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Outline

 Context:  AI4science
 Background: Neural networks and ordinary differential equations

 NNs as numerical schemes for solving ODEs

 Modeling Spatio-temporal dynamics with Neural Networks
 NNs as surrogate models for solving PDEs - Data-driven approaches

 Discrete space models
 Continuous space models

 NNs as surrogate models for solving PDEs – Data free approaches

 Hybrid models
 Incorporating physical knowledge in dynamics models

 Generalization in ML models for dynamics modeling
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Context: AI4Science



AI4Science as a new scientific paradigm
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• Paradigm shift: from explicit formulation to implicit knowledge discovery
• Emerged in 2018 – rapidly growing field

• Involves many scientific communities
• We are still at the begining of the process

AI4Science paradigm changes
How research is done: From hypothesis generation to data analysis, 
experimentation, and discovery.
The questions we can ask: Enabling exploration of complexity and 
scale previously impossible.
The pace of discovery: Accelerating insights in fields like drug 
discovery, material science, climate modeling, and fundamental physics.



AI for Science as a new scientific paradigm
Worldwide initiatives  - examples
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Academic research

 Polymathic AI - Foundation Models for 
Science
 Simons Foundation NY, Schmidt Future, NYU, 

Princeton, Berkeley, Cambridge

 Stanford: Center for Research on 
Foundation Models
 Interdisciplinary,  spans10+ dpts

 Univ. Michigan: Center for Scientific 
Foundation Models

Industrial labs

 AI Alliance
 Microsoft research: AI for Science

 How-new-ai-foundation-models-can-speed-
up-scientific-discovery

 C. Bishop Keynote (2024) : The Revolution in 
Scientific Discovery

 Google Applied Science
 Combining computer science with physics and 

biology to create breakthroughs that help the 
world



AI for Science as a new scientific paradigm
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Transformative role of AI
 AI as digital twins/ surrogates

 Complexity:  accelerated simulations: CFD, 
molecular dynamics

 Unknown physics

 AI as scientific partner: complementing
physical models
 Hybrid models: numerical solvers + ML
 Accelerate discovery: biological workflows

 AI as a reasoning engine
 Theorem proving
 Code generation

Evolution of AI models
 Surrogate models

 Solving specific problems: CFD, materials
property prediction

 Foundation models
 Multi-physics, multi-domains: biology, weather

forecast

 AI agents
 Solve high level objectives
 Requires reasoning, planing, etc
 Orchestrates various AI tools



Transformative role of AI - Examples
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Systems
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AI as digital twins
Weather forecasting and climate
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2022-2024 – Foundation Models for weather prediction (ERA5 dataset 
40 years hourly reanalysis data)

GraphCast – Google & DeepMind 2022
https://arxiv.org/abs/2212.12794

ClimaX – Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

Pangu-Weather – Huawei 2023
http://arxiv.org/abs/2211.02556

FourCastNet – NVIDIA&Lawrence Berkeley lab.&al.
http://arxiv.org/abs/2202.11214

Neural General Circulation Model – Google 2023
https://arxiv.org/abs/2311.07222

Aurora – Microsoft 2024
https://arxiv.org/abs/2405.13063

AIFS model
https://arxiv.org/abs/2406.01465



Foundation models for weather forecasting: GraphCast (Lam et al. 2023) 
https://arxiv.org/abs/2212.12794
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 Data-driven approach to weather forecast

 Learn from historical data
 39 years (1979-2017) of historical data from ECMWF ERA5 reanalysis archive – petabytes of data

 ECMWF: European Center for Medium-Range Weather Forecast

 Test 2018 onward
 Time step: 6 hours
 State variables

 5 surface variables (temperature, wind speed, etc)
 6 athmospheric variables (temp., wind, etc) at 37 pressure levels
 0.25° latitude/ longitude grid, 28x28 kilometer resolution, 1𝑀 points

 Objective
 Given state variables at t and t-6 hours, predict next state (t + 6)
 Prediction horizon: 10 days (medium range), auto-regressive model



Foundation models for weather forecasting: GraphCast (Lam et al. 2023) -
https://arxiv.org/abs/2212.12794
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 Based on Graph Neural Networks

 Performance on weather prediction: on par or better than HRES the SOTA ECMWF model

 Downstream tasks (not trained on)
 Tropical cyclone tracking
 Extreme heat and cold, ….

(Fig. Lam et al 2023)



AI as digital twins
Weather forecasting and climate
Aurora (Bodnar et al. 2024), https://arxiv.org/abs/2405.13063
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• IFS Numerical simulation (ECMWF): 65 
minutes on 352 high-end CPU for a 10-day 
forecast 

• Aurora:
• Inference: less than 1 mn on one 

A100 GPU roughly a ×5,000 speedup 
over IFS

• Pre-training, 2.5 weeks on 32 A100



ECMWF – AIFS ensemble probbailistic model
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 Trained using a specific loss function (CRPS) and a noise component 



AI as digital twins
Foundation models for weather forecasting: GraphCast (Lam et al. 2023) - Google
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 ECMWF is running a series of data-driven forecasts as part of its experimental suite. 
 Quote:  “These ML-based weather forecasts first approached the skill of the IFS (used as the benchmark 

for high-quality forecasting), then matched IFS skill, and then claimed to surpass our scores. What’s more, 
making a forecast with these models requires only a single GPU, takes less than a minute, and consumes a 
tiny fraction of the energy required for an IFS forecast.”

More ML models

These models are free and 
can be downloaded



Biology – Alphafold series
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 Alphafold 1
 2018, several modules trained separately

 Alphafold 2 
 2020, tertiary protein structure, end-to-end 

training, model: « Evoformer » - 20 K  
citations

 Alphafold 3
 2024, structure of protein complexes with

DNA/ RNA, ligands, new model: 
« Pairformer »

 Input: list of molecules
 Output: joint 3D structure
 Applications include drug design
 Alphafold server

 Classical techniques
 Cristalograpy, nuclear magnetic resonnance, 

etc



Credit: Google DeepMind
The predicted structure of this enzyme 
(blue) binding to a calcium ion and 
several monosaccharides (yellow) 
matches closely with the experimental 
structure (gray)



Biology – Alphafold series
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 Foundation model

Multiple Sequence Alignment (MSA): 
compares the target amino acid sequence 
with similar sequences from other proteins

Attention Mechanism: focus on different parts of the data 
to understand the relationships between amino acids in the 
sequence and across different sequences in the MSA 
(Multiple-Sequence-Alignment).

Diffusion module: predicts raw
atomic coordinates of atoms
from a cloud of atoms

Trained on multiple protein datasets, estimated
in the O(10଼) protein sequences and structures



AI as scientific partner: complementing physical models
Drug design and discovery, Wu et al. 2025 
https://www.biorxiv.org/content/10.1101/2024.01.08.574635v1.full.pdf
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 Objective
 Drug design:  Speed up the drug discovery

process
 Designing molecules/ compounds with high 

binding affinity to given pathogenic protein
targets

 Method
 GPT like self trained generative model
 Operates on string representations of 

molecules (SMILES) + encoding of molecules
geometry

 Pre-trained on 10 millions compounds 
representations self supervised as for NLP

 Tests
 Inhibitor compounds against tubercolosis

Generated
compound

Protein

Binding sites



Drug design and discovery, Xia et al. 2024 
https://www.biorxiv.org/content/10.1101/2024.01.08.574635v1.full.pdf
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 Main architecture modules



GPT like pretrained
transformer – self 

attention

Transformer -
encodes the 

sequential and 
geometric data of the 

target protein

VAE - encodes the 
compound

Cross-attention: 
conditions generation
to the target protein



AI as scientific partner: complementing physical models
Drug design and discovery, Xia et al. 2024 
https://www.biorxiv.org/content/10.1101/2024.01.08.574635v1.full.pdf
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

Generation of 2612 
compounds cond. on 

the binding site

Screening (docking) 
of the  2612 to 

select 4 compounds 

Generation of 8365 
compounds conditionned on 
the protein+seed compound

Screening to select 
296 compounds



Material science
A foundation model for atomistic materials chemistry, Batatia et al. 2024 70+ co-
authors, https://arxiv.org/abs/2401.00096
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 Problem:
 Scientists use simulations to study materials at the atomic level which is crucial for developing new 

materials with desired properties.
 Traditional methods like Density Functional Theory (DFT) are highly accurate but computationally 

expensive and slow.

 The Role of Machine Learning:
 ML models can achieve near-DFT accuracy but require significant effort to develop and are often 

specific to particular materials.

 Objective:
 Foundation Model: a general-purpose ML model trained on a large dataset of 150,000 inorganic 

crystal structures.
 Versatility: this new model can be applied to a wide range of materials and scenarios without 

needing to be specifically retrained for each new case.



Material science
A foundation model for atomistic materials chemistry, Batatia et al. 2024 70+ co-
authors, https://arxiv.org/abs/2401.00096 - Applications
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 Material Property Prediction
 Solids, Liquids, and Gases: Simulate the behavior of materials in various states, helping to predict 

properties like hardness, melting points, and thermal conductivity.
 Chemical Reactions: By modeling the interactions between atoms during chemical reactions, the 

model helps in understanding reaction mechanisms and predicting the outcomes of chemical 
processes.

 Interface Dynamics:
 Material Interfaces: The model can simulate the interactions at the boundaries between different 

materials, which is crucial for understanding and designing composite materials and coatings.

 New Material Discovery:
 High-Throughput Screening: The model enables high-throughput computational screening of new 

materials, accelerating the discovery and optimization of materials with specific desired properties, 
such as superconductors, battery materials, and catalysts.



Context - AI for Science - Material science
A foundation model for atomistic materials chemistry, Batatia et al. 2024, 70+ 
co-authors, https://arxiv.org/abs/2401.00096

Pre-training
150K inorganic crystals

Predict the potential
energy

Generalizes to multiple 
downstream tasks

Downstream tasks

Prediction
Material properties
Chemical reactions

Material discovery
Superconductors
Battery material

Baselines
Density Functional

Theory
Intensive and costly
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Simulation in the industry
Deep NN as emulators for physical processes

 ANSYS Sim-AI
 https://www.ansys.com/fr-fr/ai

 Neural Concept
 https://www.neuralconcept.com/
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Simulation in academy: the rise of foundation models
DPOT - Hao et al. (ICML 2024) http://arxiv.org/abs/2403.03542

 Challenges
• Trajectories with uneven length and

different time frames
• Different resolutions, number of

variables (channels), shape
• Unbalanced datasets from the

different PDE simulations

Objective: simulate
multiple physics dynamics

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems23



Simulation in academy: the rise of foundation models
DPOT - Hao et al. (ICML 2024) http://arxiv.org/abs/2403.03542

Model: large scale transformer

Pretrained
operator auto-

regressive model

Data padding, 
masking, sampling 
to get a unified
representation

Tranformer in a spectral 
space

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems24



Simulation in academy: the rise of fundation models
DPOT - Hao et al. (ICML 2024) http://arxiv.org/abs/2403.03542

 Data
 The model is trained on 12 datasets, with 100k+ trajectories
 Different model sizes: from 7M to 1 B parameters
 Claim a 100.000 acceleration factor w.r.t. classical solvers
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AI as a reasoning engine
AI4Math
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Datasets and problems
 High school problems

 MATH benchmark (2021)
 GSM8K benchmark (2021)
 AIME benchmark (2024)

 Complex mathematical problems
 IMO International Mathematical Olympiad

(2024)
 Frontier maths (2025)
 USAMO (may 2025)

Methods
 LLMs or codeLLMs pretrained and 

finetuned on step by step exercise
solutions
 e.g. Minerva (2022)

 Combination of LLMs and formal
representations s.a. LEAN symbolic
component
 Alphaproof (2024)



AI as a reasoning engine
AI4Math
Example MATH Benchmark
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 Dataset
 12.5K problems from high school

competitions + large pretraining dataset

 Models: LLMs

Performances
 2021

 2025 vals.ai/benchmarks

Hendriycks et al. 2021

Yang et al. 2024



Context: AI as a reasoning engine
AI4Math
Example Alphaproof (DeepMind)
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International Mathematical Olympiad
Silver medal 2024
Gold medal 2025

 Algebra + number theory pb
 Combines pretrained LLM with AlphaZero

reinforcement learning algorithm
 Prooves math. statements in the formal

language « Lean » - formal proovers
 Gemini is used to translate informal

statements into formal language
 Trained on millions of problems



Neural networks and ordinary
differential equations

 NNs as numerical schemes for solving ODEs



NNs as numerical schemes for solving ODEs - summary
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 The dynamics of Neural Networks – explained by ODE
 NNs with an infinite number of layers can be modeled as ordinary

differential equations (ODE)
 Inference and training can be formulated as solving ODEs
 NNs interpretation as numerical schemes for solving ODEs
 Opens the way to the

 Use of numerical ODE solvers for a variety of ML problems
 Use of ODE numerical solvers theory for analyzing NNs dynamics – e.g. 

stability – convergence

 This helped popularize the use of differentiable numerical solvers in the 
ML community
 Implemented in DL libraries, e.g. PyTorch
 Opens the way to integrating physics and ML:
 Physics-aware deep learning



NNs as numerical schemes for solving ODEs
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Dynamical Systems
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 Several NNs use skip 
connections, e.g. ResNet

Input 𝑥 is progressively modified by 
a residual 𝑓 𝑥,𝜃

 ODE for initial value problem

  ௗ௫
ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 ;𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 

𝑥 0 ൌ 𝑥଴
 What is the value of 𝑥 𝑇 ? 

 Equivalent integral formulation

 𝑥 𝑇 ൌ 𝑥 0 ൅ ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை

 ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை is approximated

via numerical integration
 Exemple: Euler numerical scheme

 𝑥௧ାଵ ൌ 𝑥௧ ൅ ℎ𝑓 𝑥௧ ,𝜃௧ , 𝑥 0 ൌ 𝑥଴

Forward pass of ResNet is similar to Euler scheme for solving IVP 
(E 2017, Haber 2017, Chang 2018, Lu 2018, …)

𝑥௧ାଵ ൌ 𝑥௧ ൅ 𝑓ሺ𝑥௧, 𝜃௧ሻ𝑥௧

Resnet Module



NNs as numerical schemes for solving ODEs – Learning problem
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 Learning problem with ResNets
 𝑀𝑖𝑛ఏ    𝐿 𝐹 𝑥,𝜃 ,𝑦

𝑠. 𝑡.     𝑥୪ ൌ x୪ିଵ ൅ 𝑓௟ሺ𝑥୪ିଵሻ , 𝑙 ൌ 1 …𝑇, x଴ ൌ x

 𝑥 input, 𝑦 target, 𝜃 parameters, 𝑥௟ layer 𝑙 activation, 𝑇 layers
 Solving this problem requires alternating

 Forward pass – Euler numerical scheme for solving


ௗ௫
ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 , 𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 𝑥 0 ൌ 𝑥଴

 Backward pass – differentiation through Euler scheme for solving


ௗఏ
ௗ௧
ൌ െ𝜖 డ௅ ఏ ௧  

డఏ , 𝜃 0 ൌ 𝜃଴

 Could this idea be generalized?
 Replace Euler with any numerical integration scheme

The constraint describes the 
Forward graph of the Resnet

32



NNs as numerical schemes for solving ODEs
Euler derivation
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 ODE – IVP problem


ௗ௫
ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 𝑥 0 ൌ 𝑥଴

 Continuous to discrete time
 Divide ሾ0,𝑇ሿ in intervals of size Δ𝑡: 𝑡௡ ൌ 𝑛Δ𝑡
 The objective is to find 𝑥௡ an approximation of 𝑥ሺ𝑡௡ሻ at each 𝑡௡

 Taylor expansion

 𝑥 𝑡௡ାଵ ൎ x t୬ ൅ Δ𝑡 ௗ௫ ௧೙
ௗ௧

 𝑥 𝑡௡ାଵ ൎ x t୬ ൅ Δ𝑡𝑓ሺ𝑥 𝑡୬ ሻ
 Discrete approximation and algorithm

 𝑥଴ ൌ 𝑥ሺ0ሻ
 𝑥௡ାଵ ൎ 𝑥௡ ൅ Δ𝑡𝑓ሺ𝑥௡ሻ



NNs as numerical schemes for solving ODEs
ODE formulation of a gradient algorithm
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 Steepest gradient descent
 𝜃௧ାଵ ൌ 𝜃௧ െ 𝜖௧∇𝐿 𝜃௧ , with initial value 𝜃଴

 Continuous formulation
 Let 𝜖௧ ൌ 𝜖 𝑡 Δt
 𝜃 𝑡 ൅ 1 ൌ 𝜃 𝑡 െ 𝜖 𝑡 Δt∇𝐿ሺ𝜃 𝑡 ሻ


ఏ ௧ାଵ ିఏ ௧

୼୲
ൌ െ𝜖 𝑡 Δt∇𝐿ሺ𝜃 𝑡 ሻ


డఏሺ௧ሻ
డ௧

ൌ െ𝜖ሺtሻ∇𝐿ሺ𝜃 𝑡 ሻ

 ODE IVP


డఏሺ௧ሻ
డ௧

ൌ െ𝜖ሺtሻ∇𝐿ሺ𝜃 𝑡 ሻwith 𝜃 0 ൌ 𝜃଴



NNs as numerical schemes for solving ODEs
Continuous limit
 Continuous limit

 If we let ℎ → 0 in Euler, the ResNet learning problem becomes
 𝑀𝑖𝑛ఏ𝐿 𝐹 𝑥,𝜃 ,𝑦

 𝑠. 𝑡.     డ௫
డ௧
ൌ 𝐹 𝑥 𝑡 , 𝜃 𝑡 , 𝑡 ∈ ሾ0,𝑇ሿ , 𝑥଴ ൌ 𝑥

 Two different families of methods for solving the learning problem:
 Discretize then Optimize

 Discretize in time and then solve
 Leads to back-propagation like algorithms
 The ResNet derivation described before is an example
 This is the framework used in this course

 Optimize then Discretize
 Solves the continuous optimization problem
 Advocated by NeuralODE (Chen 2018)
 Amounts at solving a forward and a backward differential equations

 See notes in the next slides
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NNs as numerical schemes for solving ODEs
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 Key ideas
 Training of NNs can be formulated as solving ODEs with a numerical

scheme
 Different numerical schemes could be used

 To be implemented with specific NN architectures

 Allows us using numerical schemes theory for deriving NN properties
 The link between NNs and differential equations will be most relevant 

for modeling dynamical systems

 Note
 ODE are central in several ML contexts involving dynamical processes such as 

generative models (e.g. diffusion models, flow matching models) 



Interlude
Crash notes on ODEs and PDEs

ODEs

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems
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Crash notes on ODEs

Advanced Deep Learning - Physics-Aware Deep Learning -
Dynamical Systems
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 Initial value problem

 ቐ
డ௫
డ௧
ൌ 𝑓 ሺ𝑡, 𝑥ሺ𝑡ሻሻ
𝑥 0 ൌ 𝑥଴

        ሺ1ሻ

 With 𝑓: 0,𝑇 ൈ 𝑅௡ → 𝑅௡
differentiable and 𝑥଴ ∈ 𝑅௡ an 
initial value

 What is the value of 𝑥 𝑇 ? 

 Integral formulation: solution of 
(1)

 𝑥 𝑇 ൌ 𝑥 0 ൅ ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை

 Property: the integral formulation 
is equivalent to formulation ሺ1ሻ

Example
𝜕𝑥
𝜕𝑡 ൌ 2𝑡; 𝑥 0 ൌ 1; 𝑥 1 ?

𝑥 1 ൌ 𝑥 0 ൅න 2𝑡𝑑𝑡
ଵ

଴
𝑥 1 ൌ 1 ൅ 1ଶ െ 0ଶ ൌ 2



Crash notes on ODEs
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 Property (Cauchy- Lipschitz)
 If 𝑓is uniformly Lipschitz w.r.t. 𝑡 and globally w.r.t. variable 𝑥, (‖𝑓ሺ 𝑡, 𝑥 െ
𝑓ሺ𝑡, 𝑥ᇱሻ‖ ൑ 𝐿 𝑥 െ 𝑥ᇱ ሻ in a neigborhood of ሺ0, 𝑥଴ሻ, then a solution 
exists and is unique

 Corollary
 If 𝑓 is continuously differentiable w.r.t. 𝑡, 𝑥, the solution to the initial 

value problem is unique

 Geometrical interpretation
 Solution curves for different solutions (initial values) do not intersect



Crash notes on ODEs
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 Trajectories  (solution curves)
 Flow of an ODE

 𝜙 ∶  𝑅 ൈ  𝑅௡  →  𝑅௡ of 𝑓 is 
defined by 𝜙 𝑡, 𝑥଴ ൌ 𝑥 𝑡

 Geometric Interpretation
 The flow traces the trajectory of 

the solution in the state space:
𝜙௧ 𝑥଴ : 𝑡 ∈ 𝑅

 These trajectories are solutions 
of the ODE and follow the vector
field 𝑓, satisfying:

𝑑𝜙௧
𝑑𝑡 ൌ 𝑓 𝜙௧ 𝑥଴

i.e. it describes all the trajectories
for different initial conditions



Crash notes on ODEs
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 Numerical solvers

 𝑥 𝑇 ൌ 𝑥 0 ൅ ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை

 What if the integral cannot be analytically integrated?

 ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை is approximated via numerical integration

 Objective: build a sequence of values 𝑥଴, 𝑥ଵ, … 𝑥ே that approximate the 
solution at the discretization points 𝑥 𝑡଴ , 𝑥 𝑡ଵ , … , 𝑥ሺ𝑡ேሻ

 Exemple: Euler forward
 Step size ℎ

 𝑡௡ାଵ ൌ 𝑡௡ ൅ ℎ
 Update using the gradient at 𝑓ሺ𝑡௡ሻ

 𝑥୬ାଵ ൌ 𝑥௡ ൅ ℎ𝑓 𝑥௡, 𝜃௡
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Note: the same solver can be recovered also via the 
differential formulation through derivative approximations 
e.g.  డ௫

డ௧
≃ ௫ ௧ା௛ ି௫ሺ௧ሻ

௛
leads to 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ𝑓ሺ𝑡௡, 𝑥௡ሻ
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 One step methods - exemples
 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ௡𝜙ሺ𝑡௡, 𝑥௡,ℎ௡ሻ with 𝜙 a function depending on 𝑓
 Euler forward (explicit)

 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ𝑓ሺ𝑡௡, 𝑥௡ሻ

 Euler backward (implicit)
 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ𝑓ሺ𝑡௡ାଵ, 𝑥௡ାଵሻ
 Requires solving a fixed point equation

 Runge Kutta e.g. RK2
 (explixit, RK4 often used as a default option) 



𝑥௡,ଵ ൌ 𝑥௡                                                            
𝑥௡,ଶ ൌ 𝑥௡ ൅ ℎ𝑓 𝑡௡, 𝑥௡,ଵ                                  

𝑥௡ାଵ ൌ 𝑥௡ ൅
௛
ଶ
𝑓 𝑡௡, 𝑥௡,ଵ ൅ ௛

ଶ
𝑓ሺ𝑡௡ାଵ, 𝑥௡,ଶሻ



Crash notes on ODEs
NNs as numerical schemes for solving ODEs

 NN architectures motivated by ODE numerical schemes
 This link between numerical schemes and NNs has been exploited by 

some authors
 Different discretisation methods used in place of Forward Euler

 Linear multi-step (Lu et al. 2018)
 𝑥௧ାଵ ൌ 1 െ 𝑘௧ 𝑥௧ ൅ 𝑘௧𝑥௧ିଵ ൅ 𝑓 𝑥௧;𝜃௧ , 𝜃௧ are the parameters of 𝑓

 Leapfrog Network (Chang et al. 2018)
 𝑥௧ାଵ ൌ 2𝑥௧ െ 𝑥௧ିଵ െ ℎଶ𝑓ሺ𝑥௧ ,𝜃௧ሻ

 …
 Implicit schemes

 e.g. backward Euler scheme
 𝑥௧ାଵ ൌ 𝑥௧ ൅ ℎ𝑓 𝑥௧ାଵ;𝜃௧ାଵ
 Note: requires solving a non linear equation at each step

 Each numerical scheme leads to a specific NN architecture (a la ResNet)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems43
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 Summary: using numerical solvers for ODEs
 consider the initial value problem

 ቐ
డ௫
డ௧
ൌ 𝑓 ሺ𝑡, 𝑥ሺ𝑡ሻሻ
𝑥 𝑡଴ ൌ 𝑥଴

        (1)

 What is the value of 𝑥 𝑡ଵ ? 
 Note: we introduced here 𝑡଴ and 𝑡ଵ, lket us use 𝑡଴ ൌ 0 and 𝑡ଵ ൌ 𝑇
 Solver call for the forward pass

𝑥 𝑡ଵ ൌ 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒ሺ𝑓 𝑥 𝑡 , 𝑡, 𝜃 , 𝑥 𝑡଴ , 𝑡଴ ൌ 0, 𝑡ଵ ൌ 𝑇ሻ

Numerical solver Differential Initial 
value

Initial 
time

Final 
time
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 Properties
 For simplicity we consider one step methods of the form

 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ௡𝜙ሺ𝑡௡, 𝑥௡, ℎ௡ሻ (2)
 Stability

 Intuition: a perturbation of the initial value and of the 𝜙 term does not lead 
to a divergence of the schema

 Property
 If there exists 𝐿 ൐ 0 such that ∀𝑥, 𝑥ᇱ ∈ 𝑅௠,∀ℎ ∈ 0,1 ,∀𝑡 ∈ 0,𝑇 , 

𝜙 𝑡, 𝑥, ℎ െ 𝜙ሺ𝑡, 𝑥ᇱ, ℎሻ ൑ 𝐿 𝑥 െ 𝑥ᇱ then the numerical scheme is
stable

 i.e. 𝜙 is Lipschitz continuous w.r.t. 𝑥, uniformly w.r.t. 𝑡 and ℎ

 Note: stability is important e.g. for the robustness of NN to adversarial
attacks
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 Properties

 For simplicity we consider one step methods of the form
 𝑥௡ାଵ ൌ 𝑥௡ ൅ ℎ௡𝜙ሺ𝑡௡, 𝑥௡,ℎ௡ሻ (2)
 Consistency

 Measures how well the sequence 𝑥଴, 𝑥ଵ, … 𝑥ே approximates 𝑥 𝑡଴ , 𝑥 𝑡ଵ , … , 𝑥ሺ𝑡ேሻ
 Truncation error

 𝜖௡ ൌ 𝑥 𝑡௡ାଵ െ 𝑥 𝑡௡ െ ℎ𝜙ሺ𝑡௡, 𝑥 𝑡௡ ,ℎሻ, with 𝑥ሺ𝑡ሻ a solution of the ODE (1)
 A numerical scheme is consistent if the summation of all the truncation errors, for 

all discretization steps goes to 0 with ℎ
 Convergence

 What are the conditions on 𝜙 for schema (2) to be convergent, i.e. for 𝑥௡ to 
converge to xሺ𝑡௡ሻ when ℎ → 0 ?

 If the scheme (2) is stable and consistent then it is convergent, meaning that

 lim
௛→଴

௫బ→௫ሺ଴ሻ

sup
଴ஸ௡ஸே

𝑥௡ െ 𝑥 𝑡௡
ଶ ൌ 0



Interlude
Crash notes on ODEs and PDEs

PDEs
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 We will consider general PDEs of the form



డ௨ ௧,௫
డ௧

൅ ℒ𝑢 𝑡, 𝑥 ൌ 0,    𝑡, 𝑥 ∈ 0,𝑇 xΩ
𝑢ሺ0, 𝑥 ൌ 𝑢଴ 𝑥 ,                  𝑥 ∈ Ω                 
𝑢 𝑡, 𝑥 ൌ 𝑔 𝑡, 𝑥 ,                 𝑥 ∈ 0,𝑇 x𝜕Ω  

 With 𝑢: 0,𝑇 xΩ → 𝑅௡, 𝜕Ω the boundary of domain Ω
 ℒ is a differentiable operator

 Different types of boundary conditions, e.g.
 Dirichlet 𝑢 𝑥 ൌ 𝑔ሺ𝑥ሻ specifies the value at the boundaries

 Neuman డ௨
డ௡

𝑥 ൌ 𝑔ሺ𝑥ሻ specifies the value of the normal derivative at the 
boundary

 Periodic 𝑢 𝑎 ൌ 𝑢 𝑏 , డ௨
డ௫

𝑎 ൌ డ௨
డ௫

𝑏 , … for example if Ω ൌ ሾa, bሿ
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 Example: IBVP for the Heat (Diffusion) equation 1𝐷


డ௨
డ௧
ൌ డమ௨

డ௫మ
         𝑡 ൐ 0, 𝑥 ∈ 𝑎, 𝑏

 𝑢 𝑎, 𝑡 ൌ 0 and 𝑢 𝑏, 𝑡 ൌ 0 for 𝑡 ൐ 0 
 𝑢 𝑥, 0 ൌ 𝑓ሺ𝑥ሻ

 Heat equation 2D


డ௨
డ௧
ൌ డమ௨

డ௫మ
൅ డమ௨

డ௬మ

𝜕𝑢
𝜕𝑡 ൌ

𝜕ଶ𝑢
𝜕𝑥ଶ

𝑢ሺ𝑥, 0ሻ ൌ 𝑓ሺ𝑥ሻ
𝑡 ൌ 0

𝑢 ൌ 0 𝑢 ൌ 0

𝑥 ൌ 𝑎 𝑥 ൌ 𝑏

𝑡

Evolution of the temperature in a 
square metal plate -heat equation. 
The height and redness indicate 
the temperature at each point. The 
initial state has a uniformly hot 
hoof-shaped region (red) 
surrounded by uniformly cold 
region (yellow). As time passes 
the heat diffuses into the cold 
region.
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 Many applications of NN to PDE proceed as in the method of line 
(Hamdi et al. 2007)
 Replace spatial derivatives in the PDE with algebraic approximations.
 The spatial derivatives don't appear anymore and the only remaining 

independent variable is the time.
 This transforms the PDE into a system of ODE that can be solved with 

classical ODE solvers using a time stepping scheme
 This is the scheme used for most discrete space ML solvers
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 Example Diffusion (heat) PDE in one dimension


డ௨
డ௧
ൌ c డ

మ௨
డ௫మ

with boundary conditions 𝑢 െ𝐿, 𝑡 ൌ 𝑢 𝐿, 𝑡

 Spatial discretization of 𝑢 𝑥, 𝑡 :
 Denote 𝑢ሺെ𝐿, 𝑡ሻ ൌ 𝑢ଵ,𝑢ሺെ𝐿 ൅ Δ 𝑥, 𝑡ሻ ൌ 𝑢ଶ, … ,𝑢ሺ𝐿, 𝑡ሻ ൌ 𝑢௡ାଵ

 Replace spatial derivatives in the PDE with algebraic approximations.
 Discretization of the spatial derivative with a second order scheme :

𝑑𝑢௜
𝑑𝑡 ൌ

𝑐
Δ𝑥ଶ  𝑢௜ାଵ െ 2𝑢௜ ൅ 𝑢௜ିଵ ,  ∀ 𝑖 ∈  ሼ1,𝑛ሽ

 The spatial derivative do not appear anymore
 We are left with a system of 𝑛 ODEs
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 This system of PDE can be solved using appropriate classical ODE 
solvers. 
 Let us derive the ODE integration using an Euler discretization scheme 

for the temporal component:  ୢ୳౟
ୢ୲
ൎ ௨೔

೙శభି௨೔
೙

୼௧
 The integration scheme for the system of ODEs can be rewritten as:

𝑢௜௠ାଵ ൌ 𝑢௜௠ ൅ 𝜆 𝑢௜ାଵ௠  െ 2𝑢௜௠ ൅ 𝑢௜ିଵ௠       ∀𝑖 ∈ ሼ1,𝑛ሽ 

with 𝜆 ൌ  𝑐 ୼௧
୼୶మ

  the CFL (Courant-Friedrichs-Lewy ) number that 
conditions the stability of the ODE

 The values of 𝑢 at time step 𝑚 ൅ 1 can be obtained from the values at time 
step 𝑚 using  neighbourhood points at space index 𝑢௜

 Two dimensions, is slightly more complex, but the PDE can be reduced to a 
system of linear ODEs as in the example above

 End Interlude PDEs



Modeling Spatio-temporal dynamics 
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models

NNs as surrogate models for solving PDEs – Data free approaches



Modeling Spatio-temporal dynamics with Neural Networks
Motivations
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 Modeling the complex dynamics arising in natural/ physical
processes
 Objective: understanding, predicting, controling

 Physical models
 Mathematical equations of dynamical systems
 Often take the form of PDEs and associated numerical models
 Stem from a deep understanding of the underlying physics

 Data driven modeling
 In many cases data are plentiful (climate, simulations, etc)
 Can we leverage ML for modeling these complex systems?

 Way more complex than current ML successes (vision, language)

 Challenge: Interaction between the physical model based and the 
statistical paradigms



Modeling Spatio-temporal dynamics with Neural Networks
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 Applications domains - examples

 Potential major application field for ML

 Objectives
 Fast alternative to numerical solvers

 Reduce computational cost and facilitate the design and deployment
 Complement physical models

 Focus of the presentation: pure data-driven models

Computational Fluid Dynamics Earth System Science – Weather
prediction/ Climate

Graphical design

Tompson et al. 2017 

DrivaerNet 2025

ECMWF 2025



Spatio temporal dynamics are usually modeled through partial differential equations
We consider a class of spatio-temporal partial differential equations dependent on parameters

డ௨
డ௧
ൌ 𝑔ሺ𝑐, 𝑓; 𝑥, 𝑡,𝑢,𝛻𝑢,𝛻ଶ𝑢, . . . ሻ

𝑢ሺ𝑥, 𝑡 ൌ 0ሻ ൌ 𝑢଴ሺ𝑥ሻ

∀ሺ𝑥, 𝑡ሻ ∈ Ω ൈ ℝ∗
ା

∀𝑥 ∈ Ω

Partial Differential Equation

Explicit modeling

𝐵ሺ𝑏;𝑢,𝛻𝑢, 𝑥, 𝑡ሻ ൌ 0 ∀ሺ𝑥, 𝑡ሻ ∈ 𝜕Ω ൈ ℝ∗
ାBoundary 

constraint

Initial 
constraint

Explicit modeling of physical dynamics:  Partial Differential Equations

56 Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems

Parameters that influence the dynamics:
PDE coefficients (𝑐), forcing terms (𝑓), 

boundary conditions (𝑏), initial conditions 
(𝑢଴ ), any physical parameter.



Neural surrogates are trained on trajectories sampled from an underlying dynamics
We consider pure data driven approaches: no prior on the PDE form

Implicit modeling

Training 
dataset of N 
trajectories

… … … …

Implicit modeling of physical dynamics: Neural surrogates
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డ௨
డ௧
ൌ 𝑔ሺ𝑐, 𝑓; 𝑥, 𝑡,𝑢,𝛻𝑢,𝛻ଶ𝑢, . . . ሻ

𝑢ሺ𝑥, 𝑡 ൌ 0ሻ ൌ 𝑢଴ሺ𝑥ሻ

∀ሺ𝑥, 𝑡ሻ ∈ Ω ൈ ℝ∗
ା

∀𝑥 ∈ Ω

Partial Differential Equation

Explicit modeling

𝐵ሺ𝑏;𝑢,𝛻𝑢, 𝑥, 𝑡ሻ ൌ 0 ∀ሺ𝑥, 𝑡ሻ ∈ 𝜕Ω ൈ ℝ∗
ାBoundary 

constraint

Initial 
constraint

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



Existing neural surrogates face several challenges for emulating the evolutions of systems governed by 
PDEs

డ௨
డ௧
ൌ 𝑔ሺ𝑐, 𝑓; 𝑥, 𝑡,𝑢,𝛻𝑢,𝛻ଶ𝑢, . . . ሻ

𝐵ሺ𝑏;𝑢,𝛻𝑢, 𝑥, 𝑡ሻ ൌ 0 ∀ሺ𝑥, 𝑡ሻ ∈ 𝜕Ω ൈ ℝ∗
ା

∀ሺ𝑥, 𝑡ሻ ∈ Ω ൈ ℝ∗
ା

Initial condition

Domain 
&
Grid

2) Neural Surrogates should generalize to 
changes in the discretization grid 𝒳

𝑢ሺ𝑥, 𝑡 ൌ 0ሻ ൌ 𝑢଴ሺ𝑥ሻ

Sparse grid

And to changes of domain Ω

Explicit modeling

Implicit modeling

∀𝑥 ∈ Ω

Tackling the generalization problem for physical dynamics
Generalizing to changes in discretization and domain

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems58



Existing neural surrogates face several challenges for emulating the evolutions of systems governed by 
PDEs

Neural Surrogates should generalize to 
changes in new initial conditions and PDE 
parameters like forcing terms, coefficients, 
boundary conditions

High viscosity

Low viscosity

Implicit modeling

Tackling the generalization problem for physical dynamics
Generalizing to changes in the parameters: solving parametric PDEs
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డ௨
డ௧
ൌ 𝑔ሺ𝑐, 𝑓; 𝑥, 𝑡,𝑢,𝛻𝑢,𝛻ଶ𝑢, . . . ሻ

𝑢ሺ𝑥, 𝑡 ൌ 0ሻ ൌ 𝑢଴ሺ𝑥ሻ

Explicit modeling

𝐵ሺ𝑏;𝑢,𝛻𝑢, 𝑥, 𝑡ሻ ൌ 0 ∀ሺ𝑥, 𝑡ሻ ∈ 𝜕Ω ൈ ℝ∗
ା

Initial condition

PDE coefficients
Forcing terms

Boundary type

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



Modeling Spatio-temporal dynamics
with Neural Networks

 NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models

NNs as surrogate models for solving PDEs – Data free approaches



Basic NN architectures
Used on discrete grids

Convolutional Neural Networks
Unet

Graph Neural Networks

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems

61



Convolutional Neural Networks
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 Convolution of function 𝑢 𝑥 , 𝑥 ∈ 𝑅௡ with kernel 𝑔 𝑥
 ሺ𝑢 ∗ 𝑔ሻ 𝑥 ൌ ׬ 𝑢 𝑦 𝑔 𝑦 െ 𝑥 𝑑𝑦ோ೏

 ሺ𝑢 ∗ 𝑔ሻ 𝑥 ൌ ׬ 𝑢 𝑦 െ x 𝑔 𝑦 𝑑𝑦ோ೏

 Discrete convolution in 2 D of 𝑢ሾ𝑖, 𝑗ሿ with 𝑔 𝑖, 𝑗
 Let us suppose that 𝑔 has a finite support set െ𝑁,െ𝑁 ൅ 1, … ,𝑁 ଶ

 𝑢 ∗ 𝑔 ሾ𝑖, 𝑗ሿ ൌ ∑ ∑ 𝑢 𝑚,𝑛 𝑔ሾ𝑚 െ 𝑖,𝑛 െ 𝑗ሿ௜ାே
௡ୀ௜ିே

௜ାே
௠ୀ௜ିே

 𝑢 ∗ 𝑔 ሾ𝑖, 𝑗ሿ ൌ ∑ ∑ 𝑢 𝑖 ൅ 𝑚, j ൅ 𝑛 𝑔ሾ𝑚,𝑛ሿே
௡ୀିே

ே
௠ୀିே

 The latter is the convolution used in CNNs

Fig. https://en.wikipedia.org/wiki/Convolution



Convolutional Neural Networks
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 𝑢 ∗ 𝑔 ሾ𝑖, 𝑗ሿ ൌ ∑ ∑ 𝑢 𝑖 ൅ 𝑚, j ൅ 𝑛 𝑔ሾ𝑚,𝑛ሿே
௡ୀିே

ே
௠ୀିே

𝑢ଵ 𝑢ଶ 𝑢ଷ 𝑢ସ
𝑢ହ 𝑢଺ 𝑢଻ 𝑢଼
𝑢ଽ 𝑢ଵ଴ 𝑢ଵଵ 𝑢ଵଶ

𝑢ଵଷ 𝑢ଵସ 𝑢ଵହ 𝑢ଵ଺

𝑦ଵ 𝑦ଶ
𝑦ଷ 𝑦ସ

Filter 𝑔
indication of the indexing positions

𝑦ଵ ൌ 𝑢 ∗ 𝑔 ሾ2,2ሿ ෍ ෍ 𝑢 2 ൅𝑚, 2 ൅ 𝑛 𝑔ሾ𝑚,𝑛ሿ
ଵ

௡ୀିଵ

ଵ

௠ୀିଵ

Image 𝑢
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 Relations with finite difference
 Classical stencils used for finite differences can be implemented via NN 

convolution operators
 NNs operating in discrete spaces (CNN, Unet, ResNet, …) have the 

potential to learn differential operators
 Example

 Let 𝑢: Rଶ → R be a function, and 𝑥 ∈ 𝑅ଶ, and ℎ the grid size of a discretized
representation for 𝑥

 Central difference operator for approximating ((i,j) respectively denote the row
and the column)


డ
డ௫భ

𝑢ሺ𝑥ሻ is ௨ ௜ାଵ,௝ ି௨ሾ௜ିଵ,௝ሿ
ଶ௛

implemented as ଵ
ଶ୦

0 0 0
െ1 0 1
0 0 0

 


డమ

డ௫భమ
𝑢 𝑥 is ௨ ௜ାଵ,௝ ିଶ௨ ௜,௝ ା௨ሾ௜ିଵ,௝ሿ

௛మ
implemented as ଵ

୦మ

0 0 0
1 െ2 1
0 0 0

 

 Note, more on that in Long et al. 2019



UNets

Advanced Deep Learning - Physics-Aware Deep Learning -
Dynamical Systems

65

 Introduced for image to image 
transformations (initially image 
segmentation, could be used to 
associate a source to the solution 
of a PDE)

 Encoder-decoder type 
architecture,  V- Cycle:

 First, upscale the image resolution
and increase the number of 
channels

 Then downscale to the initial 
resolution and reduce the number
of channels

 Close to Multigrid numerical
methods
 Makes use of

 Convolutions
 skip connections combine 

information at the same resolution
 Recent versions incorporate

Attention mechanisms
Fig. Ronneberger net al. 2015

Fig. Badrinarayanan et al. 2015



Graph Neural Networks
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 Extends the CNN ideas to irregular grids (graphs)
 Better adapted to irregular meshes used e.g. in fluid mechanics
 Computational cost high compared to CNNs

 Needs to compute the neighbours for several operations – not so adapted to 
GPUs

 Notations
 𝐺 ൌ ሺ𝑉,𝐸ሻ a graph

 To each 𝑣 ∈ 𝑉, is attached a set of node features 𝑥 ∈ 𝑅ௗ:
 𝒩 𝑣 is the neighborhood of note 𝑣 in the graph
 Alternatively, 𝐺 can be described by its adjacency matrix 𝐴

a
c

b
d

𝐴 ൌ
0 1 0 0
1 0 1 1
0 1 1 0
0 1 1 0
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 GNNs are multilayer NNs where each layer has a graph structure
 As for CNNs, nodes in layer 𝑘 ൅ 1 compute their activation from

activations in layer 𝑘.
 The regular CNN convolution is replaced by a message passing 

operation
 Message passing

 Let 𝑥௩௞ the embedding vector associated to node 𝑣 at layer 𝑘
 Message passing operation for nodes has the following general form

 Update 𝑣 state: 𝑥௩௞ାଵ ൌ 𝜎ሺ𝑤௞ ∑ ௫ೠೖ

𝒩 ௩ 𝒩 ௨௨∈𝒩ሺ௩ሻ∪௩ )

 𝒩 𝑣 is the neighborhood of node 𝑣 in the graph


ଵ
𝒩 ௩ 𝒩 ௨

 is a normalization factor 

 ∑ ௫ೠೖ

𝒩 ௩ 𝒩 ௨௨∈𝒩ሺ௩ሻ∪௩ ) is an aggregation operator over 𝒩 𝑣

 𝑤௞ is a matrix of the appropriate dimensions
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 Message passing operation has the following general form

 Update 𝑣 state: 𝑥௩௞ାଵ ൌ 𝜎ሺ𝑤௞ ∑ ௫ೠೖ

𝒩 ௩ 𝒩 ௨௨∈𝒩ሺ௩ሻ∪௩ )

 Normalization factor  ଵ
𝒩 ௩ 𝒩 ௨

 introduces a relative independence

w.r.t. the nodes (𝑣) degree compared to a basic aggregation rule s.a.
∑ 𝑥௨௞௨∈𝒩ሺ௩ሻ∪௩ where nodes with high degree would dominate

 Many variants, this one was proposed in the graph convolutional network 
(GCN) by (Kipf et al 2017) – which remains popular GCN approach

 Note: any aggregation operator must be permutation invariant, i.e. 
independent of the node order

 Note: aggregagtion can also be performed on edges

 Note: more on GNNs in Hamilton, 2020
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 Attention with GCN
 A popular set aggregation rule relies on neighborhood attention

 Attention was popularized with transformers in NLP

 Example
 Aggregation rule ∑ 𝛼௩,௨𝑥௨௞௨∈𝒩ሺ௩ሻ∪௩

 With coefficients 𝛼௩,௨ denoting the attention on neighbor 𝑢 ∈ 𝒩 𝑣

 𝛼௩,௨ ൌ
ୣ୶୮ ሺ௔೅ ௐ௫ೡ⊕ௐ௫ೠ ሻ

∑ ୣ୶୮ ሺ௔೅ ௐ௫ೡ⊕ௐ௫ೠᇲ ሻೠᇲ∈𝒩ሺೡሻ
, ⊕ concatenation operation

 𝑊a matrix of the appropriate size
 And possible extensions to multiple head attention as in Transformers



NNs as surrogate models for solving PDEs
Discrete space models

 Regular grid: Learning from partial observations – ResNets - UNets

Irregular mesh: passing PDE solvers – Graph NNs
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Learning from partial observations (Ayed et al. 2019- 2022)
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 Forecasting non linear dynamical systems from observations only
 Data-driven approach: without any knowledge of the physics

 The form of the PDE is unknown

 Only assumption
 The underlying system follows a differential equation, but the PDE is unknown

 Objective
 Learn the evolution of this system (observations and state) from scratch 

with a NN
 Discover automatically the relation between states (dynamics)



Learning from partial observations (Ayed et al. 2019- 2022)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems72

 Illustration
 Navier Stokes equations

 Discretised on a spatial 64x64 grid
 State: fluid particle density + 2D velocity field
 Observations: density only 𝑌
 Initial state: true full state 𝑋଴

Forecasting NS – horizon prediction 𝑇 ൌ  30 (in blue
density 𝑌, in color 2D velocity field with color code



Learning from partial observations (Ayed et al. 2019- 2022)

 Assume an underlying dynamical system with initial conditions



𝑋଴                  Initial state of the system 
ௗ௑೟
ௗ௧

ൌ 𝐹∗ 𝑋௧                    State dynamics
𝑌௧ ൌ 𝐻 𝑋௧                           Observations

 Variables
 𝑋௧ ∈ 𝑅ௗ : state of the system at time 𝑡

 function of time and space, partially observed
 e.g. 3 D dynamics of the Ocean: velocity, pressure of the ocean

 𝑌௧ : observation, i.e. only available data for training ሼ𝑌௧, 0 ൑ 𝑡 ൑ 𝑇ሽ
 e.g. satellite observations: temperature, salinity, ocean color, waves height, …

 𝐻: measurement process linking state to observation is known
 𝐹∗describes the evolution of the state and is unknown

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems73



Learning from partial observations (Ayed et al. 2019- 2022)
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 Objective
 Learn the evolution of the system (observations and state) from scratch 

with a NN

 Learning problem

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
 ிഇ, ௚ഇ

 𝐸௒ሾ∑ 𝑌௧ െ 𝐻 𝑋෠௧ ଶ
ଶ்

௧ୀ଴ learn trajectories from observations

 Subject to ∀𝑡, ௗ௑
෠೟
ௗ௧

ൌ 𝐹ఏ 𝑋෠௧ , learn the state dynamics

 𝑋෠଴ ൌ 𝑔ఏሺ𝑌 ௞ , 0 ൏ 𝑘 ൑ 𝐾ሻ learn initial state from previous
observations

 Implementation
 𝐹ఏ is implemented as a ResNet, similar to forward Euler for ODEs

 Solves ௗ௑෠೟
ௗ௧

ൌ 𝐹ఏ 𝑋෠௧
  𝑋௧ାఋ௧

ఏ ൌ 𝑋௧ఏ ൅ 𝛿𝑡𝐹ఏሺ𝑋௧ఏሻ
 𝑔ఏ is a Unet or a ResNet



Learning from partial observations (Ayed et al. 2019- 2022)
Examples

 NEMO – Nucleus for European Modelling of the Ocean Engine
 State: 7 variables, we make use only of 2 variables corresponding to the 

velocity field
 Observations: Sea Surface Temperature
 Initial state: interpolated from previous observations

 For all test, data are partitioned into a training and a test set
 Horizon of 6 time steps used for the target sequence for training
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Learning from partial observations (Ayed et al. 2019- 2022)
NEMO – Global Ocean Physics Reanalysis
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Targets (𝑌௧)

Targets (𝑋௧)

Predictions (𝑌෠௧)

Predictions (𝑋෠௧)
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Discrete space models

Regular grids: Learning from partial observations – ResNets – Unets

 Irregular meshes: Message passing PDE solvers – Graph NNs
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Graph Neural Networks

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems78

 GNN are well adapted to handle irregular meshes
 Several efforts for developing PDE solvers based on graphs

 (Sanchez-Gonzales et al. 2020, Belbute-Peres et al. 2020, Pfaff et al. 2021, …)
 Grid cells/ nodes are mapped to a graph which is processed via message 

passing
 Example used in the course:

 Brandstetter et al. 2022: Message Passing Neural PDE Solvers
 Representative GNN solver 
 Handle multiple situations:
 Multiple resolutions, boundary problems, parametric PDEs, etc

 New improvements for training w.r.t. previous GNN PDE solvers
 Inference

 The mesh (precomputed) is mapped onto a graph
 Objective: forecast spatio-temporal dynamics
 Auto-regressive model 𝑢 𝑥, 𝑡 → 𝑢 𝑥, 𝑡 ൅ Δ𝑡 → 𝑢 𝑥, 𝑡 ൅ 2Δ𝑡 …



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 General framework
 Framework: Encode-Process-Decode (Sanchez-Gomzales 2020)

 Process: message passing on the graph node embeddings

Fig. Bransdtetter et al. 2022

Node 𝒊, step 𝒌
Encoding

Input: last 𝐾 values at each node 𝑖
𝑓௜଴ ൌEncode(𝑢௜௞ି௄ , … ,𝑢௜௞)

Process

M message passing steps
𝑓௜௠,𝑚 ൌ 1 …𝑀

Decode

Output: next 𝐾 values
𝑢௜௞ାଵ, … ,𝑢௜௞ା௄



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Encode
 Compute node embeddings for each node 𝑖
 𝑓௜଴ ൌ 𝑒𝑚𝑏𝑒𝑑 𝑢௜௞ି௄:௞ , 𝑥௜ , 𝑡௞ , 𝜃௉஽ா (vector)

 𝑢௜௞ି௄:௞: 𝐾 last values, 𝑥௜ : node position, 𝑡௞ : time step 𝑘
 𝜃௉஽ா : parameters of the equation, e.g. PDE coefficient values, boundary

condition indicators etc



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Process
 Compute 𝑀 steps of node update, 𝑓௜ଵ, … , 𝑓௜ெ for all nodes 𝑖 via message 

passing
 Step m

 Message for edge 𝑗 → 𝑖 𝑚௜௝
௠ ൌ Φሺ𝑓௜௠, 𝑓௝௠,𝑢௜௞ି௄:௞ െ 𝑢௝௞ି௄:௞ , 𝑥௜ െ 𝑥௝ ,𝜃௉஽ாሻ

 Update for node 𝑖 𝑓௜௠ାଵ ൌ 𝜓 𝑓௜௠,∑ 𝑚௜௝
௠,௝∈𝒩 ௜ 𝜃௉஽ா

 Φ,𝜓 are MLPs



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Decode
 From the last node embedding 𝑓௜ெ , compute next 𝐾values 
𝑢௜௞ାଵ, … ,𝑢௜௞ା௄ for all nodes 𝑖

 𝑓௜ெis a vector and is considered as a time contiguous signal and 
processed through a 1𝐷 CNN to compute the next 𝐾 predictions
𝑢௜௞ାଵ, … ,𝑢௜௞ା௄



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Claim
 Able to handle

 parametric PDEs, with the 𝜃௉஽ா coefficients
 Multiple resolutions, message passing allows for multiple resolutions in the 

GNN
 Multiple boundary conditions (Dirichlet, Neuman, mixture)



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Example
 Generalization : family of PDE equations with different parameters and 

different resolutions


డ௨
డ௧
൅ డ

డ௫
𝛼𝑢ଶ െ 𝛽 డ௨

డ௫
൅ 𝛾 డ

మ௨
డ௫మ

ൌ 𝑓 𝑥, 𝑡

 𝑢 0, 𝑥 ൌ 𝑢଴ሺ𝑥ሻ
 Encompasses several classical equations

 𝛼,𝛽, 𝛾 ൌ ሺ0, 𝜂, 0ሻ Heat equation
 𝛼,𝛽, 𝛾 ൌ ሺ0.5, 𝜂, 0ሻ Burgers equation (simplified equation for fluid flows)
 Etc

 𝜃௉஽ா ൌ 𝛼,𝛽, 𝛾



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
Example
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 Generalization : to PDE equations with different parameters values for 
𝛼,𝛽, 𝛾  and different resolutions

 Not real generalization but interpolation in the range of training values for 
𝛼,𝛽, 𝛾

 Colours correspond to different times

Fig. Brandstetter et al. 2022

resolutions Parameter values 𝛼,𝛽, 𝛾



Modeling Spatio-temporal dynamics
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
 NNs as surrogate models for solving PDEs – Continuous space models

NNs as surrogate models for solving PDEs – Data free approaches



Neural surrogate models: Neural operators
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 Classical numerical solvers operate on 
grids or meshes (finite differences, 
finite elements, finite volumes)

 Early neural solvers operate on tensors
(grids) or on graphs (irregular meshes)

 Neural operators is a relatively recent
topic aiming at learning maps between
function spaces instead of vector
spaces
 e.g. images are considered as continuous

functions

 Potential benefits
 Functions and operators are mesh/ 

resolution invariant
 Handle different geometries, multiple 

resolutions
 Query at any space-time coordinate



Neural surrogate models; Neural operators implementations

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems88

 Encode-Process-Decode has become
the standard framework for spatio-
temporal forecasting problems

 Encoding: maps physical inputs to a fixed-size 
small dimensional latent space

 Processing: model the dynamics into this 
small latent space

 Decoding: maps back to the physical space

 Implementations adapt recent
developments and concepts from NLP, 
vision etc to the field lof physics
 Attention/  NLP Transformers or Vision 

Transformers
 Generative models: diffusion, flow matching

etc
𝑢௧ା୼௧𝑢௧



NNs as surrogate models for solving PDEs –
Continuous space models

 Fourier Neural Operators
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NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)                                                                   
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 We consider
 𝒱 ൌ 𝒱 Ω ⊂ 𝑅ௗ;𝑅௡ ,𝒰 ൌ 𝑈ሺΩᇱ ⊂ 𝑅ௗᇲ; R୫ሻ two function spaces
 𝒢:𝒱 → 𝒰 a non linear unknown mapping between the two function

spaces
 FNO considers mappings 𝒢 that correspond to the solution operator of a 

parametric PDE 
 𝑣 ∈ 𝒱 and u ∈ 𝒰 could correspond respectively to
 an initial condition and a solution for a time dependent PDE
 A parameter function and a solution for a time independent PDE

 Objective
 Learn 𝒢ఏ an approximation of 𝒢 from a finite set of samples
 Samples are provided as p-points discretization of functions 𝑣 ∈ 𝒱 and 

u ∈ 𝒰
 i.e. in practice we learn from discrete spaces, the representation of the 

continuous functions 𝑣 ∈ 𝒱 and 𝑢 ∈ 𝒰



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)                                                                   
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 FNO considers mappings 𝒢 that correspond to the solution 
operator of a parametric PDE 
 𝑣 ∈ 𝒱 and u ∈ 𝒰 could correspond respectively to

 An initial condition and a solution for a time dependent PDE
 E.g. Advection-diffusion eq. (Sea Surface Temperature)

 A parameter function and a solution for a time independent PDE
 e.g. elliptic equation (Darcy Flow)
 െ∇. ሺ𝑎 𝑥 ∇u x ൌ f x , x ∈ Ω,𝑢 𝑥 ൌ 0, 𝑥 ∈ 𝜕Ω, 𝑓 piecewise constant 

𝑢ሺ𝑡ሻ 𝑢ሺ𝑡 ൅ Δ𝑡ሻ

𝑎ሺ𝑥ሻ diffusion 
coefficient

𝑢ሺ𝑥ሻ steady
state solution

Fig Li et al. 2022



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021) 

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems92

 Classical neural network

𝑢 ൌ ሺ𝐾்∘ 𝜎் ∘ ⋯ ∘ 𝜎௧ ∘ 𝐾௧∘ ⋯ ∘ 𝜎ଵ∘ 𝐾଴ሻ𝑣 

 With 𝐾௧ a linear operator, 𝜎௧ a non linearity, 𝑢, 𝑣 vectors

 Neural operators (simplified)
 Follow a similar framework but 𝑢 and 𝑣 are no more vectors but 

functions

𝑣௧ାଵ 𝑥 ൌ 𝜎௧ାଵ 𝐾௧ 𝑣௧ 𝑥  

 With 𝐾௧ 𝑣௧ an integral operator

𝐾௧ 𝑣௧ 𝑥 ൌ න 𝜘௧ 𝑥,𝑦 𝑣௧ 𝑦 𝑑𝑦
ஐ

 𝜘௧ 𝑥,𝑦 is a kernel function
 𝑣௧:Ω → 𝑅௡, 𝑣௧ାଵ:Ω → 𝑅௠, Ω ⊂ 𝑅ௗ a bounded space



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021) 
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 How to learn the kernel function 𝜘௧?
 We consider the simplified update rule

𝑢 𝑥 ൌ 𝐾ሺ𝑣ሻሺ𝑥ሻ  ൌ න 𝜘 𝑥,𝑦 𝑣 𝑦 𝑑𝑦
ஐ

 with 𝑣,𝑢:Ω → 𝑅௡

 FNO works in Fourier space
 Let us make 𝜘 𝑥, 𝑦 ൌ 𝜘 𝑥 െ 𝑦

 𝑢 𝑥 ൌ ׬ 𝜘 𝑥 െ 𝑦 𝑣 𝑦 𝑑𝑦ஐ
 𝑢 𝑥 ൌ ׬ 𝜘 𝑥 െ 𝑦 𝑣′ 𝑦 𝑑𝑦ାஶ

ିஶ with 𝑣ᇱ 𝑦 ൌ 𝟙ஐ 𝑦 𝑣 𝑦 <<<<<< convolution

𝑢 𝑥 ൌ 𝜘 ∗ 𝑣ᇱ 𝑥
 Convolution theorem:

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

 Convolution in space is equivalent to pointwise multiplication in Fourier domain
 ℱ 𝜘 is a linear transformation



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021) 
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 Fourier transform – Linear Transform – Inverse Fourier 

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

 Findings
 In practice, it is sufficient to take the lower frequency modes
 Fourier filters operate at the global level, different from CNN filters

operating at a local level
 𝑅 is a linear operator – implemented as a tensor

Fig Li et al.,  2021



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Whole module

 Fourier Layer works only with periodic conditions
 𝑊 captures non periodic conditions
 𝜎 transforms are performed in the spatial domain

 In practice
 ℱ is implemented via a Fast Fourier Transform (complexity 𝑛𝑙𝑜𝑔𝑛, 𝑛 nb of spatial points)
 Operates on regular grids only
 But FFT is independent of the grid size

 Could be used on resolutions different from the training ones

Fig Li et al. 2021



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Example: zero shot super-resolution
 2 D Navier Stokes, vorticity form, viscuous incompressible fluid


డ
డ௧
𝑤 𝑥, 𝑡 ൅ 𝑢 𝑥, 𝑡 .𝛻𝑤 𝑥, 𝑡 ൌ 𝜈Δ𝑤 𝑥, 𝑡 ൅ 𝑓 𝑥 , 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ ሺ𝑂,𝑇ሿ

 ∇.𝑢 𝑥, 𝑡 ൌ 0, 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇
 𝑢 𝑥, 𝑡   velocity field, 𝑤 𝑥, 𝑡 vorticity, characterizes local rotation of the 

fluid

 Fig. Illustrates super-resolution: trained at 64x64, test on 256x256

Fig Li et al. 2021



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Details on N-S example
 2 D Navier Stokes, vorticity form, viscuous incompressible fluid


డ
డ௧
𝑤 𝑥, 𝑡 ൅ 𝑢 𝑥, 𝑡 .𝛻𝑤 𝑥, 𝑡 ൌ 𝜈Δ𝑤 𝑥, 𝑡 ൅ 𝑓 𝑥 , 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇

 ∇.𝑢 𝑥, 𝑡 ൌ 0, 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇
 𝑤 𝑥, 0 ൌ 𝑤଴ 𝑥 , 𝑥 ∈ 0,1 ଶ

 ∇𝑢 ൌ ሺడ௨
డ௫

, డ௨
డ௬

)

 Δ𝑢 ൌ ∇.∇u

 ∇.vൌ డ௩ೣ
డ௫

൅ డ௩೤
డ௬

for a 2 D vector 𝑣 – divergence operator

 𝑤 ൌ ∇ x 𝑢 with x the curl operator



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Many extensions/ variants
 Irregular grids, Physics informed FNO (Li et al. 2022) Transformer FNO, 

large size application to weather forecasting (Pathak 2022)

 Approximation theorem
 Universal property approximation of operator classes by (F)NO e.g. 

Kowachki 2022



NNs as surrogate models for solving PDEs –
Continuous space models
Learning grid free models

AROMA: Preserving Spatial Structure for Latent PDE 
Modeling with Local Neural Fields, Serrano et al. Neurips 2024

Advanced Deep Learning - Physics-Aware Deep 
Learning - Dynamical Systems
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Neural operators 
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
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 Principled Encode/ Process/ Decode framework
 Properties

 Handle diverse geometries: inputs and outputs may consist in point sets, grids, meshes, with different 
formats

 Handle variable size inputs, e.g.. no fixed resolution, irregular samples
 Can be queried at any spatial position within the spatial dynamics’ domain



AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework
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

Cross-attention encoder: 𝑢௧ → 𝑍௧

• Maps variable size discretized input 𝑢 (point set, mesh, grid) into a fixed size 
& small dimensional sequence of latent embedding tokens 𝑍

• Latent space encodes local spatial information on problem geometry + 
variable values

Cross-attention

Encoder 
module



AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention
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 Cylinder flow ground truth  Tokens capture and encode local 
spatial information – cross attention 
between 𝑇௚௘௢ tokens and "𝑥"

Example: Navier Stokes – cylinder flow
Cross attention illustration



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems103



Dynamics is modeled by a time stepping diffusion transformer: 𝑍௧ → 𝑍௧ା୼௧

• Learns the dynamics in the small dimensional latent space
• Self attention models relations between spatial latent tokens
• Inference: dynamics is enrolled in the latent space starting from an initial 

condition – low complexity
• Diffusion: introduces a stochastic component

Self-
attention

Processor



AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework
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

Decoder: cross-attention neural fields decoder: 𝑍௧ା୼௧ → 𝑢௧ା୼௧

• Maps the latent representation forecast 𝑍௧ା୼௧ to the original physical space
• Can be queried at any position 𝑥 of the physical space

Cross-attention

Decoder
module



AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
Cross-attention encoder captures spatial attention
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 Burgers equation ground truth

 Tokens encode local spatial 
information

Token 0 Token 1

Token 2 Token 3

Example: Burgers equation – perturbation analysis on the tokens



AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
Stability on long rollouts
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Burgers equation
Trained to predict next step on 50 time steps

trajectories
Unrolled for 200 steps



NNs as surrogate models for solving PDEs – Continuous
space models

In-context generative pretraining – discrete transformers

 Zebra: In-context and generative pretraining for solving parametric pdes (Serrano 
et al. ICML 2025)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical 
Systems

107



ZEBRA - In-context generative pretraining (Serrano et al. 2025) 
https://arxiv.org/abs/2410.03437
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 Inspired by In-context learning in NLP decoders (LLMs)

Fig. Serrano 2025

No gradient update – only context

Fig. Brown et al. 2020 (GPT3)

Query new initial condition

Sequence 1: 1, 2, 5, 14, …
Sequence 2: 2, 5, 14, 41, …
Sequence 3: 3, 8, 23, 68, …
Sequence 4: 4, ?

Prompt

Answer

Without optimization LLMs are somehow capable of 
inferring the correct pattern in the sequences, i.e the 
underlying parameters: 𝑢௡ାଵ ൌ 3𝑢௡ െ 1

In-Context examples ሺ𝑢௡ାଵൌ 3𝑢௡ െ 1)

Sequence 4: 4, 11, 32, 95, etc.. 



ZEBRA - In-context generative pretraining (Serrano et al. 2025)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems109

Dai et al. ACL 2023. Why can, GPT learn in context ?
Transformer attention has a dual interpretation as gradient descent in the linear attention case.

Interpret LLM as meta-optimizers that perform implicit fine tuning for in-context examples.

Xie et al. https://ai.stanford.edu/blog/understanding-incontext/

Pretraining learns latent concept distributions, inference identifies the prompt latent concept

How does in-context learning works:  Two main interpretations

Bayesian interpretation

Gradient update interpretation



ZEBRA - In-context generative pretraining (Serrano et al. 2025) 
https://arxiv.org/abs/2410.03437
Inference
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

Context
Trajectory

Initial 
condition

Context trajectory: trajectory from the same PDEs starting from another Initial Condition



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference: discrete model i.e. LLM structure

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems111



Tokenization

Context trajectory and IC are compressed into sequences
of discrete tokens (similar to word encoding)



ZEBRA - In-context generative pretraining (Serrano et al. 2025) 
https://arxiv.org/abs/2410.03437
Inference
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

Autoregressive
transformer

The transformer 
operates on the  

discrete tokenized
representations of 
the data to predict

next tokens
sequence

autoregressively –
similar to LLMs



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference: discrete model i.e. LLM structure
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

Detokenizatio
n

The predicted
token sequence is

mapped back to the 
physical space

Forecast 
trajectory



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Training: 2 steps
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
Tokenization

In-context pretraining

Encode-decode: VQVAE
Maps a frame to a finite set of 
tokens

Processor: LLM
Predicts discrete distribution 
of tokens
Training loss: cross entropy



ZEBRA - In-context generative pretraining (Serrano et al. 2025) 
https://arxiv.org/abs/2410.03437
Examples
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

Context prompt Initial condition 

Ground truth Prediction

Context prompt Initial condition 

Ground truth Prediction

Heat equation Combined equation



ZEBRA - In-context generative pretraining (Serrano et al. 2025) 
https://arxiv.org/abs/2410.03437
Examples
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Context prompt

Ground truth

Prediction

Vorticity



NNs as surrogate models for solving PDEs – Continuous space
models

In-context generative pretraining: continuous transformers

 ENMA: Tokenwise Autoregression for Continuous Neural PDE Operators (Kassai
et al. Neurips 2025)

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical 
Systems
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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 Follows an encode-process-decide framework

 Extends the in context learning ideas of ZEBRA to a fully continuous token space instead of 
a discrete space
 More natural for physical phenomena
 No more token quantization with the corresponding information loss
 Trained as a generative model using a flow matching loss
 Properties

 Handle irregularly positioned and possibly faulty sensors
 Allows performing in context learning and well as forecasting from past history
 Adapt to changes in the discretisation grid
 Models uncertainty



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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Historical
context
𝐿 frames –

arbitrary domain

Compact 
continuous token

sequence encoding

Continuous
encoder

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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Autoregressive Generative
continuous transformer

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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Continuous
decoder

Can be queried at any
position

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
Examples: Gray Scott
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In-distribution Out-of-distribution



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
Examples: vorticity at different viscosities

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems123

In-distribution Out-of-distribution



Modeling Spatio-temporal dynamics 
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models
 NNs as surrogate models for solving PDEs – Data free approaches



NNs as surrogate models for solving PDEs – Data free approaches
(Lagaris 1998, Sirignano 2018, Raissi 2019)
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 Objective
 Build a reduced order (parametric) model, implemented by a NN, to 

offer a cheap approximate solution of a PDE
 Assumption: the form of the PDE is known as for classical solvers
 Data free approach: no need for simulated data/ observations as 

required by all the other approaches seen before

 Results
 The algorithm solves the PDE using a single parametric function, for all 

space and time conditions
 The original algorithm solves a unique IBVP – and shall be re-trained for 

a new IBVP



NNs as surrogate models for solving PDEs – Data free approaches
(Lagaris 1998 , Sirignano 2018, Raissi 2019)
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 Problem
 Parabolic PDE with 𝑑 spatial dimensions



డ௨ ௧,௫
డ௧

൅ ℒ𝑢 𝑡, 𝑥 ൌ 0, 𝑡, 𝑥 ∈ 0,𝑇 ൈ Ω,Ω ⊂ 𝑅ௗ                PDE 
𝑢 𝑡 ൌ 0, 𝑥 ൌ 𝑢଴ 𝑥  , 𝑥 ∈ Ω                               Initial condition𝑠
𝑢 𝑡, 𝑥 ൌ 𝑔 𝑡, 𝑥  , 𝑥 ∈ 𝜕Ω                            Boundary conditions

 𝑢 𝑡, 𝑥 is the spatio-temporal quantity of interest
 ℒ𝑢 𝑡, 𝑥 is the differential term of the PDE

 e.g. Burgers 1𝐷: డ௨ ௧,௫
డ௧

ൌ െu డ௨ ௧,௫
డ௫

൅ 𝑣 డమ௨ ௧,௫
డ௫మ

 Objective
 Approximate 𝑢ሺ𝑡, 𝑥ሻ with a NN 𝑓ሺ𝑡, 𝑥;𝜃ሻ, 𝜃 ∈ 𝑅௄are the network 

parameters
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NNs as surrogate models for solving PDEs – Data free approaches
(Lagaris 1998 , Sirignano 2018, Raissi 2019)
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 Formulate the problem as minimizing an objective function
 Foe simplification we only consider initial conditions (remove BC)

 𝐽 𝑓 ൌ 𝑓 0, 𝑥;𝜃 െ 𝑢଴ 𝑥 ஐ,ఔభ
ଶ ൅ డ௙ ௧,௫;ఏ

డ௧
െ ℒ𝑓 𝑡, 𝑥;𝜃

଴,் ൈஐ,ఔమ

ଶ

 Solved using stochastic gradient descent
 Several extensions, e.g. sampling from data from the PDE loss, etc

Initial condition loss PDE loss: constraint

• Learn 𝑓ሺ𝑂, 𝑥;𝜃ሻ by sampling from Ω, 
the initial condition

• This is a regression problem
• This provides a parametric 

approximation of target 𝑢ሺ𝑥, 𝑡 ൌ 0ሻ

• Constrains 𝑓ሺ𝑡, 𝑥;𝜃ሻ to follow the PDE 
expression by sampling uniformly
from 0,𝑇 ൈ Ω

• డ௙
డ௧

and ℒ𝑢 𝑡, 𝑥 computed by 
automatic differentiation

𝑢଴ሺሻ:



NNs as surrogate models for solving PDEs – Data free approaches
Sirignano 2018, Raissi 2019
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 Algorithm
 Iterate

 Sample ሺ𝑡௡, 𝑥௡ሻ from 0,𝑇 ൈ Ω, 𝜈ଶ; sample the initial condition point 𝑧௡ from 
Ω, 𝜈ଵ

 Calculate the squared error 𝐺ሺ𝜃௡, 𝑠௡ሻ at the sampled points 𝑠௡ ൌ
ሼ 𝑡௡, 𝑥௡ , 𝜏௡, 𝑦௡ , 𝑧௡ሽ with:

 𝐺 𝜃௡, 𝑠௡ ൌ ሺడ௙ ௧೙,௫೙;ఏ೙
డ௧

െ ℒ𝑓 𝑡௡, 𝑥௡;𝜃௡ ሻଶ ൅ 𝑓 0, 𝑧௡;𝜃௡ െ 𝑢଴ 𝑧௡
ଶ

 Take a gradient step
 𝜃௡ାଵ ൌ 𝜃௡ െ 𝜖௡𝛻ఏ𝐺ሺ𝜃௡, 𝑠௡ሻ 



NNs as surrogate models for solving PDEs – Data free approaches
Sirignano 2018, Raissi 2019
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 Comments
 Mesh free approach, similar in that to INR
 Several extensions (Karniadakis et al. 2021)
 Popularized the idea of approximatin a differential equation via a 

parametric function
 Still much slower than classical solvers
 Requires learning a solver for each specific equation/ initial & boundary

conditions
 More on that later

 No extrapolation in time



NNs as surrogate models for solving PDEs – Data free approaches
(Sirignano 2018, Raissi 2019)
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 Example: Burger equation

Fig: Raissy 2019


