:4076251
https://api.semanticscholar.org/CorpusID:4076251
https://openreview.net/forum?id=RdJVFCHjUMI

166 Bibliography

J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and S. De Mello. Open-vocabulary

panoptic segmentation with text-to-image diffusion models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

2955–2966, 2023.

L. Yang, S. Liu, T. Meng, and S. J. Osher. In-context operator learning with data

prompts for differential equation problems. Proceedings of the National Academy

of Sciences, 120(39):e2310142120, 2023.

Y. Yin, V. L. Guen, J. Dona, E. de Bézenac, I. Ayed, N. Thome, and P. Gallinari.

Augmenting physical models with deep networks for complex dynamics forecast-

ing*. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021. doi:

10.1088/1742-5468/ac3ae5.

Y. Yin, I. Ayed, E. de Bézenac, N. Baskiotis, and P. Gallinari. Leads: Learn-

ing dynamical systems that generalize across environments. Neural Information

Processing Systems, 2022a.

Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, and P. Galli-

nari. Continuous pde dynamics forecasting with implicit neural representa-

tions. International Conference on Learning Representations, 9 2022b. URL

http://arxiv.org/abs/2209.14855.

Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, and P. Gallinari.

Continuous pde dynamics forecasting with implicit neural representations. In

International Conference on Learning Representations, ICLR, 2023.

L. Yu, Y. Cheng, K. Sohn, J. Lezama, H. Zhang, H. Chang, A. G. Hauptmann,

M.-H. Yang, Y. Hao, I. Essa, et al. Magvit: Masked generative video transformer.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10459–10469, 2023a.

L. Yu, J. Lezama, N. B. Gundavarapu, L. Versari, K. Sohn, D. Minnen, Y. Cheng,

A. Gupta, X. Gu, A. G. Hauptmann, et al. Language model beats diffusion–

tokenizer is key to visual generation. International Conference on Learning Rep-

resentations, 2023b.

B. Zhang and R. Sennrich. Root mean square layer normalization. ArXiv,

abs/1910.07467, 2019. URL https://api.semanticscholar.org/CorpusID:

113405151.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep

learning requires rethinking generalization. ArXiv, abs/1611.03530, 2016. URL

https://api.semanticscholar.org/CorpusID:6212000.

http://arxiv.org/abs/2209.14855
https://api.semanticscholar.org/CorpusID:113405151
https://api.semanticscholar.org/CorpusID:113405151
https://api.semanticscholar.org/CorpusID:6212000

Bibliography 167

X. Zhang, J. Helwig, Y.-C. Lin, Y. Xie, C. Fu, S. Wojtowytsch, and S. Ji.

Sinenet: Learning temporal dynamics in time-dependent partial differential equa-

tions. ArXiv, abs/2403.19507, 2024. URL https://api.semanticscholar.org/

CorpusID:268733007.

A. Zhou and A. B. Farimani. Masked autoencoders are pde learners. arXiv preprint

arXiv:2403.17728, 2024.

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context

adaptation via meta-learning. In International Conference on Machine Learning,

pages 7693–7702. PMLR, 2019a.

L. Zintgraf, K. Shiarlis, V. Kurin, K. Hofmann, and S. Whiteson. Fast context

adaptation via meta-learning. 36th International Conference on Machine Learn-

ing, ICML 2019, 2019-June, 2019b.

https://api.semanticscholar.org/CorpusID:268733007
https://api.semanticscholar.org/CorpusID:268733007

Appendix A

Appendix of Chapter 5

A.1 Dataset Details

A.1.1 Initial Value Problem

We use the datasets from Pfaff et al. (2021), and take the first and last frames of

each trajectory as the input and output data for the initial value problem.

Cylinder The dataset includes computational fluid dynamics (CFD) simulations

of the flow around a cylinder, governed by the incompressible Navier-Stokes equa-

tion. These simulations were generated using COMSOL software, employing an

irregular 2D-triangular mesh. The trajectory consists of 600 timestamps, with a

time interval of ∆t = 0.01s between each timestamp.

Airfoil The dataset contains CFD simulations of the flow around an airfoil, fol-

lowing the compressible Navier-Stokes equation. These simulations were conducted

using SU2 software, using an irregular 2D-triangular mesh. The trajectory encom-

passes 600 timestamps, with a time interval of ∆t = 0.008s between each timestamp.

A.1.2 Dynamics Modeling

2D-Navier-Stokes (Navier-Stokes) We consider the 2D Navier-Stokes equation

as presented in Li et al. (2021); Yin et al. (2022b). This equation models the

dynamics of an incompressible fluid on a rectangular domain Ω = [−1, 1]2. The

PDE writes as :

∂w(x, t)

∂t
= −u(x, t)∇w(x, t) + ν∆w(x, t) + f, x ∈ [−1, 1]2, t ∈ [0, T] (A.1)

w(x, t) = ∇× u(x, t), x ∈ [−1, 1]2, t ∈ [0, T] (A.2)

∇u(x, t) = 0, x ∈ [−1, 1]2, t ∈ [0, T] (A.3)

168

A.1. Dataset Details 169

where u is the velocity, w the vorticity. ν is the fluid viscosity, and f is the forcing

term, given by:

f(x1, x2) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))) , ∀x ∈ Ω (A.4)

For this problem, we consider periodic boundary conditions.

By sampling initial conditions as in Li et al. (2021), we generated different trajec-

tories on a 256×256 regular spatial grid and with a time resolution δt = 1. We retain

the trajectory starting from the 20th timestep so that the dynamics is sufficiently

expressed. The final trajectories contains 40 snapshots at time t = 20, 21, · · · , 59.

As explained in Section 5.4, we divide these long trajectories into 2 parts : the 20

first frames are used during the training phase and are denoted as In-t through-

out this paper. The 20 last timesteps are reserved for evaluating the extrapolation

capabilities of the models and are the Out-t part of the trajectories. In total, we

collected 256 trajectories for training, and 16 for evaluation.

3D-Spherical Shallow-Water (Shallow-Water). We consider the shallow-water

equation on a sphere describing the movements of the Earth’s atmosphere:

du

dt
= −f · k × u− g∇h+ ν∆u (A.5)

dh

dt
= −h∇ · u+ ν∆h (A.6)

where d
dt

is the material derivative, k is the unit vector orthogonal to the spherical

surface, u is the velocity field tangent to the surface of the sphere, which can be

transformed into the vorticity w = ∇ × u, h is the height of the sphere. We gen-

erate the data with the Dedalus software (Burns et al., 2020), following the setting

described in Yin et al. (2022b), where a symmetric phenomena can be seen for both

northern and southern hemisphere. The initial zonal velocity u0 contains two non-

null symmetric bands in the both hemispheres, which are parallel to the circles of

latitude. At each latitude and longitude ϕ, θ ∈ [−π
2
, π
2
]× [−π, π]:

u0(ϕ, θ) =


(
umax

en
exp

(
1

(ϕ−ϕ0)(ϕ−ϕ1)

)
, 0
)

if ϕ ∈ (ϕ0, ϕ1),(
umax

en
exp

(
1

(ϕ+ϕ0)(ϕ+ϕ1)

)
, 0
)

if ϕ ∈ (−ϕ1,−ϕ0),

(0, 0) otherwise.

(A.7)

where umax is the maximum velocity, ϕ0 = π
7
, ϕ1 = π

2
−ϕ0, and en = exp(− 4

(ϕ1−ϕ0)2).

The water height h0 is initialized by solving a boundary value conditioned problem

170 Appendix A. Appendix of Chapter 5

as in Galewsky et al. (2004) which is perturbed by adding h′0 to h0:

h′0(ϕ, θ) = ĥ cos(ϕ) exp

(
−
(
θ

α

)2
)[

exp

(
−
(
ϕ2 − ϕ
β

)2
)

+ exp

(
−
(
ϕ2 + ϕ

β

)2
)]

.

(A.8)

where ϕ2 = π
4
, ĥ = 120m, α = 1

3
and β = 1

15
are constants defined in Galewsky

et al. (2004). We simulated the phenomenon using Dedalus Burns et al. (2020) on

a latitude-longitude grid (lat-lon). The original grid size was 128 (lat)× 256 (lon),

which we downsampled to obtain grids of size 64 × 128. To generate trajectories,

we sampled umax from a uniform distribution U(60, 80). Snapshots were captured

every hour over a duration of 320 hours, resulting in trajectories with 320 times-

tamps. We created 16 trajectories for the training set and 2 trajectories for the

test set. However, since the dynamical phenomena in the initial timestamps were

less significant, we only considered the last 160 snapshots. Each long trajectory is

then sliced into sub-trajectories of 40 timestamps each. As a result, the training set

contains 64 trajectories, while the test set contains 8 trajectories. It is worth noting

that the data was also scaled to a reasonable range: the height h was scaled by a

factor of 3× 103, and the vorticity w was scaled by a factor of 2.

A.1.3 Geometric aware inference

We use the datasets provided by Li et al. (2022a) and adopt the original authors’

train/test split for our experiments.

Euler’s Equation (Naca-Euler). We consider the transonic flow over an airfoil,

where the governing equation is Euler equation, as follows:

∂ρf
∂t

+∇· (ρfu) = 0,
∂ρfu

∂t
+∇· (ρfu⊗u+ pI) = 0,

∂E

∂t
+∇· ((E+ p)u) = 0, (A.9)

where ρf is the fluid density, u is the velocity vector, p is the pressure, and E is

the total energy. The viscous effect is ignored. The far-field boundary condition

is ρ∞ = 1, p∞ = 1.0, M∞ = 0.8, AoA = 0, where M∞ is the Mach number and

AoA is the angle of attack. At the airfoil, a no-penetration condition is imposed.

The shape parameterization of the airfoil follows the design element approach. The

initial NACA-0012 shape is mapped onto a “cubic” design element with 8 control

nodes, and the initial shape is morphed to a different one following the displacement

field of the control nodes of the design element. The displacements of control nodes

are restricted to the vertical direction only, with prior d ∼ U [−0.05, 0.05].

We have access to 1000 training data and 200 test data, generated with a second-

order implicit finite volume solver. The C-grid mesh with about (200× 50) quadri-

lateral elements is used, and the mesh is adapted near the airfoil but not the shock.

A.2. Implementation Details 171

The mesh point locations and Mach number on these mesh points are used as input

and output data.

Hyper-elastic material (Elasticity). The governing equation of a solid body can

be written as

ρs
∂2u

∂t2
+∇ · σ = 0

where ρs is the mass density, u is the displacement vector, and σ is the stress tensor.

Constitutive models, which relate the strain tensor ε to the stress tensor, are required

to close the system. We consider the unit cell problem Ω = [0, 1] × [0, 1] with an

arbitrary shape void at the center, which is depicted in Figure 2(a). The prior of

the void radius is r = 0.2 + 0.2 with r̃ ∼ N (0, 42(−∇ + 32)−1), 1 + exp(r̃), which

embeds the constraint 0.2 ≤ r ≤ 0.4. The unit cell is clamped on the bottom edges

and tension traction t = [0, 100] is applied on the top edge. The material is the

incompressible Rivlin-Saunders material with energy density function parameters

C1 = 1.863×105 and C1 = 9.79×103. The data was generated with a finite element

solver with about 100 quadratic quadrilateral elements. The inputs a are given as

point clouds with a size around 1000. The target output is stress.

Navier-Stokes Equation (Pipe). We consider the incompressible flow in a pipe,

where the governing equation is the incompressible Navier-Stokes equation, as fol-

lowing,
∂v

∂t
+ (v · ∇)v = −∇p+ µ∇2v, ∇ · v = 0

where v is the velocity vector, p is the pressure, and µ = 0.005 is the viscosity.

The parabolic velocity profile with maximum velocity v = [1, 0] is imposed at the

inlet. A free boundary condition is imposed at the outlet, and a no-slip boundary

condition is imposed at the pipe surface. The pipe has a length of 10 and width

of 1. The centerline of the pipe is parameterized by 4 piecewise cubic polynomials,

which are determined by the vertical positions and slopes on 5 spatially uniform

control nodes. The vertical position at these control nodes obeys d ∼ U [−2, 2], and

the slope at these control nodes obeys d ∼ U [−1, 1].

We have access to 1000 training data and 200 test data, generated with an

implicit finite element solver using about 4000 Taylor-Hood Q2-Q1 mixed elements.

The mesh point locations (129× 129) and horizontal velocity on these mesh points

are used as input and output data.

A.2 Implementation Details

We implemented all experiments with PyTorch (Paszke et al., 2019b). We esti-

mate the computation time needed for development and the different experiments

172 Appendix A. Appendix of Chapter 5

to approximately 400 days.

A.2.1 CORAL

A.2.1.1 Architecture Details

SIREN initialization. We use for SIREN the same initialization scheme as

in Sitzmann et al. (2020c), i.e., sampling the weights of the first layer accord-

ing to a uniform distribution U(−1/d, 1/d) and the next layers according to

U(− 1
w0

√
6
din
, 1
w0

√
6
din

). We use the default PyTorch initialization for the hyper-

network.

Decode with shift-modulated SIREN. Initially, we attempted to modulate

both the scale and shift of the activation, following the approach described in Perez

et al. (2018b). However, we did not observe any performance improvement by

employing both modulations simultaneously. Consequently, we decided to focus

solely on shift modulations, as it led to a more stable training process and reduced

the size of the modulation space by half. We provide an overview of the decoder

with the shift-modulated SIREN in Figure A.1.

Encode with auto-decoder. We provide a schematic view of the input encoder

in Figure A.2. The auto-decoding process starts from a code za = 0 and performs K

steps of gradient descent over this latent code to minimize the reconstruction loss.

Process with MLP. We use an MLP with skip connections and Swish activation

functions. Its forward function writes gψ(z) = Blockk ◦ ... ◦ Block1(z), where Block

is a two-layer MLP with skip connections:

Block(z) = z + σ(W2 · σ(W1 · z + b1) + b2) (A.10)

In Equation (A.10), σ denotes the feature-wise Swish activation. We use the

version with learnable parameter β; σ(z) = z · sigmoid(βz).

A.2.1.2 Training Details

The training is done in two steps. First, we train the modulated INRs to represent

the data. We show the details with the pseudo-code in Algorithms 4 and 5. α is the

inner-loop learning rate while λ is the outer loop learning rate, which adjusts the

weights of the INR and hypernetwork. Then, once the INRs have been fitted, we

obtain the latent representations of the training data, and use these latent codes to

train the forecast model gψ (See Algorithm 6). We note λψ the learning rate of gψ.

A.2. Implementation Details 173

Modulation

SIREN

input
function

obs.
space

hypernetwork

input

(a) The hypernetwork ha maps the in-
put code za to the modulations ϕa. The
modulations shift the activations at each
layer of the SIREN.

output
function

output
space

hypernetwork

Modulation

SIREN

input

(b) The hypernetwork hu maps the in-
put code zu to the modulations ϕu. The
modulations shift the activations at each
layer of the SIREN.

Figure A.1: Architecture of the input and output decoders ξa, ξu. They can be
queried on any coordinate x ∈ Ω. We use the same notation for both, even though
the parameters are different.

174 Appendix A. Appendix of Chapter 5

Z-score normalization. As the data is encoded using only a few steps of gradi-

ents, the resulting standard deviation of the codes is very small, falling within the

range of [1e-3, 5e-2]. However, these “raw” latent representations are not suitable

as-is for further processing. To address this, we normalize the codes by subtracting

the mean and dividing by the standard deviation, yielding the normalized code:

znorm = z−mean
std

. Depending on the task, we employ slightly different types of nor-

malization:

1. Initial value problem: • Cylinder : We normalize the inputs and outputs code

with the same mean and standard deviation. We compute the statistics fea-

ture-wise, across the inputs and outputs. • Airfoil : We normalize the inputs

and outputs code with their respective mean and standard deviation. The

statistics are real values.

2. Dynamics modeling: We normalize the codes with the same mean and stan-

dard deviation. The statistics are computed feature-wise, over all training

trajectories and all available timestamps (i.e. over In-t).

3. Geometry-aware inference: We normalize the input codes only, with feature-

wise statistics.

A.2. Implementation Details 175

 steps

encoding as
auto-decodinginput input

output

Figure A.2: Starting from a code z
(0)
a = 0, the input encoder ea performs K inner

steps of gradient descent over za to minimize the reconstruction loss LX (ã, a) and

outputs the resulting code z
(K)
a of this optimization process. During training, we

accumulate the gradients of this encoding phase and back-propagate through the
K inner-steps to update the parameters θa and wa. At inference, we encode new
inputs with the same number of steps K and the same learning rate α, unless stated
otherwise. The output encoder works in the same way during training, and is not
used at inference.

A.2.1.3 Inference Details

We present the inference procedure in Algorithm 7. It is important to note that

the input and output INRs, fθa and fθu , respectively, accept the “raw” codes as

inputs, whereas the processor expects a normalized latent code. Therefore, after

the encoding steps, we normalize the input code. Additionally, we may need to

denormalize the code immediately after the processing stage. It is worth mentioning

that we maintain the same number of inner steps as used during training, which is

3 for all tasks.

176 Appendix A. Appendix of Chapter 5

Train processor
to forecast

output code

Step 1

Step 2

Input INR
training

Output INR
training

Figure A.3: Proposed training for CORAL. (1) We first learn to represent the data
with the input and output INRs. (2) Once the INRs are trained, we obtain the latent
representations and fix the pairs of input and output codes (zai , zui). We then train
the processor to minimize the distance between the processed code gψ(zai) and the
output code zui .

Algorithm 4: Training of the

input INR

while no convergence do
Sample batch B of data

(ai)i∈B;

Set codes to zero

zai ← 0, ∀i ∈ B ;

for i ∈ B and step

∈ {1, ..., Ka} do
zai ← zai −
αa∇zai

LXi
(fθa,ha(zai), ai)

; // input encoding

inner step

end

/* outer loop update */

θa ← θa −
λ 1

|B|
∑

i∈B∇θaLXi
(fθa,ha(zai), ai);

wa ← wa −
λ 1

|B|
∑

i∈B∇waLXi
(fθa,ha(zai), ai)

end

Algorithm 5: Training of the

output INR

while no convergence do
Sample batch B of data

(ai, ui)i∈B;

Set codes to zero

zui ← 0,∀i ∈ B ;

for i ∈ B and step

∈ {1, ..., Ku} do
zui ← zui −
αu∇zui

LXi
(fθu,hu(zui), ui)

; // output encoding

inner step

end

/* outer loop update */

θu ← θu −
λ 1

|B|
∑

i∈B∇θuLXi
(fθu,hu(zui), ui);

wu ← wu −
λ 1

|B|
∑

i∈B∇wuLXi
(fθu,hu(zui), ui)

end

A.2. Implementation Details 177

Algorithm 6: Training of the processor

while no convergence do
Sample batch B of codes (zai , zui)i∈B;
/* processor update */

ψ ← ψ − λψ 1
|B|
∑

i∈B∇ψL(gψ(zai), zui) ;

end

Algorithm 7: CORAL Inference, given a function a

Set code to zero za ← 0 ;
for step ∈ {1, ..., Ka} do

za ← za − αa∇zaLX (fθa,ha(za), a) ; // input encoding inner step

end
ẑu = gψ(za) ; // process latent code

û = fθu,hu(z̃u) ; // decode output function

A.2.1.4 Choice of Hyperparameters

We recall that dz denotes the size of the code, w0 is a hyperparameter that controls

the frequency bandwith of the SIREN network, λ is the outer-loop learning rate

(on fθ,ϕ and hw), α is the inner-loop learning rate, K is the number of inner steps

used during training and encoding steps at test time, λψ is the learning rate of the

MLP or NODE. In some experiments we learn the inner-loop learning rate α, as in

Li et al. (2017b). In such case, the meta-α learning rate is an additional parameter

that controls how fast we move α from its initial value during training. When not

mentioned we simply report α in the tables below, and otherwise we report the

initial learning rate and this meta-learning-rate.

We use the Adam optimizer during both steps of the training. For the training

of the Inference / Dynamics model, we use a learning rate scheduler which reduces

the learning rate when the loss has stopped improving. The threshold is set to 0.01

in the default relative threshold model in PyTorch, with a patience of 250 epochs

w.r.t. the train loss. The minimum learning rate is 1e-5.

Initial Value Problem We provide the list of hyperparameters used for the ex-

periments on Cylinder and Airfoil in Table A.1.

Dynamics Modeling Table A.2 summarizes the hyperparameters used in our

experiments for dynamics modeling on datasets Navier-Stokes and Shallow-Water

(Table 5.2).

Furthermore, to facilitate the training of the dynamics within the NODE, we em-

ploy Scheduled Sampling, following the approach described in Bengio et al. (2015).

At each timestep, there is a probability of ϵ% for the integration of the dynamics

178 Appendix A. Appendix of Chapter 5

Table A.1: CORAL hyper-parameters for IVP/ Geometry-aware inference

Hyper-parameter Cylinder Airfoil NACA-Euler Elasticity Pipe

fθa,ϕa / fθu,ϕu

dz 128 128 128 128 128
depth 4 5 4 4 5
width 256 256 256 256 128
ω0 30 30 / 50 5 / 15 10 / 15 5 / 10

SIREN Optimization

batch size 32 16 32 64 16
epochs 2000 1500 5000 5000 5000
λ 5e-6 5e-6 1e-4 1e-4 5e-5
α 1e-2 1e-2 1e-2 1e-2 1e-2

meta-α learning rate 0 5e-6 1e-4 1e-4 5e-5
Ka / Ku 3 3 3 3 3

gψ

depth 3 3 3 3 3
width 64 64 64 64 128

activation Swish Swish Swish Swish Swish

Inference Optimization

batch size 32 16 64 64 64
epochs 100 100 10000 10000 10000
λψ 1e-3 1e-3 1e-3 1e-3 1e-3

Scheduler decay 0 0 0.9 0.9 0.9

Table A.2: CORAL hyper-parameters for dynamics modeling

Hyper-parameter Navier-Stokes Shallow-Water

INR

dz 128 256
depth 4 6
width 128 256
ω0 10 10

INR Optimization

batch size 64 16
epochs 10, 000 10, 000
λ 5e-6 5e-6
α 1e-2 1e-2
K 3 3

NODE

depth 3 3
width 512 512

activation Swish Swish
solver RK4 RK4

Dynamics Optimization

batch size 32 16
epochs 10, 000 10, 000
λψ 1e-3 1e-3

Scheduler decay 0.75 0.75

A.2. Implementation Details 179

through the ODE solver to be restarted using the training snapshots. This probabil-

ity gradually decreases during the training process. Initially, we set ϵinit = 0.99, and

every 10 epochs, we multiply it by 0.99. Consequently, by the end of the training

procedure, the entire trajectory is computed with the initial condition.

Geometry-aware inference We provide the list of hyperparameters used for the

experiments on NACA-Euler, Elasticity, and Pipe in Table A.1.

A.2.2 Baseline Implementation

We detail in this section the architecture and hyperparameters used for the training

of the baselines presented in Section 5.4.

Initial Value Problem We use the following baselines for the Initial Value Prob-

lem task.

• NodeMLP. We use a ReLU-MLP with 3 layers and 512 neurons. We train it

for 10000 epochs. We use a learning rate of 1e-3 and a batch size of 64.

• GraphSAGE. We use the implementation from torch-geometric (Fey and

Lenssen, 2019), with 6 layers of 64 neurons. We use ReLU activation. We

train the model for 400 epochs for Airfoil and 4,000 epochs for Cylinder. We

build the graph using the 16 closest nodes. We use a learning rate of 1e-3 and

a batch size of 64.

• MP-PDE: We implement MP-PDE as a 1-step solver, where the time-

bundling and pushforward trick do not apply. We use 6 message-passing blocks

and 64 hidden features. We build the graph with the 16 closest nodes. We

use a learning rate of 1e-3 and a batch size of 16. We train for 500 epochs on

Airfoil and 1000 epochs on Cylinder.

Dynamics Modeling All our baselines are implemented in an auto-regressive

(AR) manner to perform forecasting.

• DeepONet: We use a DeepONet in which both Branch Net and Trunk Net are

4-layers MLP with 100 neurons. The model is trained for 10, 000 epochs with a

learning rate of 1e-5. To complete the upsampling studies, we used a modified

DeepONet forward which computes as follows: (1) Firstly, we compute an AR

pass on the training grid to obtain a prediction of the complete trajectory

with the model on the training grid. (2) We use these prediction as input of

the branch net for a second pass on the up-sampling grid to obtain the final

prediction on the new grid.

180 Appendix A. Appendix of Chapter 5

• FNO: FNO is trained for 2, 000 epochs with a learning rate of 1e-3. We used

12 modes and a width of 32 and 4 Fourier layers. We also use a step scheduler

every 100 epochs with a decay of 0.5.

• MP-PDE: We implement MP-PDE with a time window of 1 so that is be-

comes AR. The MP-PDE solver is composed of a 6 message-passing blocks

with 128 hidden features. To build the graphs, we limit the number of neigh-

bors to 8. The optimization was performed on 10, 000 epochs with a learning

rate of 1e-3 and a step scheduler every 2000 epochs until 10000. We decay the

learning rate of 0.4 with weight decay 1e-8.

• DINo: DINo uses MFN model with respectively width and depth of 64 and 3

for Navier-Stokes (NS), and 256 and 6 for Shallow-Water (SW). The encoder

proceeds to 300 (NS) or 500 (SW) steps to optimize the codes whose size is

set to 100 (NS) or 200 (SW). The dynamic is solved with a NODE that uses

4-layers MLP and a hidden dimension of 512 (NS) or 800 (SW). This model

is trained for 10, 000 epochs with a learning rate of 5e-3. We use the same

scheduled sampling as for the CORAL training (see Appendix A.2.1.4).

Geometry-aware inference Except on Pipe, the numbers for FactorizedFNO

are taken from Tran et al. (2023). In the latter we take the 12-layer version which

has a comparable model size. We train the 12-layer FactorizedFNO on Pipe with

AdamW for 200 epochs with modes (32, 16), a width of 64, a learning rate of 1e-3

and a weight decay of 1e-4. We implemented the baselines GeoFNO, FNO, UNet

according to the code provided in Li et al. (2022a)

A.3 Supplementary Results for Dynamics Mod-

eling

A.3.1 Robustness to Resolution Changes

We present in Tables A.3 and A.4 the up-sampling capabilities of CORAL and

relevant baselines both In-t and Out-t, respectively for Navier-Stokes and Shallow-

Water.

These tables show that CORAL remains competitive and robust on up-sampled

inputs. Other baselines can also predict on denser grids, except for MP-PDE, which

over-fitted the training grid.

A.3. Supplementary Results for Dynamics Modeling 181

Table A.3: Up-sampling capabilities - Test results on Navier-Stokes dataset. Metrics
in MSE.

Xtr ↓
dataset → Navier-Stokes
Xtr → 64× 64
Xte → Xtr 64× 64 128× 128 256× 256

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

DeepONet 1.47e-2 7.90e-2 1.47e-2 7.90e-2 1.82e-1 7.90e-2 1.82e-2 7.90e-2
πtr = 100% FNO 7.97e-3 1.77e-2 7.97e-3 1.77e-2 8.04e-3 1.80e-2 1.81e-2 7.90e-2
regular grid MP-PDE 5.98e-4 2.80e-3 5.98e-4 2.80e-3 2.36e-2 4.61e-2 4.26e-2 9.77e-2

DINo 1.25e-3 1.13e-2 1.25e-3 1.13e-2 1.25e-3 1.13e-2 1.26e-3 1.13e-2
CORAL 2.02e-4 1.07e-3 2.02e-4 1.07e-3 2.08e-4 1.06e-3 2.19e-4 1.07e-3

DeepONet 8.35e-1 7.74e-1 8.28e-1 7.74e-1 8.32e-1 7.74e-1 8.28e-1 7.73e-1
πtr = 20% MP-PDE 2.36e-2 1.11e-1 7.42e-2 2.13e-1 1.18e-1 2.95e-1 1.37e-1 3.39e-1

irregular grid DINo 1.30e-3 9.58e-3 1.30e-3 9.59e-3 1.31e-3 9.63e-3 1.32-3 9.65e-3
CORAL 1.73e-3 5.61e-3 1.55e-3 4.34e-3 1.61e-3 4.38e-3 1.65e-3 4.41e-3

DeepONet 7.12e-1 7.16e-1 7.22e-1 7.26e-1 7.24e-1 7.28e-1 7.26e-1 7.30e-1
πtr = 5% MP-PDE 1.25e-1 2.92e-1 4.83e-1 1.08 6.11e-1 1.07 6.49e-1 1.08

irregular grid DINo 8.21e-2 1.03e-1 7.73e-2 7.49e-2 7.87e-2 7.63e-2 7.96e-2 7.73e-2
CORAL 1.56e-2 3.65e-2 4.19e-3 1.12e-2 4.30e-3 1.14e-2 4.37e-3 1.14e-2

A.3.2 Learning a Dynamics on Different Grids

To extend our work, we propose to study how robust is CORAL to changes in grids.

In our classical setting, we keep the same grid for all trajectories in the training set

and evaluate it on a new grid for the test set. Instead, here, both in train and test

sets, each trajectory i has its own grid Xi. Thus, we evaluate CORAL’s capability

to generalize to grids. We present the results in Table A.5. Overall, coordinate-

based methods generalize better over grids compared to operator based and discrete

methods like DeepONet and MP-PDE which show better or equivalent performance

when trained only on one grid. CORAL’s performance is increased when trained on

different grids; one possible reason is that CORAL overfits the training grid used

for all trajectories in our classical setting.

A.3.3 Training Time

In Table A.6, we present the training time for CORAL and different baselines for

comparison. Since, the training of CORAL is separated in 2 steps, we show in line

”INR” the training time for INR fitting and in line ”Process” the second step to

train the forecast model. We see that the longest part of the training procedure

in CORAL is the fitting of the INR. MP-PDE is the slowest baseline to train, due

to the KNN graph creation. DeepONet and FNO are the fastest baselines to train

because they only need a forward pass.

182 Appendix A. Appendix of Chapter 5

Table A.4: Up-sampling capabilities - Test results on Shallow-Water dataset. Met-
rics in MSE.

Xtr ↓
dataset → Shallow-Water
Xtr → 64× 128
Xte → Xtr 32× 64 64× 128 128× 256

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

DeepONet 7.07e-3 9.02e-3 1.18e-2 1.66e-2 7.07e-3 9.02e-3 1.18e-2 1.66e-2
πtr = 100% FNO 6.75e-5 1.49e-4 7.54e-5 1.78e-4 6.75e-5 1.49e-4 6.91e-5 1.52e-4
regular grid MP-PDE 2.66e-5 4.35e-4 4.80e-2 1.42e-2 2.66e-5 4.35e-4 4.73e-3 1.73e-3

DINo 4.12e-5 2.91e-3 5.77e-5 2.55e-3 4.12e-5 2.91e-3 6.04e-5 2.58e-3
CORAL 3.52e-6 4.99e-4 1.86e-5 5.32e-4 3.52e-6 4.99e-4 4.96e-6 4.99e-4

DeepONet 1.08e-2 1.10e-2 2.49e-2 3.25e-2 2.49e-2 3.25e-2 2.49e-2 3.22e-2
irregular grid MP-PDE 4.54e-3 1.48e-2 4.08e-3 1.30e-2 5.46e-3 1.74e-2 4.98e-3 1.43e-2
πtr = 20% DINo 2.32e-3 5.18e-3 2.22e-3 4.80e-3 2.16e-3 4.64e-3 2.16e-3 4.64e-3

CORAL 1.36e-3 2.17e-3 1.24e-3 1.95e-3 1.21e-3 1.95e-3 1.21e-3 1.95e-3

DeepONet 1.02e-2 1.01e-2 1.57e-2 1.93e-2 1.57e-2 1.93e-2 1.57e-2 1.93e-2
irregular grid MP-PDE 5.36e-3 1.81e-2 5.53e-3 1.80e-2 4.33e-3 1.32e-2 5.48e-3 1.74e-2
πtr = 5% DINo 1.25e-2 1.51e-2 1.39e-2 1.54e-2 1.39e-2 1.54e-2 1.39e-2 1.54e-2

CORAL 8.40e-3 1.25e-2 9.27e-3 1.15e-2 9.26e-3 1.16e-2 9.26e-3 1.16e-2

A.3.4 Inference Time

In this section, we evaluate the inference time of CORAL and other baselines w.r.t.

the input grid size. We study the impact of the training grid size (different models

trained with 5%, 20% and 100% of the grid) (Figure A.4a) and the time needed

for a model trained (5%) on a given grid to make computation on finer grid size

resolution (evaluation grid size) (Figure A.4b).

On the graphs presented in Figure A.4, we observe that except for the oper-

ator baselines, CORAL is also competitive in terms of inference time. MP-PDE

inference time increases strongly when inference grid gets denser. The DINo model,

which is the only to propose the same properties as CORAL, is much slower when

both inference and training grid size evolve. This difference is mainly explained by

the number of steps needed to optimize DINo codes. Indeed, at test time DINO’s

adaptation requires 100x more optimization steps. MPPDE’s computation is slow

due to the KNN graph creation and slower message passing. DeepONet and FNO

are faster due to forward computation only. CORAL’s encoding/decoding is rel-

atively resolution-insensitive and performed in parallel across all sensors. Process

operates on a fixed dimension independent of the resolution. FNO is fast due to

FFT but cannot be used on irregular grids. For these experiments, we used linear

interpolation which slowed the inference time.

A.3. Supplementary Results for Dynamics Modeling 183

Table A.5: Learning dynamics on different grids - Test results in the extrapolation
setting. Metrics in MSE.

Xtr ↓ Xte
dataset → Navier-Stokes Shallow-Water

In-t Out-t In-t Out-t

DeepONet 5.22× 10−1 5.00× 10−1 1.11× 10−2 1.12× 10−2

π = 20% MP-PDE 6.11× 10−1 6.10× 10−1 6.80× 10−3 1.87× 10−2

irregular grid DINo 1.30e-3 1.01e-2 4.12e-4 3.05e-3
CORAL 3.21× 10−4 3.03× 10−3 1.15× 10−4 7.75× 10−4

DeepONet 4.11× 10−1 4.38× 10−1 1.11× 10−2 1.12× 10−2

π = 5% MP-PDE 8.15× 10−1 1.10× 10−1 1.22× 10−2 4.29× 10−2

irregular grid DINo 1.26e-3 1.04e-2 3.89e-3 7.41e-3
CORAL 9.82× 10−4 9.71× 10−3 2.22e-3 4.89e-3

(a) Average inference time (in seconds)
of the implemented baselines to unroll a

trajectory until T = 40 on
Navier-Stokes. For irregular grids, FNO

is performed following linear
interpolation.

(b) Inference time w.r.t. evaluation grid
size (same models).

Figure A.4: Inference time analysis of CORAL vs baselines

A.3.5 Propagation of Errors Through Time

In Figures A.5a to A.5c, we show the evolution of errors as the extrapolation horizon

evolves. First, we observe that all baselines propagate error through time, since the

trajectories are computed using an auto-regressive approach. Except for the 100%,

DeepONet had difficulties to handle the dynamic. It has on all settings the highest

error. Then, we observe that for MP-PDE and FNO, the error increases quickly

at the beginning of the trajectories. This means that these two models are rapidly

propagating error. Finally, both DINo and CORAL have slower increase of the error

184 Appendix A. Appendix of Chapter 5

(a) Evolution of errors over time and across test samples for a model trained on 100% of
the grid.

(b) Evolution of errors over time and across test samples for a model trained on 20% of
the grid.

(c) Evolution of errors over time and across test samples for a model trained on 5% of
the grid.

Figure A.5: Errors along a given trajectory.

A.3. Supplementary Results for Dynamics Modeling 185

Table A.6: Training time comparison - Expressed in days (d) or hours (h) on several
datasets.

Model Cylinder Navier-Stokes Shallow-Water Elasticity NACA

CORAL (INR) 6h 1d 5d 4h 2d
CORAL (Process) 1h 4h 1h 1h 1h
NodeMLP 0.5h - - - -
GraphSAGE 1d - - - -
MP-PDE 7h 19h 21h - -
DINo - 8h 2d - -
DeepONet - 6h 5h - -
FNO - 8h 6h 0.5h 0.5h
UNet - - - 0.5h 0.5h
Geo-FNO - - - 1.0h 1.0h
Factorized-FNO - - - 1.0h 1.0h

during In-t and Out-t periods. However, we clearly see on the graphs that DINo

has more difficulties than CORAL to make predictions out-range. Indeed, while

CORAL’s error augmentation remains constant as long as the time evolves, DINo

has a clear increase.

A.3.6 Benchmarking INRs for CORAL

We provide some additional experiments for dynamics modeling with CORAL, but

with diffrents INRs: MFN (Fathony et al., 2021b), BACON (Lindell et al., 2022)

and FourierFeatures (Tancik et al., 2020b). Experiments have been done on Navier-

Stokes on irregular grids sampled from grids of size 128× 128. All training trajecto-

ries share the same grid and are evaluated on a new grid for test trajectories. Results

are reported in Table A.7. Note that we used the same learning hyper-parameters

for the baselines than those used for SIREN in CORAL. SIREN seems to produce

the best codes for dynamics modeling, both for in-range and out-range prediction.

A.3.7 Impact of 2nd order meta-learning

We provide in Figure A.6 the evolution of the reconstruction error through the

training epochs for Navier-Stokes with first-order and second-order meta-learning.

The first order method is able to correctly train until it falls into an unstable regime

for the common parameters. The second order method is much more stable and

achieves a 10x reduction in MSE.

186 Appendix A. Appendix of Chapter 5

Table A.7: CORAL results with different INRs. - Test results in the extrapolation
setting on Navier-Stokes dataset. Metrics in MSE.

Xtr ↓ Xte INR In-t Out-t

SIREN 5.76e-4 2.57e-3
π = 20% MFN 2.21e-3 5.17e-3

irregular grid BACON 2.90e-2 3.32e-2
FourierFeatures 1.70e-3 5.67e-3

SIREN 1.81e-3 4.15e-3
π = 5% MFN 9.97e-1 9.58e-1

irregular grid BACON 1.06 8.06e-1
FourierFeatures 3.60e-1 3.62e-1

Figure A.6: Training of the modulated INR - Comparison on Navier-Stokes over
three independent runs of first order and second order meta-learning. We use the
same number of inner-steps.

A.3.8 Key hyper parameter analysis

Table A.8 presents a hyperparameter study on reconstruction and forecasting tasks

for Navier-Stokes dataset. Three hyperparameters—initial weight w0, latent dimen-

sion dz, and width—are varied to observe their impact. We can notice that:

• w0 = 30 slightly improves the reconstruction on the test set.

• dz = 64 yields a better forecasting In-t performance.

• width = 256 significantly improves the model’s performance across nearly all

metrics.

A.4. Supplementary results for geometry-aware inference 187

Table A.8: Hyper parameter study - Reconstruction and forecasting results on
Navier-Stokes dataset. Metrics in MSE. Reconstruction are reported on the Train
(In-t) and on the Test (In-t + Out-t).

Param ↓ Value ↓ Reconstruction Forecasting

Train Test In-t Out-t

w0
20 3,62e-5 6,86e-5 2,78e-4 1,88e-3
30 3,66e-5 5,85e-5 4,03e-4 2,28e-3

dz
64 3,94e-5 1,11e-4 1,22e-4 1,42e-3
256 2,73e-5 8,03e-5 1,63e-4 2,12e-3

width
64 1,50e-4 2,87e-4 2,84e-4 2,39e-3
256 1,60e-5 6,41e-5 1,23e-4 2,04e-3

CORAL baseline - 1.05e-4 1.21e-4 1.86e-4 1.02e-3

A.4 Supplementary results for geometry-aware

inference

A.4.1 Inverse Design for NACA-airfoil

Once trained as a surrogate model to infer the pressure field on NACA-Euler,

CORAL can be used for the inverse design of a NACA airfoil. We consider an

airfoil’s shape parameterized by seven spline nodes and wish to minimize drag and

maximize lift. We optimize the design parameters in an end-to-end manner. The

spline nodes create the input mesh, which CORAL maps to the output pressure

field. This pressure field is integrated to compute the drag and the lift, and the loss

objective is the squared drag over lift ratio. As can be seen in Figure A.7, iterative

optimization results in an asymmetric airfoil shape, enhancing progressively the lift

coefficient in line with physical expectations. At the end of the optimization we

reach a drag value of 0.04 and lift value of 0.30. Note that CORAL can converge to

this solution with only 50 gradient iterations.

A.5 Qualitative results

In this section, we show different visualization of the predictions made by CORAL

on the three considered tasks in this paper.

A.5.1 Initial Value Problem

We provide in Figure A.8 and Figure A.9 visualizations of the inferred values of

CORAL on Cylinder and Airfoil.

188 Appendix A. Appendix of Chapter 5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Pressure on the volume

0.4900 0.4925 0.4950 0.4975 0.5000 0.5025 0.5050 0.5075

0.496

0.498

0.500

0.502

0.504

Pressure near the airfoil surface

0.6

0.8

1.0

1.2

1.4

Vo
lu

m
e

0.6

0.8

1.0

1.2

1.4

Ne
ar

 th
e

su
rfa

ce

Drag: 0.01, Lift: -0.00

(a) Step = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Pressure on the volume

0.4900 0.4925 0.4950 0.4975 0.5000 0.5025 0.5050 0.5075

0.496

0.498

0.500

0.502

0.504

Pressure near the airfoil surface

0.6

0.8

1.0

1.2

1.4

Vo
lu

m
e

0.6

0.8

1.0

1.2

1.4

Ne
ar

 th
e

su
rfa

ce

Drag: 0.02, Lift: 0.18

(b) Step = 10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Pressure on the volume

0.4900 0.4925 0.4950 0.4975 0.5000 0.5025 0.5050 0.5075

0.496

0.498

0.500

0.502

0.504

Pressure near the airfoil surface

0.4

0.6

0.8

1.0

1.2

1.4

Vo
lu

m
e

0.4

0.6

0.8

1.0

1.2

1.4
Ne

ar
 th

e
su

rfa
ce

Drag: 0.04, Lift: 0.28

(c) Step = 30

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Pressure on the volume

0.4900 0.4925 0.4950 0.4975 0.5000 0.5025 0.5050 0.5075

0.496

0.498

0.500

0.502

0.504

Pressure near the airfoil surface

0.4

0.6

0.8

1.0

1.2

1.4

Vo
lu

m
e

0.4

0.6

0.8

1.0

1.2

1.4

Ne
ar

 th
e

su
rfa

ce

Drag: 0.04, Lift: 0.30

(d) Step = 50

Figure A.7: Design optimization of a NACA-Airfoil. We use CORAL, which has
been trained to infer the pressure from the input mesh, as a surrogate model to
compute the drag and lift forces on the airfoil. The whole optimization procedure
is done end-to-end, and we optimize the 7 parameters in order to maximize the lift
and minimize the drag. We use Adam optimizer.

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
Initial pressure

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
Initial Vx

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
Initial Vy

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
Pred pressure

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
Pred Vx

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
Pred Vy

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
True pressure

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
True Vx

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4
True Vy

0.0

0.5

1.0

1.5

2.0

2.5

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50

0.0

0.5

1.0

1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

0.75

0.50

0.25

0.00

0.25

0.50

0.75

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure A.8: CORAL prediction on Cylinder

A.5. Qualitative results 189

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Initial pressure

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Initial density

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Initial Vx

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Initial Vy

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Pred pressure

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Pred density

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Pred Vx

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
Pred Vy

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
True pressure

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
True density

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
True Vx

0.00 0.05

0.04

0.02

0.00

0.02

0.04

0.06

0.08
True Vy

1

0

1

2

3

4

6

4

2

0

6

4

2

0

1

0

1

2

3

6

4

2

0

6

4

2

0

2.0

1.5

1.0

0.5

0.0

3

2

1

0

1

3

2

1

0

1

2

1

0

1

4

3

2

1

0

5

4

3

2

1

0

Figure A.9: CORAL prediction on Airfoil

A.5.2 Dynamics modeling

We provide in Figure A.11 and Figure A.10 visualization of the predicted trajectories

of CORAL on Navier-Stokes and Shallow-Water.

A.5.3 Geometry-aware inference

We provide in Figure A.12, Figure A.13, Figure A.14 visualization of the predicted

values of CORAL on NACA-Euler, Pipe and Elasticity.

190 Appendix A. Appendix of Chapter 5

Figure A.10: Prediction MSE per frame for CORAL on Navier-Stokes with its
corresponding training grid X . Each row corresponds to a different sampling rate
and the last row is the ground truth. The predicted trajectory is predicted from
t = 0 to t = T ′. In our setting, T = 19 and T ′ = 39.

Figure A.11: Prediction MSE per frame for CORAL on Shallow-Water with its
corresponding training grid X . Each row corresponds to a different sampling rate
and the last row is the ground truth. The predicted trajectory is predicted from
t = 0 to t = T ′. In our setting, T = 19 and T ′ = 39.

A.5. Qualitative results 191

0.496

0.498

0.500

0.502

0.504

Input mesh

0.496

0.498

0.500

0.502

0.504

Ground truth

0.496

0.498

0.500

0.502

0.504

Prediction

0.496

0.498

0.500

0.502

0.504

Input mesh

0.496

0.498

0.500

0.502

0.504

Ground truth

0.496

0.498

0.500

0.502

0.504

Prediction

0.496

0.498

0.500

0.502

0.504

Input mesh

0.496

0.498

0.500

0.502

0.504

Ground truth

0.496

0.498

0.500

0.502

0.504

Prediction

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure A.12: CORAL prediction on NACA-Euler

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input mesh

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ground truth

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Prediction

0.2

0.3

0.4

0.5

0.6

0.7

Input mesh

0.2

0.3

0.4

0.5

0.6

0.7

Ground truth

0.2

0.3

0.4

0.5

0.6

0.7

Prediction

0.2

0.4

0.6

0.8

Input mesh

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ground truth

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Prediction
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Figure A.13: CORAL prediction on Pipe

192 Appendix A. Appendix of Chapter 5

0.0

0.2

0.4

0.6

0.8

1.0
Input mesh

0.0

0.2

0.4

0.6

0.8

1.0
Ground truth

0.0

0.2

0.4

0.6

0.8

1.0
Prediction

0.0

0.2

0.4

0.6

0.8

1.0
Input mesh

0.0

0.2

0.4

0.6

0.8

1.0
Ground truth

0.0

0.2

0.4

0.6

0.8

1.0
Prediction

0.0

0.2

0.4

0.6

0.8

1.0
Input mesh

0.0

0.2

0.4

0.6

0.8

1.0
Ground truth

0.0

0.2

0.4

0.6

0.8

1.0
Prediction

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

0

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure A.14: CORAL prediction on Elasticity

Appendix B

Appendix of Chapter 7

B.1 Extended Related Work

Diffusion models for PDE Recently, diffusion models have experienced signif-

icant growth and success in generative tasks, such as image or video generation

(Ho et al., 2020). This success has motivated their application to physics predic-

tion. Rühling Cachay et al. (2023) propose DYffusion, a framework that adapts

the diffusion process to spatio-temporal data for forecasting on long-time rollouts,

by performing diffusion-like timesteps in the physical time dimension. PDE-Refiner

(Lippe et al., 2023) is a CNN-based method that uses diffusion to stabilize prediction

rollouts over long trajectories. Compared to these methods, we perform diffusion in

a latent space, reducing the computational cost; and leverage the advanced modeling

capabilities of transformers.

Local Neural Fields We are not the first work that proposes to leverage locality

to improve the design of neural fields. In a different approach, Bauer et al. (2023)

proposed a grid-based latent space where the modulation function ϕ is dependent on

the query coordinate x. This concept enables the application of architectures with

spatial inductive biases for generation on the latent representations, such as a U-Net

Denoiser for diffusion processes. Similarly, Lee et al. (2023) developed a locality-

aware, generalizable Implicit Neural Representation (INR) with demonstrated ca-

pabilities in generative modeling. Both of these architectures assume regular input

structures, be it through patching methods or grid-based layouts.

B.2 Implementation details

Diffusion transformer We illustrate how our diffusion transformer is trained

and used at inference in Figure B.1 and Figure B.2. We provide the diffusion step

k which acts as a conditioning input for the diffusion model. We use an exponential

193

194 Appendix B. Appendix of Chapter 7

decrease for the noise level as in Lippe et al. (2023) i.e. αk = 1 − σ
k/K
min . We use

the same diffusion transformer block as in Peebles and Xie (2023), which relies on

amplitude and shift modulations from the diffusion timestamp k:

α(1), β(1), γ(1) ← MLP1(k) (B.1)

α(2), β(2), γ(2) ← MLP2(k) (B.2)

Z[l+1] ← Z[l] + α(1) · Attention(γ(1) · LayerNorm(Z[l]) + β(1)) (B.3)

Z[l+1] ← Z[l+1] + α(2) · FFN(γ(2) · LayerNorm(Z[l+1] + β(2)) (B.4)

... ...

DiT Block
x H

conditioning embedding

... ...

Linear

Linear

output tokens

...

MSE

target tokens

noisy estimateprevious latent token diffusion step

Figure B.1: During training, we noise the next-step latent tokens Zt+∆t and train the
transformer to predict the “velocity” of the noise. Each DIT block is implemented
as in Peebles and Xie (2023).

B.2. Implementation details 195

... ...

Latent Refiner

...output tokens

DENOISE

noisy estimateprevious latent token diffusion step

Figure B.2: At inference, we start from Z̃t+∆t
K ∼ N (0, I) and reverse the diffusion

process to denoise our prediction. We set our prediction Ẑt+∆t = Z̃t+∆t
0 .

Encoder-Decoder We provide a more detailed description of the encoder-decoder

pipeline in Figure B.3.

...

Encode
geometry

Q

... ...

Linear Li
ne

ar

...

multivariate normal parameters

sampling
Self-

Attention

latent tokens

x L

Cross-
Attention

K V

Q

coordinate query

modulation vector

...

MLP output value

feature vector

 frequency embedding

coordinates function values

K

Aggregate
function
values

...

V VK

Q

learnable tokens
encoding prior spatial

information

geometry-aware tokens to
query depending
on the geometry

spatial representation
 of the signal

with a compressed
channel dimensions

Figure B.3: Architecture of our encoder and decoder. We regularize the architecture
as a variational auto-encoder. Cross-attention layers are used to aggregate the N
observations into M latent tokens, and to expand the M processed tokens to the
queried values. We use a bottleneck layer to reduce the channel dimension of the
latent space.

Local INR We show the implementation of our local INR, both with single-band

frequency and multi-band frequency, in Figure B.4 and Figure B.5. The cross-

attention mechanism enables to retrieve a local feature vector fq(x) for each query

position x. We then use an MLP to decode this feature vector to retrieve the

output value. In practice, we retrieve several feature vectors corresponding each

196 Appendix B. Appendix of Chapter 7

to separate frequency bandwidths. In this case, we concatenate the feature vectors

before decoding them with the MLP.

...

Cross-Attention

MLP

output value

feature vector

 frequency embedding

K V

Q

Figure B.4: Single-band local INR decoder of AROMA

B.2. Implementation details 197

...

Cross-Attention

MLP

output value

multi band
feature vectors

multi band
frequency embeddings

K V

Q Q

Figure B.5: Multi-band local INR decoder of AROMA

B.2.1 Hyperparameters

We detail the values of the hyperparameters used on each dataset: Table B.2 presents

the hyperparameters of the Encoder-Decoder, while Table B.1 presents the hyper-

parameters of the Diffusion Transformer. We use a cosine scheduler for the tuning

learning rate for both trainings, with an initial maximum learning rate of 10−3 an-

nealing to 10−5 . All experiments were performed with an NVIDIA TITAN RTX.

For the diffusion transformer, we use K = 3 diffusion steps for all experiments

and only vary the minimum noise σmin.

Table B.1: Diffusion Transformer Hyperparameters for Different Datasets

Hyperparameters Burgers NS1e-3 NS1e-4 NS1e-5 Shallow-water Cylinder-Flow Airfoil-Flow

hidden size 128 128 128 128 128 128 128
depth 4 4 4 4 4 4 4
num heads 4 4 4 4 4 4 4
mlp ratio 4.0 4.0 4.0 4.0 4.0 4.0 4.0
min noise 1e-2 1e-2 1e-3 1e-3 1e-3 1e-3 1e-3
denoising steps 3 3 3 3 3 3 3
epochs 2000 2000 2000 2000 2000 2000 2000

For the encoder-decoder, we have the following hyperparameters:

• hidden dim: The number h of neurons at each hidden layer.

198 Appendix B. Appendix of Chapter 7

• num self attentions: The number of Self Attention layers used for the decoder.

• num latents: The number M of latent tokens used to spatially project the

objervations and geometries.

• latent dim: The dimension c of each latent token.

• latent heads: The number of heads use for the Self Attention layers.

• latent dim head: The dimension of each head in a Self Attention layer.

• cross heads: The number of heads use for the Cross Attention layers.

• cross dim head: The dimension of each head in a Cross Attention layer.

• dim: The number of neurons used in the MLP decoder.

• depth inr: The number of layers in the MLP decoder.

• frequencies: The different frequencies used for the local INR. We use base 2

for all experiments and select 16 frequencies in logarithmic scale per level. For

example, [3, 4, 5] means that we construct 3 frequency embedding vectors, the

first γ1(x) = (cos(20πx), sin(20πx), . . . , cos(23πx), sin(23πx)), for the second

γ2 = (cos(23πx), sin(23πx), . . . , cos(24πx), sin(24πx)), and for the third γ3 =

(cos(24πx), sin(24πx), . . . , cos(25πx), sin(25πx))

• dropout sequence: The ratio of points that are ignored by the encoder.

• feature dim: The dimension of the feature vector.

• encode geo: If we use a cross-attention block to encode the geometry.

• max encoding freq: The maximum frequency used for the frequency embed-

ding γ of the encoder.

• kl weight: The weight β used for the VAE training.

• epochs: Number of training epochs.

The most important hyperparameter of the encoder-decoder is the number of

tokens M that are used to aggregate the observations and geometries. We show the

impact it has on the quality of reconstructions in Table B.3.

B.3. Additional results 199

Table B.2: Hyperparameters of the Encoder-Decoder for Different Datasets

Hyperparameters Burgers NS1e-3 NS1e-4 NS1e-5 Shallow-water Cylinder-Flow Airfoil-Flow

hidden dim 128 128 128 128 128 128 128
num self attentions 2 2 2 3 2 2 3
num latents 32 32 256 256 32 64 64
latent dim 8 16 16 16 16 16 16
latent heads 4 4 4 4 4 4 4
latent dim head 32 32 32 32 32 32 32
cross heads 4 4 4 4 4 4 4
cross dim head 32 32 32 32 32 32 32
dim 128 128 128 128 64 128 128
depth inr 3 3 3 3 3 3 3
frequencies [3, 4, 5] [2, 3] [3, 4, 5] [3, 4, 5] [2, 3] [3, 4, 5] [3, 4, 5]
dropout sequence 0.1 0.1 0.1 0.1 0.1 0.1 0.1
feature dim 16 16 16 16 16 16 16
encode geo False True False False True True True
max encoding freq 4 4 4 4 5 4 5
kl weight 1e-4 1e-4 1e-4 1e-5 1e-5 1e-5 1e-5
epochs 5000 5000 5000 5000 5000 5000 5000

B.3 Additional results

B.3.1 Time complexity analysis

We denote N as the number of observations of u, M as the number of tokens used

to compress the information, T as the number of autoregressive calls in the rollout,

K as the number of refinement steps, and d as the number of channels used in

the attention mechanism. The most computationally expensive operations in our

architecture are the cross-attention and self-attention blocks. For simplification, we

omit the geometry encoding block in this study.

The cost of the cross-attention in the encoder is O(NMd), and similarly, the

cost of the cross-attention in the decoder is O(NMd). Let L1 and L2 represent

the number of layers in the decoder and diffusion transformer, respectively. The

cost of the self-attention layers in the decoder is O(L1M
2d), while in the diffusion

transformer, it is O(4L2M
2d).

To unroll the dynamics, we encode the initial condition, obtain the predictions

in the latent space, and then decode in parallel, yielding a total cost of O((2N +

4KTL2M + L1M)Md). As expected, our architecture has linear complexity in the

number of observations through the cross-attention layers. In contrast, GNOT relies

on linear attention, resulting in a time complexity of O((LN)d2) for each prediction,

where L is the depth of the network. At inference, the cost per step along a trajectory

is LNd2 for GNOT, compared to 4KL2M
2d for AROMA.

For instance, using K = 3, M = 64, N = 4096, and d = 128, GNOT’s cost is

approximately 10 times that of AROMA for each prediction throughout the rollout.

Therefore AROMA is more efficient when M ≪ N .

200 Appendix B. Appendix of Chapter 7

B.3.2 Encoding interpretation

We provide in Figure B.6 a qualitative analysis through cross-attention visualizations

how the geometry encoding block helps to capture the geometry of the domain. In

the first cross-attention block, the query tokens T are not aware of the geometry and

therefore attend to large regions of the domains. This lets the model understand,

where the boundaries of the domain are and therefore where the cylinder is. Once

the query tokens have aggregated the mesh information, the cross attention between

Tgeo and the positions are sharper and depend on the geometry.

Cross-Attention on T Cross-Attention on Tgeo

Can be interpreted as a prior spatial
representation of the different domains. The query
tokens are learnt to attend to the « important »
regions of the domains.

Token 22

Token 23

Geometry
encoding

Geometry
encoding

 aggregates information of the different
positions in the domain and therefore reflects its
geometry. Its cross-attention maps are sharper
and adapted to the geometry.

Tgeo

Figure B.6: Evolution of the cross-attention maps between the geometry encoding
stage and the observation encoding stage. Blue means the cross-attention value is
close to zero while yellow means the cross-attention score is close to one.

B.3.3 Example rollouts

We show examples of rollout predictions using AROMA on Burgers dataset in Fig-

ure B.7, on Navier-Stokes 1 × 10−3 dataset in Figure B.9 and on CylinderFlow in

Figure B.10. AROMA returns predictions that remain stable and accurate, even

outside the training time horizon.

For Navier-Stokes, we show an example of test trajectory in the training horizon

(Figure B.9a) and in extrapolation (Figure B.9b).

B.3. Additional results 201

0 20 40 60 80 100

2

1

0

1

2

Long rollout prediction

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.7: Test example of a long rollout trajectory with AROMA on Burgers.
Left is the predicted trajectory and right is the ground truth.

0 20 40 60 80 100
Index

3

2

1

0

1

2

3

Va
lu

e

100 rollouts

0 20 40 60 80 100
Index

200 rollouts

0 20 40 60 80 100
Index

400 rollouts
Mean Std Dev

Figure B.8: Uncertainty of AROMA over rollout steps. The blue line is the mean
prediction while the blue shade represents the mean± 3× standard deviation.

pred

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

gt

(a) In-t

pred

t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 t36 t37 t38 t39

gt

(b) Out-t

Figure B.9: Test example rollout trajectories with AROMA on Navier-Stokes 1 ×
10−3. Top: predicted trajectory on In-t. Bottom: trajectory on Out-t. First row
in each subfigure shows the prediction, the second row shows the ground truth.

202 Appendix B. Appendix of Chapter 7

t=
40

Predictions Ground Truth Delta

t=
41

t=
42

t=
43

t=
44

Figure B.10: Visualization of AROMA’s predictions on Cylinder for (Out-t). The
left panel shows the prediction, the middle panel displays the ground truth, and the
right panel is the point-wise error.

B.3.4 Scaling experiments

In Figure B.11, we compare the reconstruction and prediction capabilities of CORAL

and AROMA on Navier-Stokes 1 × 10−4 given the number of training trajectories.

As evidenced, our architecture outperforms CORAL significantly when the number

of trajectories is greater than 103, highlighting its efficacy in handling large amounts

of data..

101 102 103 104

Number of Training Samples
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e

Er
ro

r

Test reconstruction error
CORAL
AROMA

(a) Step 1: Autoencoding

101 102 103 104

Number of Training Samples

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

Er
ro

r

Test prediction error
CORAL
AROMA

(b) Step 2: Rollout prediction

Figure B.11: Scaling comparison of AROMA & CORAL: relative L2 error with
respect to the number of training trajectories

B.3.5 Spatial tokens perturbation analysis

To validate the spatial interpretation of our latent tokens, we establish a baseline

code Z0, and introduce perturbations by sequentially replacing the j-th token, z0
j ,

with subsequent tokens along the trajectory, denoted as z1
j , z

2
j , . . . ,z

t
j. Thus, the

perturbed tokens mirror Z0 in all aspects except for the j-th token, which evolves

according to the true token dynamics. We show reconstruction visualizations of

B.3. Additional results 203

the perturbed tokens in Figures B.12 to B.19. On the right side, we show the

groundtruth of the trajectory. On the left side, is the change in AROMA’s prediction

in response to the token perturbation. These figures show that the perturbation of a

token only impacts the reconstructed field locally, which validates the spatial struc-

ture of our tokens. Additionally, we can notice some interesting effects of the token

perturbations near the boundaries in Figures B.14 and B.19: our encoder-decoder

has discovered from data and without explicit supervision that the solutions had

periodic boundary conditions by leveraging the encoded geometry and the function

values. This validates the architecture of our cross-attention module between the

function values, the spatial coordinates and the geometry-aware tokens.

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200
Tim

estam
p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.12: Perturbation analysis on Burgers. Token 0.

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.13: Perturbation analysis on Burgers. Token 1.

204 Appendix B. Appendix of Chapter 7

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.14: Perturbation analysis on Burgers. Token 2.

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.15: Perturbation analysis on Burgers. Token 3.

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.16: Perturbation analysis on Burgers. Token 5.

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.17: Perturbation analysis on Burgers. Token 6.

B.3. Additional results 205

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.18: Perturbation analysis on Burgers. Token 7.

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure B.19: Perturbation analysis on Burgers. Token 8.

206 Appendix B. Appendix of Chapter 7

B.3.6 Ablation studies

Number of tokens M We show the impact of the number of latent tokens on

the Navier-Stokes 1 × 10−4 dataset in Table B.3. We train our auto-encoder with

10000 trajectories. We can see that the performance increases with the number of

tokens.

#Latent Tokens Test Reconstruction error

64 0.02664
128 0.0123
256 0.01049

Table B.3: Influence of the number of latent tokens on the test reconstruction ca-
pabilities on Navier-Stokes 1× 10−4. Performance in Relative L2 Error.

Auto-encoding vs VAE Our framework can also be used without the KL reg-

ularization, and could potentially be employed with other forms of regularization,

such as L2 regularizaton or vector-quantization (Oord et al., 2017). We investi-

gated in Table B.4 the impact the KL regularization had on the overall rollout

performance, and selected an autoencoder with L2 regularization (weight decay) as

baseline. Our conclusion is that using an autoencoder with L2 regularization is a

viable alternative to the VAE in some cases for achieving a smooth latent space.

The autoencoder demonstrated superior performance on two datasets (Burgers and

Navier-Stokes 1×10−4, explained by its lower reconstruction errors, which translate

into better rollout performance. However, for the more challenging Navier-Stokes

1 × 10−5 case, the autoencoder’s latent space exhibited high variance, which may

explain the observed performance difference with the VAE.

No-diffusion vs diffusion As an ablation, we also measured the influence of the

diffusion formulation on the rollout accuracy by comparing to the same transformer

architecture trained directly with an MSE on the mean tokens. The deterministic

version of AROMA shows consistently robust performance and even surpasses the

diffusion version on the Navier-Stokes 1×10−4 case (Table B.4). This demonstrates

that the latent tokens obtained with AROMA contain meaningful information for

dynamics modeling. On the other hand, the deterministic version yields less accurate

long rollouts on Burgers or KS in Figure B.20 and Figure 7.3. Note that using

diffusion allows us to model the trajectory distribution, which opens the way to infer

statistics on this distribution. This is key, for example, when modeling uncertainty,

which is a critical problem for these models.

B.3. Additional results 207

Latent MLP vs Latent Transformer Modeling interactions at the local and

global levels is key to learn the dynamics faithfully. Experiments using MLPs (Ta-

ble B.4) as time steppers which do not consider interactions between tokens lead to

significantly lower performance compared to transformers.

Table B.4: Ablation Study. Metrics in Relative L2 on the test set.

Model Burgers Navier-Stokes Navier-Stokes
1× 10−4 1× 10−5

AROMA + auto-encoding 3.43× 10−2 5.02× 10−2 2.10× 10−1

AROMA w/o diffusion 4.31× 10−2 7.50× 10−2 1.28× 10−1

AROMA + mlp 1.11× 10−1 1.00× 100 8.25× 10−1

AROMA 3.65× 10−2 1.05× 10−1 1.24× 10−1

B.3.7 Kuramoto-Sivashinsky : a failure case

We conducted additional experiments on a chaotic 1D PDE, the Kuramoto-

Sivashinsky (KS) equation. We found that AROMA currently struggles with dy-

namics that exhibit chaotic phenomena and non-decaying spectra, as shown in Fig-

ure B.20. The primary limitation appears to be the reconstruction capabilities of

the encoder-decoder. For the KS equation, we found that obtaining reconstructions

with an MSE in the range of 1e-10 to 1e-12 was necessary for accurate spectrum

reconstruction. Like all models leveraging a reduced latent representation space,

AROMA inherently loses some of the fine-grained details necessary for accurately

capturing chaotic behavior. The diffusion framework slightly improves the high cor-

relation time compared to the deterministic version, however the main bottleneck

comes from the decoder (Table B.5). In conclusion, while AROMA performs very

well on simpler dynamics, dealing with chaotic phenomena requires more involved

modeling that explicitly targets the chaotic component. Note that using dedicated

modules for this purpose is a current practice in fluid dynamics - e.g. LES (Large

eddy simulation).

Table B.5: Test results on the KS equation. The evaluated metrics include: 1-step
prediction MSE, MSE over the entire rollout (160 timestamps), and the duration for
which the correlation between the generated samples and the ground truth remains
above 0.8.

Baseline 1 step. MSE Rollout MSE Corr. ≥ 0.8

AROMA w/o diffusion 1.25× 10−5 2.20× 100 32.8s
AROMA 1.81× 10−5 2.07× 100 36.0s

208 Appendix B. Appendix of Chapter 7

0 20 40 60 80 100 120
Wavenumber

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

Am
pl

itu
de

Spectrum of the one-step predictions
Ground truth
AROMA No diffusion
AROMA

(a) Spectrum of AROMA’s 1-step predic-
tions vs ground truth.

0 20 40 60 80 100 120
Time

10 5

10 4

10 3

10 2

10 1

100

M
SE

 lo
ss

AROMA
AROMA No Diffusion

(b) Comparison of the MSE loss (↓) with
and without diffusion.

Figure B.20: Qualitative results on KS equation.

B.3.8 Latent space dynamics

For Navier-Stokes, we show how the mean (Figure B.21) and standard deviation

tokens (Figure B.22) evolve over time for a given test trajectory. We show the

predicted trajectory of the latent tokens Z in the latent space in Figure B.23. In

practice, the tokens where the logvar is 0 (i.e. a high variance) on Figure B.22 do

not impact the prediction (Rolinek et al., 2019). We can therefore see, that ouf of

the 16 tokens used, the most influential ones are Token 6, 7, 8, 9, 15, 16, as they

clearly exhibit non-noisy patterns.

B.3. Additional results 209

0 20 40

1.0

0.5

0.0

Token 1

0 20 40

1.0

0.5

0.0

Token 2

0 20 40

1.0

0.5

0.0

Token 3

0 20 40

1.0

0.5

0.0

Token 4

0 20 40
2

1

0

1
Token 5

0 20 40

2

0

2

Token 6

0 20 40

4

2

0

2

4
Token 7

0 20 40

2

1

0

1

2
Token 8

0 20 40

2

0

2

Token 9

0 20 40

1.0

0.5

0.0

Token 10

0 20 40

1.0

0.5

0.0

Token 11

0 20 40

2

1

0

1
Token 12

0 20 40

1.0

0.5

0.0

Token 13

0 20 40

1.0

0.5

0.0

Token 14

0 20 40

2

0

2

Token 15

0 20 40
1

0

1

2

Token 16

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15

Figure B.21: Latent space dynamics on Navier-Stokes 1e-3 - Mean tokens over time.
Each color line is a different token channel.

210 Appendix B. Appendix of Chapter 7

0 20 40

2.0

1.5

1.0

0.5

0.0
Token 1

0 20 40
2.0

1.5

1.0

0.5

0.0
Token 2

0 20 40

2.0

1.5

1.0

0.5

0.0
Token 3

0 20 40
2.0

1.5

1.0

0.5

0.0
Token 4

0 20 40

4

3

2

1

0
Token 5

0 20 40

10

8

6

4

2

0
Token 6

0 20 40

10.0

7.5

5.0

2.5

0.0
Token 7

0 20 40

8

6

4

2

0
Token 8

0 20 40

8

6

4

2

0
Token 9

0 20 40
2.0

1.5

1.0

0.5

0.0
Token 10

0 20 40

1.5

1.0

0.5

0.0
Token 11

0 20 40
4

3

2

1

0
Token 12

0 20 40
2.0

1.5

1.0

0.5

0.0
Token 13

0 20 40
2.0

1.5

1.0

0.5

0.0
Token 14

0 20 40

10

8

6

4

2

0
Token 15

0 20 40
8

6

4

2

0
Token 16

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15

Figure B.22: Latent space dynamics on Navier-Stokes - Logvar tokens over time.
Each color line is a different token channel.

B.3. Additional results 211

0 20 40

1.0

0.5

0.0

Token 1

0 20 40

1.0

0.5

0.0

Token 2

0 20 40

1.0

0.5

0.0

Token 3

0 20 40

1.0

0.5

0.0

Token 4

0 20 40
2

1

0

1
Token 5

0 20 40

2

0

2

Token 6

0 20 40

4

2

0

2

4
Token 7

0 20 40

2

1

0

1

2
Token 8

0 20 40

2

0

2

Token 9

0 20 40

1.0

0.5

0.0

Token 10

0 20 40

1.0

0.5

0.0

Token 11

0 20 40

2

1

0

1
Token 12

0 20 40

1.0

0.5

0.0

Token 13

0 20 40

1.0

0.5

0.0

Token 14

0 20 40

2

0

2

Token 15

0 20 40
1

0

1

2

3
Token 16

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15

Figure B.23: Latent space dynamics on Navier-Stokes - Predicted tokens over time.
Each color line is a different token channel.

Appendix C

Appendix of Chapter 8

C.1 Related Work

C.1.1 Learning parametric PDEs

The classical ML paradigm The classical ML paradigm for solving paramet-

ric PDEs consists in sampling from the PDE parameter distribution trajectories to

generalize to new PDE parameter values. It is the classical ERM approach. The

natural way for generalizing to new PDE parameters is to explicitly embed them in

the neural network (Brandstetter et al., 2022d). Takamoto et al. (2023) proposed a

channel-attention mechanism to guide neural solvers with the physical coefficients

given as input; it requires complete knowledge of the physical system and are not

designed for other PDE parameter values, e.g., boundary conditions. It is commonly

assumed that prior knowledge are not available, but instead rely on past states of

trajectories for inferring the dynamics. Neural solvers and operators learn paramet-

ric PDEs by stacking the past states as channel information as done in Li et al.

(2021), or by creating additional temporal dimension as done in video prediction

contexts (Ho et al., 2022; McCabe et al., 2023). Their performance drops when

shifts occur in the data distribution, which is often met with parametric PDEs, as

small changes in the PDE parameters can lead to various dynamics. To better gen-

eralize to new PDE parameter values, Subramanian et al. (2023) instead leverages

fine-tuning from pretrained models to generalize to new PDE parameters. It how-

ever often necessitates a relatively large number of fine tuning samples to effectively

adapt to new PDE parameter values, by updating all or a subset of parameters

(Herde et al., 2024; Hao et al., 2024).

Gradient-based adaptation To better adapt to new PDE parameters values at

inference, several works have explored learning on multiple environments. During

training, a limited number of environments are available, each corresponding to a

specific PDE instance. Yin et al. (2022a) introduced LEADS, a multi-task frame-

212

C.1. Related Work 213

work for learning parametric PDEs, where a shared model from all environments

and a model specific to each environment are learned jointly. At inference, for a

new PDE instance, the shared model remain frozen and only a model specific to

that environment is learned. Kirchmeyer et al. (2022) proposed to perform adaptive

conditioning in the parameter space; the framework adapts the weights of a model

to each environment via a hyper-network conditioned by a context vector ce specific

to each environment. At inference, the model adapts to a new environment by only

tuning ce. Park et al. (2023) bridged the gap from the classical gradient-based meta-

learning approaches by addressing the limitations of second-order optimization of

MAML and its variants (Finn et al., 2017; Zintgraf et al., 2019b). Other works have

also extended these frameworks to quantify uncertainty of the predictions : Jiaqi

et al. (2024) proposed a conditional neural process to capture uncertainty in the con-

text of multiple environments with sparse trajectories, while Nzoyem et al. (2024)

leveraged information from multiple environments to enable more robust predictions

and uncertainty quantification.

In-context learning for PDE Inspired by the in-context learning (ICL)

paradigm in large language models (LLMs), recent works have explored adapting

this approach for solving PDEs and modeling dynamical systems. One of the earliest

efforts in this direction is Yang et al. (2023), which aims to learn operators capable of

adapting to different physical scenarios by leveraging in-context examples. Their ap-

proach utilizes an encoder-decoder transformer, where the transformer encodes the

context prompt. This prompt, together with a query, is then passed to the decoder,

which predicts the corresponding output values of the state vector. However, since

functions are represented as scattered point tokens, the model encounters computa-

tional complexity challenges and is primarily limited to 1D ODEs or sparse 2D data.

Cao et al. (2024) extends this framework by leveraging vision transformers (ViTs)

that operate on image patches, similar to the ViT baseline used in our experiments.

However, their evaluation is conducted on a physics setting with limited diversity.

Chen et al. (2024) takes a different approach, focusing on unsupervised pretrain-

ing for operator learning. Their method involves pretraining the encoder-decoder of

neural operators on proxy tasks (such as masked prediction or super-resolution) that

require only snapshots of the dynamics rather than full simulation data, followed

by fine-tuning on target dynamics. In this case, ICL is used only at inference time,

where context examples similar to a query input are retrieved from the training set,

and their solutions are aggregated and averaged to form the final prediction. This

setting differs significantly from ours. Notably, all these approaches rely on deter-

ministic ViT-like architectures, whereas our method employs a generative stochastic

model.

Note that in-context learning is still a not well understood phenomenon and that

different hypotheses are being explored which attempt to fill this gap Dong et al.

214 Appendix C. Appendix of Chapter 8

(2024). Two prevalent explanations come from a Bayesian perspective on ICL as

introduced in a popular paper Xie et al. (2022) and the gradient descent view as

introduced e.g. in Dai et al. (2023) that identied a dual form between transformer

attention and gradient descent highlighting relations between GPT-based ICL and

expicit fine tuning.

C.1.2 Generative models

Auto-regressive Transformers for Images and Videos Recent works have

explored combining language modeling techniques with image and video genera-

tion, typically using a VQ-VAE (Oord et al., 2017) paired with a causal transformer

(Esser et al., 2021) or a bidirectional transformer (Chang et al., 2022). VQGAN

(Esser et al., 2021) has become the leading framework by incorporating perceptual

and adversarial losses to improve the visual realism of decoder outputs from quan-

tized latent representations. However, while these methods succeed in generating

visually plausible images, they introduce a bias—driven by perceptual and adver-

sarial losses—that leads the network to prioritize perceptual similarity and realism,

often causing reconstructions to deviate from the true input. In contrast, Zebra fo-

cuses on maximizing reconstruction accuracy, and we did not observe benefits from

using adversarial or perceptual losses during training.

In video generation, models like Magvit (Yu et al., 2023a) and Magvit2 (Yu

et al., 2023b) adopt similar strategies, using 3D CNN encoders to compress se-

quences of video frames into spatiotemporal latent representations by exploiting the

structural similarities between successive frames in a video. However, such temporal

compression is unsuitable for modeling partial differential equations (PDEs), where

temporal dynamics can vary significantly between frames depending on the temporal

resolution. With Zebra, we spatially compress observations using the encoder and

learn the temporal dynamics with an auto-regressive transformer, avoiding temporal

compression.

C.2 Dataset details

C.2.1 Advection

We consider a 1D advection equation with advection speed parameter β:

∂tu+ β∂xu = 0

For each environment, we sample β with a uniform distribution in [0, 4]. We

sample 1200 parameters, and 10 trajectories per parameter, constituting a training

set of 12000 trajectories. At test time, we draw 12 new parameters and evaluate the

performance on 10 trajectories each.

C.2. Dataset details 215

Table C.1: Dataset Summary

Dataset Name Number of env. Trajectories per env. Main parameters

Advection 1200 10 Advection speed
Heat 1200 10 Diffusion and forcing

Burgers 1200 10 Diffusion and forcing
Wave boundary 4 3000 Boundary conditions

Combined equation 1200 10 α, β, γ

Wave 2D 1200 10 Wave celerity and damping
Vorticity 2D 1200 10 Diffusion

We fix the size of the domain L = 128 and draw initial conditions as described in

Equation (C.2) in Appendix C.2.5 and generate solutions with the method of lines

and the pseudo-spectral solver described in Brandstetter et al. (2022d). We take 140

snapshots along a 100s long simulations, which we downsample to 14 timestamps

for training. We used a spatial resolution of 256.

C.2.2 Burgers

We consider the Burgers equation as a special case of the combined equation

described in Appendix C.2.5 and initially in Brandstetter et al. (2022d), with

fixed γ = 0 and α = 0.5. However, in this setting, we include a forcing term

δ(t, x) =
∑J

j=1Aj sin(ωjt+2πℓjx/L+ϕj) that can vary across different environments.

We fix J = 5, L = 16. We draw initial conditions as described in Equation (C.2).

For each environment, we sample β with a log-uniform distribution in [1e −
3, 5], and sample the forcing term coefficients uniformly: Aj ∈ [−0.5, 0.5], ωj ∈
[−0.4,−0.4], ℓj ∈ {1, 2, 3}, ϕj ∈ [0, 2π]. We create a dataset of 1200 environments

with 10 trajectories for training, and 12 environments with 10 trajectories for testing.

We use the solver from Brandstetter et al. (2022d), and take 250 snapshots along

the 4s of the generations. We employ a spatial resolution of 256 and downsample

the temporal resolution to 25 frames.

C.2.3 Heat

We consider the heat equation as a special case of the combined equation described

in Appendix C.2.5 and initially in Brandstetter et al. (2022d), with fixed γ = 0 and

α = 0. However, in this setting, we include a forcing term δ(t, x) =
∑J

j=1Aj sin(ωjt+

2πℓjx/L + ϕj) that can vary across different environments. We fix J = 5, L = 16.

We draw initial conditions as described in Equation (C.2).

For each environment, we sample β with a log-uniform distribution in [1e −
3, 5], and sample the forcing term coefficients uniformly: Aj ∈ [−0.5, 0.5], ωj ∈

216 Appendix C. Appendix of Chapter 8

[−0.4,−0.4], ℓj ∈ {1, 2, 3}, ϕj ∈ [0, 2π]. We create a dataset of 1200 environments

with 10 trajectories for training, and 12 environments with 10 trajectories for testing.

We use the solver from Brandstetter et al. (2022d), and take 250 snapshots along

the 4s of the generations. We employ a spatial resolution of 256 and downsample

the temporal resolution to 25 frames.

C.2.4 Wave boundary

We consider a 1D wave equation as in Brandstetter et al. (2022d).

∂ttu− c2∂xxu = 0, x ∈ [−8, 8]

where c is the wave velocity (c = 2 in our experiments). We consider Dirichlet

B[u] = u = 0 and Neumann B[u] = ∂xu = 0 boundary conditions.

We consider 4 different environments as each boundary can either respect Neu-

mann or Dirichlet conditions, and sample 3000 trajectories for each environment.

This results in 12000 trajectories for training. For the test set, we sample 30 new

trajectories from these 4 environments resulting in 120 test trajectories.

The initial condition is a Gaussian pulse with a peak at a random location.

Numerical ground truth is generated with the solver proposed in Brandstetter et al.

(2022d). We obtain ground truth trajectories with resolution (nx, nt) = (256, 250),

and downsample the temporal resolution to obtain trajectories of shape (256, 60).

C.2.5 Combined equation

We used the setting introduced in Brandstetter et al. (2022d), but with the exception

that we do not include a forcing term. The combined equation is thus described by

the following PDE:

[∂tu+ ∂x(αu
2 − β∂xu+ γ∂xxu)](t, x) = δ(t, x), (C.1)

δ(t, x) = 0, u0(x) =
J∑
j=1

Aj sin(2πℓjx/L+ ϕj). (C.2)

For training, we sampled 1200 triplets of parameters uniformly within the ranges

α ∈ [0, 1], β ∈ [0, 0.4], and γ ∈ [0, 1]. For each parameter instance, we sample

10 trajectories, resulting in 12000 trajectories for training and 120 trajectories for

testing. We used the solver proposed in Brandstetter et al. (2022c) to generate

the solutions. The trajectories were generated with a spatial resolution of 256 for

10 seconds, along which 140 snapshots are taken. We downsample the temporal

resolution to obtain trajectories with shape (256, 14).

C.2. Dataset details 217

C.2.6 Vorticity

We propose a 2D turbulence equation. We focus on analyzing the dynamics of the

vorticity variable. The vorticity, denoted by ω, is a vector field that characterizes

the local rotation of fluid elements, defined as ω = ∇×u. The vorticity equation is

expressed as:
∂ω

∂t
+ (u · ∇)ω − ν∇2ω = 0 (C.3)

Here, u represents the fluid velocity field, ν is the kinematic viscosity with ν = 1/Re.

For the vorticity equation, the parametric problem consists in learning dynamical

systems with changes in the viscosity term.

For training, we sampled 1200 PDE parameter values in the range ν = [1e −
3, 1e− 2]. For test, we evaluate our model on 120 new parameters not seen during

training in the same paramter range. For each parameter instance, we sample 10

trajectory, resulting in 12000 trajectories for training and 1200 for test.

Data generation For the data generation, we use a 5 point stencil for the clas-

sical central difference scheme of the Laplacian operator. For the Jacobian, we use

a second order accurate scheme proposed by Arakawa that preserves the energy,

enstrophy and skew symmetry (Arakawa, 1966). Finally for solving the Poisson

equation, we use a Fast Fourier Transform based solver. We discretize a periodic

domain into 512× 512 points for the DNS and uses a RK4 solver with ∆t = 1e− 3

on a temporal horizon [0, 2]. We then perform a temporal and spatial down-sample

operation, thus obtaining trajectories composed of 10 states on a 64× 64 grid.

We consider the following initial conditions:

E(k) =
4

3

√
π

(
k

k0

)4
1

k0
exp

(
−
(
k

k0

)2
)

(C.4)

Vorticity is linked to energy by the following equation :

ω(k) =

√
E(k)

πk
(C.5)

C.2.7 Wave 2D

We propose a 2D damped wave equation, defined by

∂2ω

∂t2
− c2∆ω + k

∂ω

∂t
= 0 (C.6)

where c is the wave speed and k is the damping coefficient. We are only interested

in learning ω. To tackle the parametric problem, we sample 1200 parameters in

218 Appendix C. Appendix of Chapter 8

the range c = [0, 50] and k = [100, 500]. For validation, we evaluate our model

on 120 new parameters not seen during training in the same paramter range. For

each parameter instance, we sample 10 trajectory, resulting in 12000 trajectories for

training and 1200 for validation.

Data generation For the data generation, we consider a compact spatial domain

Ω represented as a 64 × 64 grid and discretize the Laplacian operator similarly. ∆

is implemented using a 5× 5 discrete Laplace operator in simulation. For boundary

conditions, null neumann boundary conditions are imposed. We set ∆t = 6.25e −
6 and generate trajectories on the temporal horizon [0, 5e − 3]. The simulation

was integrated using a fourth order runge-kutta schema from an initial condition

corresponding to a sum of gaussians:

ω0(x, y) = C

p∑
i=1

exp

(
−(x− xi)2 + (y − yi)2

2σ2
i

)
(C.7)

where we choose p = 5 gaussians with σi ∼ U[0.025,0.1], xi ∼ U[0,1], yi ∼ U[0.,1]. We

fixed C to 1 here. Thus, all initial conditions correspond to a sum of gaussians of

varying amplitudes.

C.3 Architecture details

C.3.1 Baseline implementations

For all baselines, we followed the recommendations given by the authors. We report

here the architectures used for each baseline:

• CODA: For CODA, we implemented a U-Net Ronneberger et al. (2015a) and

a FNO (Li et al., 2020a) as the neural network decoder. For all the different

experiments, we reported in the results the best score among the two backbones

used. We trained the different models in the same manner as Zebra, i.e.

via teacher forcing (Radford et al., 2018). The model is adapted to each

environment using a context vector specific to each environment. For the size

of the context vector, we followed the authors recommendation and chose a

context size equals to the number of degrees of freedom used to define each

environment for each dataset. At inference, we adapt to a new environment

using 250 gradient steps.

• CAPE: For CAPE (Takamoto et al., 2023), we adapted the method to an adap-

tation setting. Instead of giving true physical coefficients as input, we learn

to auto-decode a context vector ce as in CODA, which implicitly embeds the

specific characteristics of each environment. During inference, we only adapt

C.3. Architecture details 219

ce with 250 gradient steps. For the architectures, we use UNET and FNO as

the backbones, and reported the best results among the two architectures for

all settings.

• [CLS] ViT: For the ViT, we use a simple vision transformer architecture Doso-

vitskiy et al. (2021), but adapt it to a meta-learning setting where the CLS

token encodes the specific variations of each environment. At inference, the

CLS token is adapted to a new environment with 100 gradient steps.

• ViT-in-context: We implement ViT-in-context using a standard trans-

former architecture with separate temporal and spatial attention mechanisms,

following Ho et al. (2019). During both training and inference, context ex-

amples are stacked along the temporal dimension. The model is trained to

predict the next frame in the target sequence, conditioned on both the con-

text examples and the preceding frames of the target sequence.

C.3.2 Zebra additional details

Zebra We describe the pretraining strategy in Section 8.3, and provide details on

the architecture and its hyperparameters in Appendix C.3. The datasets used are

described in Appendix C.2. We plan to release the code, the weights of the models,

and the datasets used in this study upon acceptance.

For clarity, we outline the pretraining steps of Zebra in Figure C.1 illustrated

with the vorticity 2D dataset.

We also provide illustrations of our inference pipeline in Figure C.2. We finally

include a schematic view of the different generation possibilities with Zebra in Fig-

ure C.4, using the sequence design adopted during pretraining.

Zebra + UNet Zebra is competitive both in-distribution and out-of-distribution,

while also enabling uncertainty quantification due to its generative nature. Addi-

tionally, Zebra can generate novel trajectories and initial conditions, providing a

way to sample complex initial states. As such Zebra is already faster than gradient-

based adaptation methods, but since the model generates trajectory solutions token

by token, the number of calls to the transformer increases by one or two orders of

magnitude compared to direct surrogate modeling, making the process costly.

In this section, we propose a hybrid approach that leverages Zebra’s pretrained

knowledge in combination with a conventional neural surrogate model. The objec-

tive is to develop a framework that encodes context trajectories into an embedding

vector, which then conditions a neural surrogate, similar to classical adaptation

methods such as CODA and CAPE.

To achieve this, we finetune Zebra as an encoder to adapt a conditional surrogate

model, such as a UNet (Ronneberger et al., 2015a). We introduce a [DYN] token

220 Appendix C. Appendix of Chapter 8

1

...

Codebook
2 3 4 ...

3

1

4 4
44

4

4

4K K

2
2

22

2

CNN
Encoder Decoder

CNN

quantization

quantized codescodes K

Time Time

Tokenize Tokenize

Trajectory 1 Trajectory 2

Trajectories sharing the same dynamics

<bot> <eot> <bot><bos> <eos><eot>

Input: Sequence of indices

Output: Next token probabilties

Transformer

...

...

Special
tokens

<bos>

<bot> <eot>

begin of sequence

begin of new trajectory end of trajectory

end of sequence<eos>

Output: reconstructionInput: physical field

VQVAE1

2 In-context Pretraining

Figure C.1: Zebra’s pretraining includes two stages. 1) A finite vocabulary of phys-
ical phenomena is learned by training a VQ-VAE on spatial representations. 2)
During the pretraining, multiple trajectories sharing the same dynamics are tok-
enized and concatenated into a common sequence S. The transformer is trained to
predict the next-token by minimizing the cross-entropy loss.

C.3. Architecture details 221

Time

Tokenize Tokenize

Context trajectory

Initial condition

<bot> <eot> <bot><bos>

Transformer

generated tokens

Auto-regressive
generation

DeTokenize

Time

Generated Trajectory

Figure C.2: Zebra’s inference pipeline from context trajectory. The context trajec-
tory and initial conditions are tokenized into index sequences that are concatenated
according to the sequence design adopted during pretraining. The transformer then
generates the next tokens to complete the sequence. We detokenize these indices to
get back to the physical space.

(short for dynamics), which is appended to the right of the context sequence during

both training and inference. This allows Zebra to extract a dynamics embedding

from the transformer’s output, defined as:

ξS = Transformer(S, [DYN])

where S represents a sequence of tokens encoding the context trajectories. The

embedding ξS captures key properties of the dynamics and is mapped to the condi-

tioning space of a UNet, which adapts the model to each specific dynamics. Follow-

ing Gupta and Brandstetter (2022), the UNet conditioning modifies the network’s

biases. Once the dynamics embedding is extracted, the UNet can directly predict

the next state from the current state :

ût+∆t = UNet(ut, ξS).

With this architecture, we effectively extract the key dynamics from example trajec-

tories and use this information to adapt a neural surrogate, significantly accelerating

inference. The complete pipeline at inference is illustrated in Figure C.3.

To efficiently finetune Zebra, we apply LoRA (Hu et al., 2021), keeping the

transformer’s weights frozen while learning low-rank updates. This setup enables the

UNet to leverage Zebra’s pre-learned representations while achieving a substantial

speedup. Compared to standalone Zebra, integrating a UNet improves inference

speed by a factor of ×30 in 1D and ×150 in 2D. The method is also considerably

222 Appendix C. Appendix of Chapter 8

faster than CODA and CAPE while maintaining competitive performance across

tasks. The inference times are summarized in Table 8.4.

Finally we illustrate the inference pipeline for accelerating the inference of Zebra

with the UNet in Figure C.3.

Tokenize

<bot> ...<bos>

Transformer

Example Trajectory 1 Example Trajectory 2

Tokenize

[DYN]

UNet

dynamics embedding

Figure C.3: Zebra + UNet inference pipeline. Zebra serves as an encoder, utilizing
the special token [DYN] to generate a dynamics embedding ξ from the context ex-
ample trajectories. Once this embedding is obtained, the UNet can autoregressively
forecast the sequence significantly faster than a next-token transformer.

C.3.3 Auto-regressive transformer

Zebra’s transformer is based on Llama’s architecture, which we describe informally

in Figure C.5. We use the implementation provided by HuggingFace (Wolf, 2019)

and the hyperparameters from Table C.2 in our experiments. For training the trans-

former, we used a single NVIDIA TITAN RTX for the 1D experiments and used a

single A100 for training the model on the 2D datasets. Training the transformer on

2D datasets took 20h on a single A100 and it took 15h on a single RTX for the 1d

dataset.

C.3.4 VQVAE

The quantizer used at the token level is a VQVAE model (Oord et al., 2017). As

illustrated in Figure C.6 this is an encoder-decoder architecture with an intermediate

quantizer component.

The encoder spatially compresses the input function ut by reducing its spatial

resolution H×W to a lower resolution h×w while increasing the channel dimension

to d. This is achieved through a convolutional model Ew, which maps the input to

a continuous latent variable zt = Ew(ut), where zt ∈ Rh×w×d. The latent variables

C.3. Architecture details 223

<bot> <eot> <bot> <eot>...<bos>

Conditional generation from similar trajectories

<bot>

a)

Transformer

initial conditionPrompt examples

Auto-regressive
generation

generated
 prediction

<bos>

<bot>

<eot>

begin of sequence

begin of new trajectory

end of trajectory

initial condition of target trajectory

context trajectory

<bot> <eot> <bot> <eot>...<bos> <bot>

Transformer

Prompt examples

Auto-regressive
generation

generation

Unconditional generation from similar trajectoriesb)

<bos> <bot>

Transformer
Auto-regressive

generation

generation

Unconditional generationc)

Figure C.4: Generation possibilities with Zebra.

224 Appendix C. Appendix of Chapter 8

LayerNorm

Multi-Head Attention

Llama block

LayerNorm

FFN

<bot> <eot> <bot> <eot>...<bos> <eos><bot> <eot>

Embedding layer

Llama block (x 8)

Linear

Softmax

<bos>

<bot>

<eot>

begin of sequence

begin of new trajectory

end of trajectory

Initial condition of target trajectory

Context trajectory

input: Sequence of indices

Output: Next-token probabilties

Figure C.5: Zebra’s transformer architecture is based on Llama (Touvron et al.,
2023).

Table C.2: Hyperparameters for Zebra’s Transformer

Hyperparameters Advection Heat Burgers Wave b Combined Vorticity 2D Wave 2D

max context size 2048 2048 2048 2048 2048 8192 8192
batch size 4 4 4 4 4 2 2
num gradient accumulations 1 1 1 1 1 4 4
hidden size 256 256 256 256 256 384 512
mlp ratio 4.0 4.0 4.0 4.0 4.0 4.0 4.0
depth 8 8 8 8 8 8 8
num heads 8 8 8 8 8 8 8
vocabulary size 264 264 264 264 264 2056 2056
start learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
weight decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
scheduler Cosine Cosine Cosine Cosine Cosine Cosine Cosine
num epochs 100 100 100 100 100 30 30

C.3. Architecture details 225

are then quantized to discrete codes ztq using a codebook Z of size K = |Z| and

through the quantization step q. For each spatial code zt[ij], the nearest codebook

entry zk is selected:

ztq,[ij] = q(zt[ij]) := arg min
zk∈Z
∥zt[ij] − zk∥.

The decoder Dψ reconstructs the signal ût from the quantized latent codes ẑtq. Both

models are jointly trained to minimize the reconstruction error between the function

ut and its reconstruction ût = Dψ ◦q ◦Ew(ut). The codebook Z is updated using an

exponential moving average (EMA) strategy, which stabilizes training and ensures

high codebook occupancy.

The training objective is:

LVQ =
∥ut − ût∥2
∥ut∥2

+ α∥sg[ztq]− Ew(ut)∥22,

where the first term is the Relative L2 loss commonly used in PDE modeling, and

the second term is the commitment loss, ensuring encoder outputs are close to the

codebook entries. The parameter α, set to 0.25, balances the two components. Here,

sg denotes the stop-gradient operation that detaches a tensor from the computational

graph.

We provide a schematic view of the VQVAE framework in Figure C.6 and de-

tail the architectures used for the encoder and decoder on the 1D and 2D datasets

respectively in Figure C.7 and Figure C.8. As detailed, we use residual blocks to pro-

cess latent representations, and downsampling and upsampling block for decreasing

/ increasing the spatial resolutions. We provide the full details of the hyperparam-

eters used during the experiments in Table C.3. For training the VQVAE, we used

a single NVIDIA TITAN RTX for the 1D experiments and used a single V100 for

training the model on the 2D datasets. Training the encoder-decoder on 2D datasets

took 20h on a single V100 and it took 4h on a single RTX for 1D dataset.

226 Appendix C. Appendix of Chapter 8

1

...

Codebook

2 3 4 ...

3

1

4 4

44

4

4

4K K

2

2

22

2

Output: reconstructionInput: physical field

CNN
Encoder Decoder

CNN

quantization

quantized codescodes

K

Figure C.6: Zebra’s VQVAE is used to obtain compressed and discretized latent
representation. By retrieving the codebok index for each discrete representation, we
can obtain discrete tokens encoding physical observations that can be mapped back
to the physical space with high fidelity.

Table C.3: Hyperparameters for Zebra’s VQVAE

Hyperparameters Advection Heat Burgers Wave b Combined Vorticity 2D Wave 2D

start hidden size 64 64 64 64 64 128 128
max hidden size 256 256 256 256 256 1024 1024
num down blocks 4 4 4 4 4 2 3
codebook size 256 256 256 256 256 2048 2048
code dim 64 64 64 64 64 16 16
num codebooks 2 2 2 2 2 1 2
shared codebook True True True True True True True
tokens per frame 32 32 32 32 32 256 128
start learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
weight decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
scheduler Cosine Cosine Cosine Cosine Cosine Cosine Cosine
num epochs 1000 1000 1000 1000 1000 300 300

C.3. Architecture details 227

VQ, codebook_size=256

Conv, c->64

ResBlock 64

DownBlockx4

GroupNorm + SiLU +
Conv, 256 -> 64 Conv, 64->256

UpBlockx4

ResBlock 64

GroupNorm + SiLU +
Conv, 64 -> c

Encoder Decoder

UpBlock

Depth to space:
c, h -> c, h*2

ResBlock c -> c/2

DownBlock

Conv, stride=2
c, h -> c, h/2

ResBlock c -> 2*c

GroupNorm + SiLU +
Conv c_in, c_out

GroupNorm + SiLU +
Conv c_out, c_out

ResBlock

Figure C.7: Architecture of Zebra’s VQVAE for 1D datasets. Each convolution acts
only on the spatial dimension and uses a kernel of size 3. The Residual Blocks are
used to process information and increase or decrease the channel dimensions, while
the Up and Down blocks respectively up-sample and down-sample the resolution of
the inputs. In 1D, we used a spatial compression factor of 16 on all datasets. Every
downsampling results in a doubling of the number of channels, and likewise, every
upsampling is followed by a reduction of the number of channels by 2. We choose a
maximum number of channels of 256.

228 Appendix C. Appendix of Chapter 8

VQ, codebook_size=2048

Conv, c->128

ResBlock 128

DownBlockx2

GroupNorm + SiLU +
Conv, 512 -> 16

Conv, 16->512

UpBlockx2

ResBlock 128

GroupNorm + SiLU +
Conv, 128 -> c

Encoder Decoder

UpBlock

Depth to space:
c, h -> c, h*2

ResBlock c -> c/2

DownBlock

Conv, stride=2
c, h -> c, h/2

ResBlock c -> 2*c

GroupNorm + SiLU +
Conv c_in, c_out

GroupNorm + SiLU +
Conv c_out, c_out

ResBlock

x2 x2

x2 x2

Figure C.8: Architecture of Zebra’s VQVAE for 2D datasets. Each convolution acts
only on the spatial dimensions and uses a kernel of size 3. The Residual Blocks are
used to process information and increase or decrease the channel dimensions, while
the Up and Down blocks respectively up-sample and down-sample the resolution of
the inputs. In 2D, we used a spatial compression factor of 4 for Vorticity, and 8 for
Wave2D. Every downsampling results in a doubling of the number of channels, and
likewise, every upsampling is followed by a reduction of the number of channels by
2. We choose a maximum number of channels of 1024.

C.4. Additional Quantitative results 229

C.4 Additional Quantitative results

C.4.1 Alternative pretrainings

We experimented with different pretraining strategies before settling on the pretrain-

ing approach proposed in Zebra. The most intuitive way to adapt the next-token

prediction objective for dynamics modeling is to operate in a continuous latent

space, omitting the quantization step used in Zebra and therefore using a determin-

istic transformer instead of a generative model. As shown in previous studies (Li

et al., 2024b; Agarwal et al., 2025), we obtained better reconstruction results using

an autoencoder instead of a VQVAE.

However, we encountered two critical challenges with this approach. First, the

training loss plateaued quickly, as illustrated in Figure C.9. Compared to training

a generative transformer (with the negative log-likelihood) as in Zebra, the deter-

ministic variant trained with MSE loss exhibited instability and failed to improve

over training steps.

0 1000 2000 3000 4000
Step

100

2 × 100

3 × 100

Tr
ai

n
Lo

ss

NLL

Training loss (negative log-likelihood)
with Zebra

0 1000 2000 3000 4000
Step

100

Tr
ai

n
Lo

ss

MSE

Training loss (MSE) with determinis-
tic transformer

Figure C.9: Comparison of the training process between the Zebra transformer and
a deterministic transformer on Advection. In both cases, the model is trained to
predict the next token. Zebra utilizes a discrete vocabulary and learns a probability
distribution over the next token, whereas the deterministic transformer is optimized
to predict the mean using MSE loss.

Second, while the model was able to predict the next token at inference, it could

not generate an entire trajectory. It performed particularly poorly in the one-shot

adaptation setting. As demonstrated in Figure C.10, errors accumulated quickly

during inference, leading to rapid divergence from the ground truth. This ultimately

resulted in poor reconstructions when feeding the predicted tokens into the decoder,

as seen in Figure C.11.

230 Appendix C. Appendix of Chapter 8

0 5 10 15 20 25 30
Token

5

0

5

10

15

20

Ch
an

ne
l v

al
ue

t=1 t=2

Ground Truth
Prediction

Figure C.10: When trained with MSE for next-token prediction, inference suffers
from instabilities, causing errors to grow exponentially. Here, we show the evolution
over the sequence tokens of a particular channel. The dashed lines show the temporal
transitions between two subsequent frames.

These observations highlight the importance of the generative aspect when

adopting a next-token objective. For this reason, we opted for a quantized repre-

sentation combined with a transformer modeling a discrete distribution, a standard

approach in image and video generation, but which has never been explored for

modeling physical phenomena. While alternative strategies exist (Tian et al., 2024),

they involve non-trivial extensions and are left for future works.

That said, next-token prediction pretraining may not be the only viable frame-

work for developing in-context capabilities. To explore this, we experimented with

a direct next-frame prediction approach using a deterministic setup trained with

relative L2 loss. This method, which we called VIT-in-context serves as a base-

line for evaluating other in-context pretrainings. It is based on a video transformer

operating on patches with bidirectional attention. While its training behavior was

more stable, inference results remained unsatisfactory.

C.4.2 Uncertainty quantification

Setting Since Zebra is a generative model, it allows us to sample multiple plau-

sible trajectories for the same conditioning input, enabling the computation of key

statistics across different generations. By calculating the pointwise mean and stan-

dard deviation, we can effectively visualize the model’s uncertainty in its predictions.

In Figure C.12, the red curve represents the ground truth, the blue curve is the pre-

dicted mean and the blue shading indicates the empirical confidence interval (3 ×
standard deviation).

Metrics Motivated by this observation, we investigate how varying the model’s

temperature parameter τ affects its predictions; specifically in the one-shot adapta-

C.4. Additional Quantitative results 231

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Initial condition
Time 0
Time 1

0 50 100 150 200 250

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Prediction
Time 0
Time 1
Time 2
Time 3

Prompt = Context Images + initial condition

Figure C.11: The deterministic transformer, trained with the next-token objective,
performs poorly in the one-shot adaptation task.

232 Appendix C. Appendix of Chapter 8

0 50 100 150 200 250
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Va

lu
e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0
Time 1

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure C.12: Uncertainty quantification with Zebra in a one-shot setting on Heat
equation

tion setting described in Section 8.4.2. By adjusting τ , we aim to assess its impact

on both the accuracy and variability of the predictions. We generate 10 different

trajectories and use them to compute several metrics. We employ four metrics to

evaluate the model’s uncertainty:

1. Relative L2 loss: This assesses the accuracy of the generated trajectories by

measuring the bias of the predictions relative to the ground truth.

2. Relative standard deviation: We estimate the variability of the predictions

using the formula: Relative Std = ||σ̂∗||2
||m̂∗||2 where m̂∗ and σ̂∗ represent the em-

pirical mean and standard deviation of the predictions, computed pointwise

across 10 generations.

3. Confidence level: We create pointwise empirical confidence intervals

CI(x) = [m̂∗(x)− 3σ̂∗(x), m̂∗(x) + 3σ̂∗(x)] and compute the confidence level

as: Confidence level = 1
nx

∑
x 1u∗(x)∈CI(x). This score indicates how often the

ground truth falls within the empirical confidence interval generated from sam-

pling multiple trajectories.

4. Continuous Ranked Probability Score (CRPS, Gneiting and Raftery

(2007)) is a proper scoring rule that measures the accuracy of a probabilistic

C.4. Additional Quantitative results 233

forecast by quantifying the difference between the predicted cumulative dis-

tribution function (CDF) and the empirical CDF of the observed value, with

lower values indicating better calibration and sharpness.

Results When modeling uncertainty, the model achieves a tradeoff between the

quality of the mean prediction approximation and the guarantee for this prediction

to be in the corresponding confidence interval. Figure C.13 illustrates the trade-off

between mean prediction accuracy and uncertainty calibration. At lower tempera-

tures, we achieve the most accurate predictions, but with lower variance, i.e. with

no guarantee that the target value is within the confidence interval around the pre-

dicted mean. Across most datasets, the confidence level then remains low (less than

80% for τ < 0.25), indicating that the true solutions are not reliably captured within

the empirical confidence intervals. Conversely, increasing the temperature results

in less accurate mean predictions and higher relative standard deviations, but the

confidence intervals become more reliable, with levels exceeding 95% for τ > 0.5.

Therefore, the temperature can be calibrated depending on whether the focus is on

accurate point estimates or reliable uncertainty bounds.

To better calibrate this temperature, we can therefore use a proper scroring

metric such as the CRPS, and we can pick the temperature parameter that has

the lowest CRPS value for a given value (see Figure C.13). We can see that Zebra

models really well the distribution for Combined and Advection and not so much

for Burgers and Heat somehow.

Finally, we examine how the model’s uncertainty evolves as additional informa-

tion is provided as input. Specifically, we compare Zebra’s average error and relative

uncertainty when conditioned on one example trajectory, with one or two frames as

initial conditions. Table C.4 reports the relative L2 loss and relative standard devi-

ation for both scenarios. The results clearly show that including the first two frames

as initial conditions reduces both the error and the relative standard deviation con-

sistently. This indicates that, while some of the uncertainty remains aleatoric, the

epistemic uncertainty is reduced as more input information becomes available.

Table C.4: Uncertainty quantification in the one-shot setting. Conditioning from a
trajectory example and 1 frame or 2 frames as initial conditions. Metrics include
relative L2 loss (average accuracy) and relative standard deviation (average spread
around the average prediction). The temperature is fixed at 0.1.

Advection Heat Burgers Wave b Combined

Rel. L2 1 frame 0.006 0.156 0.115 0.154 0.008
Rel. L2 2 frames 0.004 0.047 0.052 0.075 0.005

Rel. Std. 1 frame 0.003 0.062 0.048 0.074 0.005
Rel. Std. 2 frames 0.002 0.019 0.018 0.040 0.003

234 Appendix C. Appendix of Chapter 8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Temperature

10 2

10 1

Ro
llo

ut
 L

os
s (

lo
g

sc
al

e)

Relative Error

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Temperature

10 2

10 1

100

Re
la

tiv
e

St
an

da
rd

 D
ev

ia
tio

n
(lo

g
sc

al
e)

Relative Standard Deviation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Temperature

100

3 × 10 1

4 × 10 1

6 × 10 1

Co
nf

id
en

ce
 le

ve
l (

lo
g

sc
al

e)

Confidence level

Advection
Burgers
Heat
Combined
Wave b
95% Confidence level

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Temperature

10 2

CR
PS

 (l
og

 sc
al

e)

CRPS

Figure C.13: Uncertainty quantification with Zebra. The main parameter of this
study is the temperature (x-axis). We then look from left to right at (1) The
rollout loss, i.e. the relative L2 loss between the predictions and the ground truth;
(2) The relative standard deviation to quantify the spread around the mean; (3)
The confidence level, that measures the frequency of observations that lie within
the empirical confidence interval. (4) The CRPS that measures the quality of the
uncertainty, can be used to pick the temperature with the most calibrated uncertaity.

C.4. Additional Quantitative results 235

C.4.3 Analysis of the generation

Zebra is capable of generating completely novel trajectories for new environments,

including the initial conditions. An example of a generated trajectory for Vorticity

2D is shown in Figure C.14, where the top row shows the context trajectory used

to guide the generation, and the bottom row displays the model’s generated trajec-

tory, including the initial condition. In this section, we evaluate on Combined and

Advection the quality of the generated trajectories with Zebra.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

Gen t=1 Gen t=2 Gen t=3 Gen t=4 Gen t=5 Gen t=6 Gen t=7 Gen t=8 Gen t=9 Gen t=10

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
te

ns
ity

Ex
am

pl
e

G
en

er
at

ed
 T

ra
je

ct
or

y

Figure C.14: Unconditional generation on Vorticity 2D. The top-row is the example
used to guide the generation, and the bottom-row is the generated example. The
model also generates the initial condition.

Setting We evaluate whether our pretrained model can generate new samples

conditioned on a trajectory observed in a previously unseen test environment. Unlike

previous settings, the transformer is not explicitly conditioned on tokens derived

from a real initial condition. Instead, we expect it to generate trajectories, including

their initial conditions, that follow the same dynamics as the observed context.

Our evaluation focuses on four key aspects. First, we assess whether the gen-

erated trajectories faithfully follow the dynamics of the context. Second, we ana-

lyze the diversity of the generated trajectories to determine if they are significantly

different from one another. Third, we compare the generated samples with those

produced by numerical solvers to evaluate whether their distributions align. Finally,

we examine the types of initial conditions generated by Zebra.

Metrics To assess fidelity, we generate ground truth trajectories using the physical

solver originally used to construct the dataset. These simulations start from the

initial conditions generated by Zebra, using ground truth environment parameters

that Zebra itself does not have access to. We then compute the L2 distance between

the generated trajectories and those obtained from the physical solver.

For diversity, we measure the average pairwise L2 distance between different

trajectories generated by Zebra. The results for both fidelity and diversity are

reported in Table C.5 for the Advection and Combined Equations.

To compare the distribution of generated trajectories with that of numerical

solvers, we compute the Wasserstein distance using the Sinkhorn algorithm Cu-

236 Appendix C. Appendix of Chapter 8

turi (2013). As baselines, we compare against two references. First, we compute

the Wasserstein distance with purely random samples drawn from Gaussian noise,

providing an upper bound on the problem. Second, we measure the Wasserstein dis-

tance between two independent sets of numerical solver trajectories (the validation

and test sets), allowing us to quantify the variability inherent in the dataset itself.

Finally, as a qualitative analysis, we perform a principal component analysis on

the trajectories generated by Zebra and visualize the first two principal components

in Figure C.15 for Combined.

Sampling We use a default temperature of τ = 1.0. For each context trajectory,

we sample 10 new trajectories in parallel.

Results Table C.5 shows that Zebra generates new initial conditions and trajec-

tories that respect the same physical laws as the given context. The model seems to

have learned the statistical relationships between initial conditions and later times-

tamps. The high average L2 distance between samples indicates that the generated

trajectories are diverse. This can also be observed in Figure C.15, where the gener-

ated samples effectively cover the distribution of real samples.

Table C.5: Fidelity and diversity metrics. The L2 distance measures fidelity to the
context dynamics, while the average L2 quantifies sample diversity.

Model L2 Average L2 between samples

Advection 0.0185 1.57
Combined Equation 0.0136 1.59

To further assess distribution alignment, we compute the Wasserstein distance

between the generated trajectories and those obtained with numerical solvers. The

results in Table C.6 indicate that Zebra achieves lower Wasserstein distances than

Gaussian noise but remains slightly above the cross-distribution baseline (which

compares the validation and test distributions), suggesting reasonable alignment

with the true data distribution.

Table C.6: Comparison of distributions using the Wasserstein distance between
Zebra-generated trajectories and numerical solver samples.

Distance Metric Advection Combined Equation

Gaussian noise vs. real data 18.22 16.15
Validation data vs. test data 5.11 1.87

Zebra-generated data vs. real data 5.57 2.21

C.4. Additional Quantitative results 237

PCA Component 1

PC
A

Co
m

po
ne

nt
 2

PCA at time t=0
Generated Data
Real Data

Distribution of generated initial con-
ditions (t = 0).

PCA Component 1

PC
A

Co
m

po
ne

nt
 2

PCA at time t=9
Generated Data
Real Data

Distribution of generated trajectories
at (t = 9).

Figure C.15: Qualitative analysis of generated trajectories. Zebra generates new
initial conditions and trajectories for unseen test environments. PCA projections
visualize both generated and true trajectories in a lower-dimensional space at t = 0
and t = 9.

C.4.4 Dataset scaling analysis

We investigate how the one-shot error on the test set evolves as we vary the size of the

training dataset. To this end, we train the auto-regressive transformer on datasets

containing 10, 100, 1000, and 12,000 trajectories and evaluate Zebra’s generations

on the test set, starting with two frames as inputs. The training time is proportional

to the dataset size: for example, the number of training steps for 1,000 trajectories

is 10 times the number of steps for 100 trajectories. The results are presented in

Figure C.16.

First, we observe that Zebra requires a substantial amount of data to generalize

effectively to different parameter values, even within the training distribution. This

aligns with findings in the literature that transformers, especially auto-regressive

transformers, excel at scaling —performing well on very large datasets and for

larger model architectures. However, for smaller datasets, this approach may not be

the most efficient. We believe that Zebra’s potential resides when applied to large

amounts of data, making it an ideal candidate for scenarios involving large-scale

training.

Second, for the Combined equation, we notice that performance plateaus be-

tween 100 and 1,000 trajectories. This may be due to insufficient training or a lack

of diverse examples, as the Combined equation is more challenging compared to the

Advection equation, whose performance follows a more log-linear trend. This sug-

gests that additional data or targeted training strategies might be needed to achieve

better generalization for more complex equations.

238 Appendix C. Appendix of Chapter 8

101 102 103 104

Training dataset size (log scale)

10 2

10 1

100

Er
ro

r /
 L

os
s (

lo
g

sc
al

e)

Scaling Law: Training Size vs. Error
Combined
Advection

Figure C.16: Dataset scaling analysis. One-shot error on the test set vs. the training
dataset size.

C.4.5 Inference time comparison

Table C.7 compares the inference time for one-shot adaptation across different meth-

ods when predicting a single trajectory given a context trajectory and an initial con-

dition. For Zebra, the inference process, which includes encoding, auto-regressive

prediction, and decoding, is much faster in 1D and slightly faster in 2D. With Zebra,

the bottleneck at inference is the autoregressive generation of tokens, which speed is

about 128 tokens per second on a V100 for 2D and an RTX for 1D. The decoding is

fast and can be done in parallel for the trajectory in one forward pass. In contrast,

for CODA and CAPE, the majority of the inference time is spent on adaptation and

gradient-based steps. Here the times were reported with 100 gradient steps, note

that we used 250 for the rest of the experiments. We believe Zebra’s inference time

could be further optimized by (1) improving the optimization code and leveraging

specialized hardware such as H100 (for flash attention) and LPUs (which show sig-

nificant speed-ups against GPUs), and (2) increasing the number of tokens sampled

per step (as in e.g. next-scale prediction Tian et al. (2024)).

However, we have shown that it is possible to greatly accelerate inference by

employing a deterministic neural surrogate on top of Zebra, which acts as a dy-

namic encoder. This framework is order of magnitudes faster than gradient-based

adaptation methods.

C.4.6 Influence of the codebook size

The codebook size K is a crucial hyperparameter. It directly affects the quality of

the reconstructions, since a larger codebook can improve the reconstructions quality.

However, it also impacts the dynamics modeling stage: the smaller the codebook,

the easier it is for the transformer to learn the statistical correlations between similar

trajectories. To have a sense of this trade-off, we report the relative reconstruction

C.4. Additional Quantitative results 239

Table C.7: Inference times for one-shot adaptation. Average time in seconds to
predict a single trajectory given a context trajectory and an initial condition. Times
include adaptation and forecast for CODA and CAPE, while it includes encoding,
auto-regressive prediction and decoding for Zebra.

Advection Vorticity 2D

CAPE 18s 23s
CODA 31s 28s

Zebra 3s 21s
Zebra + UNet 0.10s 0.14s

errors and the one-shot prediction errors in Table C.8. The reconstruction error

decreases when the codebook size increases. However, the one-shot prediction error

decreases from 32 to 64 codes but then gradually increases from 64 to 512. We can

see that it follows a U-curve in Figure C.17. This phenomenon was observed in a

different context in Cole et al. (2024).

Table C.8: Influence of the codebook size. Reconstruction error and one-shot pre-
diction error on Burgers for different codebook sizes. Errors in relative L2.

Codebook Size Reconstruction Loss One-shot Prediction

32 0.0087 0.116
64 0.0043 0.097
128 0.0024 0.124
256 0.0019 0.163
512 0.0015 1.093

C.4.7 Reconstruction errors

We report the accuracy of the reconstructions from our encoder-decoder in Table C.9.

Here, no dynamics is involved, we simply evaluate the quality of the encoding and

of the decoding. On 1D and 2D datasets, the decoding errors are respectively of 0.1

% and 1% on the test set.

Table C.9: Reconstruction errors. Test relative L2 loss between reconstructions from
Zebra’s VQVAE and the ground truths.

Advection Heat Burgers Wave b Combined Wave 2D Vorticity 2D

VQVAE of Zebra 0.0003 0.0019 0.0016 0.0011 0.0022 0.010 0.017

240 Appendix C. Appendix of Chapter 8

Figure C.17: One-shot accuracy vs codebook size. One-shot prediction error on the
test set for various codebook sizes. Error in relative L2.

C.5 Qualitative results

We provide visualizations of the trajectories generated with Zebra under different

settings in the following figures. One-shot prediction: Figure C.18, Figure C.20,

Figure C.22, Figure C.24, Figure C.26, Figure C.28, Figure C.34. Uncertainty

quantification: Figure C.19, Figure C.21, Figure C.23, Figure C.25, Figure C.23.

C.5. Qualitative results 241

C.5.1 Advection

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure C.18: One-shot adaptation on Advection

242 Appendix C. Appendix of Chapter 8

0 50 100 150 200 250
1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure C.19: Uncertainty quantification on Advection

C.5. Qualitative results 243

C.5.2 Burgers

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure C.20: One-shot adaptation on Burgers

244 Appendix C. Appendix of Chapter 8

0 50 100 150 200 250

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Initial condition
Time 0
Time 1

0 50 100 150 200 250

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure C.21: Uncertainty quantification on Burgers

C.5. Qualitative results 245

0 50 100 150 200 250

1.0

0.5

0.0

0.5

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure C.22: One-shot adaptation on Heat

246 Appendix C. Appendix of Chapter 8

0 50 100 150 200 250
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
2.0

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure C.23: Uncertainty quantification on Heat

C.5. Qualitative results 247

C.5.3 Heat

C.5.4 Wave boundary

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9
Time 10
Time 11
Time 12
Time 13
Time 14

Prompt = Context Images + initial condition

Figure C.24: One-shot adaptation on Wave b

248 Appendix C. Appendix of Chapter 8

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Mean, Time 9
Mean, Time 10
Mean, Time 11
Mean, Time 12
Mean, Time 13
Gt, Time: 14
Mean, Time: 14
Mean ± 3xStd, Time: 14

Prompt = Context Images + initial condition

Figure C.25: Uncertainty quantification on Wave b

C.5. Qualitative results 249

C.5.5 Combined equation

0 50 100 150 200 250

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure C.26: One-shot adaptation on Combined

250 Appendix C. Appendix of Chapter 8

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure C.27: Uncertainty quantification on Combined equation

C.5.6 Vorticity

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.28: One-shot adaptation on Vorticity. Example 1.

C.5. Qualitative results 251

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.29: One-shot adaptation on Vorticity. Example 2.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.30: One-shot adaptation on Vorticity. Example 3.

C.5.6.1 Out-of-distribution

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.31: One-shot OoD adaptation on Vorticity. Example 1.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.32: One-shot OoD adaptation on Vorticity. Example 2.

252 Appendix C. Appendix of Chapter 8

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.33: One-shot OoD adaptation on Vorticity. Example 3.

C.5.7 Wave 2D

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.1

0.0

0.1

0.2

0.3

0.4

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.34: One-shot adaptation on Vorticity. Example 1.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.2

0.1

0.0

0.1

0.2

0.3

0.4

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.35: One-shot adaptation on Wave2d. Example 2.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.2

0.1

0.0

0.1

0.2

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure C.36: One-shot adaptation on Wave2d. Example 3.

C.5. Qualitative results 253

	Abstract
	Résumé
	Remerciements
	Symbols
	Contents
	List of Figures
	List of Tables
	I Research Context
	Introduction
	Context and challenges
	Motivations for Using Deep Learning to Solve PDEs
	Research Objectives
	Core Contributions
	Meshless operators
	In-context adaptation for solving PDEs

	Other contributions
	Structure of the thesis

	Some notions on Partial Differential Equations
	A first PDE example
	Heat equation derivation
	Initial boundary value problem formulation
	Analytical solutions

	ODEs and PDEs
	Definitions
	Fundamental properties of PDEs
	Non-linear equations

	Numerical Solvers
	Finite differences
	Finite elements
	Time integration
	Key properties of numerical solvers

	Reduction of complexity
	Reduced Order Models
	Parameterization

	Introduction to Deep Learning
	A short history of deep learning
	Deep Neural Networks
	Training Deep Neural Networks
	Building blocks of Deep Learning
	Layers
	Blocks

	Learning Paradigms
	Unsupervised learning
	Self-Supervised Learning
	Meta-learning
	In-context learning

	Deep Learning for solving PDEs
	Physical priors for Deep Learning
	Hybrid modeling
	Data-centric approaches
	Neural surrogates
	Operator learning
	Learning with multiple physical parameters

	II Contributions
	Operator Learning with Neural Fields: Tackling PDEs on General Geometries
	Introduction
	Related Work
	The CORAL Framework
	Problem Description
	Model
	Practical implementation: decoding by INR Modulation
	Training

	Experiments
	Initial Value Problem
	Dynamics Modeling
	Geometry-aware inference

	Discussion and limitations
	Conclusion

	Infinity: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations
	Introduction and motivation
	Method
	Problem setting
	Model
	Training

	Experiments
	Conclusion

	Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields
	Introduction
	Problem setting
	Model Description
	Model overview
	Encoder-decoder description
	Transformer-based diffusion

	Experiments
	Dynamics on regular grids
	Dynamics on irregular grids with shared geometries
	Dynamics on different geometries
	Long rollouts and uncertainty quantification

	Related Work
	Conclusion and Limitations

	Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs
	Introduction
	Problem setting
	Solving parametric PDEs
	Adaptation for parametric PDE

	Zebra Framework
	Learning a finite vocabulary of physical phenomena
	In-context modeling
	Next-token pretraining
	Flexible inference: prompting and sampling

	Experiments
	Datasets details
	In-distribution generalization
	Out-of-distribution generalization
	Generative ability of the model
	Accelerating inference

	Limitations
	Conclusion

	III Conclusion
	Conclusion
	Synthesis
	Meshless operators
	In-context adaptation for solving PDEs

	Limitations
	Perspectives

	Bibliography
	Appendix of Chapter 5
	Dataset Details
	Initial Value Problem
	Dynamics Modeling
	Geometric aware inference

	Implementation Details
	CORAL
	Baseline Implementation

	Supplementary Results for Dynamics Modeling
	Robustness to Resolution Changes
	Learning a Dynamics on Different Grids
	Training Time
	Inference Time
	Propagation of Errors Through Time
	Benchmarking INRs for CORAL
	Impact of 2nd order meta-learning
	Key hyper parameter analysis

	Supplementary results for geometry-aware inference
	Inverse Design for NACA-airfoil

	Qualitative results
	Initial Value Problem
	Dynamics modeling
	Geometry-aware inference

	Appendix of Chapter 7
	Extended Related Work
	Implementation details
	Hyperparameters

	Additional results
	Time complexity analysis
	Encoding interpretation
	Example rollouts
	Scaling experiments
	Spatial tokens perturbation analysis
	Ablation studies
	Kuramoto-Sivashinsky : a failure case
	Latent space dynamics

	Appendix of Chapter 8
	Related Work
	Learning parametric PDEs
	Generative models

	Dataset details
	Advection
	Burgers
	Heat
	Wave boundary
	Combined equation
	Vorticity
	Wave 2D

	Architecture details
	Baseline implementations
	Zebra additional details
	Auto-regressive transformer
	VQVAE

	Additional Quantitative results
	Alternative pretrainings
	Uncertainty quantification
	Analysis of the generation
	Dataset scaling analysis
	Inference time comparison
	Influence of the codebook size
	Reconstruction errors

	Qualitative results
	Advection
	Burgers
	Heat
	Wave boundary
	Combined equation
	Vorticity
	Wave 2D

