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» Context: Al4science

» Background: Neural networks and ordinary differential equations
» NNs as numerical schemes for solving ODEs

» Modeling Spatio-temporal dynamics with Neural Networks

» NNs as surrogate models for solving PDEs - Data-driven approaches
Discrete space models

Continuous space models

» NNs as surrogate models for solving PDEs — Data free approaches

» Hybrid models

» Incorporating physical knowledge in dynamics models

» Generalization in ML models for dynamics modeling
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Al4Science as a new scientific paradigm

. Paradigm shift: from explicit formulation to implicit knowledge discovery )
* Emerged in 2018 — rapidly growing field
* Involves many scientific communities
* We are still at the begining of the process

Al4Science paradigm changes
How research is done: From hypothesis generation to data analysis,
experimentation, and discovery.

The questions we can ask: Enabling exploration of complexity and
scale previously impossible.

The pace of discovery: Accelerating insights in fields like drug
discovery, material science, climate modeling, and fundamental physics.
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Al for Science as a new scientific paradigm

Worldwide initiatives - examples

Academic research

Polymathic Al - Foundation Models for \
Science

Simons Foundation NY, Schmidt Future, NYU,
Princeton, Berkeley, Cambridge

» Stanford: Center for Research on
Foundation Models

Interdisciplinary, spans|0+ dpts

» Univ. Michigan: Center for Scientific
Foundation Models

Industrial labs

/@xlliance \
» Microsoft research: Al for Science

How-new-ai-foundation-models-can-speed-
up-scientific-discovery

C.Bishop Keynote (2024) :The Revolution in
Scientific Discovery

» Google Applied Science

Combining computer science with physics and
biology to create breakthroughs that help the

/

\_ /
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Al for Science as a new scientific paradigm

Transformative role of Al

Al as digital twins/ surrogates

Complexity: accelerated simulations: CFD,
molecular dynamics

Unknown physics

» Al as scientific partner: complementing
physical models

Hybrid models: numerical solvers + ML

Accelerate discovery: biological workflows
» Al as a reasoning engine

Theorem proving

Code generation

Evolution of Al models

Surrogate models

Solving specific problems: CFD, materials
property prediction

» Foundation models

Multi-physics, multi-domains: biology, weather
forecast

» Al agents
Solve high level objectives
Requires reasoning, planing, etc

Orchestrates various Al tools
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Transformative role of Al - Examples




Al as digital twins

Weather forecasting and climate

2022-2024 - Foundation Models for weather prediction (ERA5 dataset
40 years hourly reanalysis data)

GraphCast — Google & DeepMind 2022
https://arxiv.org/abs/2212.12794

ClimaX — Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

Pangu-Weather — Huawei 2023
http://arxiv.org/abs/2211.02556

FourCastNet — NVIDIA&Lawrence Berkeley lab.&al.
http://arxiv.org/abs/2202.11214

Neural General Circulation Model — Google 2023
https://arxiv.org/abs/2311.07222

Aurora — Microsoft 2024
https://arxiv.org/abs/2405.13063

AIFS model
https://arxiv.org/abs/2406.01465
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Foundation models for weather forecasting: GraphCast (Lam et al. 2023)

https://arxiv.org/abs/2212.12794

» Data-driven approach to weather forecast

» Learn from historical data
» 39 years (1979-2017) of historical data from ECMWF ERAS reanalysis archive — petabytes of data
ECMWEF: European Center for Medium-Range Weather Forecast
» Test 2018 onward
» Time step: 6 hours
» State variables
5 surface variables (temperature, wind speed, etc)
6 athmospheric variables (temp., wind, etc) at 37 pressure levels
0.25° latitude/ longitude grid, 28x28 kilometer resolution, 1M points
» Obijective
» Given state variables at t and t-6 hours, predict next state (t + 6)

» Prediction horizon: 10 days (medium range), auto-regressive model
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Foundation models for weather forecasting: GraphCast (Lam et al. 2023) -

https://arxiv.org/abs/2212.12794

a) Input weather state b) Predict the next state c) Roll out a forecast

GraphCast

(Fig. Lam et al 2023)

» Based on Graph Neural Networks
» Performance on weather prediction: on par or better than HRES the SOTA ECMWF model

» Downstream tasks (not trained on)
» Tropical cyclone tracking

» Extreme heat and cold, ....

10 Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



Al as digital twins
Weather forecasting and climate
Aurora (Bodnar et al. 2024), https://arxiv.org/abs/2405.13063

=
Atmospheric chemistry 2 . : .
i e guaty Wave modelling Hurricane tracking Weather forecasting 0.1°
\
-
Aurora foundation model
.
3D Perceiver 3D Perceiver
encoder decoder
Arbitrary variables, . Arbitrary variables,
pressure levels and Latent atmospheric pressure levels and
Times (t-1,1) resolutions input resolutions Timet +1
Fig.1|Auroraisal.3-billion-parameter foundation model for the Earth quality at 0.4°, wave modelling at 0.25°, hurricane tracking at 0.25° and
system. Iconsare forillustrative purposesonly.a, Aurorais pretrained weather forecastingat 0.1°.b, Aurorais aflexible 3D Swin Transformer* with
onseveral heterogeneous datasets with different resolutions, variables 3D Perceiver-based™ atmospheric encodersand decoders. The modelis able
and pressure levels. The modelis then fine-tuned for several operational toingestinputs with different spatial resolutions, numbers of pressure levels
forecasting scenarios at different resolutions:atmospheric chemistryand air and variables.
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ECMWEF — AIFS ensemble probbailistic model

» Trained using a specific loss function (CRPS) and a noise component

Target
("true” atmosphaeric state at ta, , 0.9,

the ERAS reanalysis)

Ensemble initial conditions
to. Len Output ensemble
tien

Figure 1: Probabilistic training of AIFS-CRPS. A small ensemble of atmospheric states is propagated forward in time
using separate model instances (that share the same weights). With ensemble sharding (see section 2.4), the ensemble
forecasts are then gathered across all participating GPU devices using a differentiable all-gather operation. Finally, the
(almost fair) CRPS loss is calculated from the AIFS-CRPS forecast ensemble and a deterministic analysis (e.g., ERAS)

target.
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Al as digital twins
Foundation models for weather forecasting: GraphCast (Lam et al. 2023) - Google

» ECMWF is running a series of data-driven forecasts as part of its experimental suite.

Quote: “These ML-based weather forecasts first approached the skill of the IFS (used as the benchmark
for high-quality forecasting), then matched IFS skill, and then claimed to surpass our scores.What’s more,
making a forecast with these models requires only a single GPU, takes less than a minute, and consumes a
tiny fraction of the energy required for an IFS forecast.”

More ML models

Latest forecast = Latest forecast =

Experimental: Aurora ML model: Mean sea level Experimental: Aurora ML model: 500 hPa

pressure and 850 hPa wind speed geopotential height and 850 hPa temperature
These models are free and

Aurora: a deep learning-based system developed by Microsoft. It is Aurora: a deep learning-based system developed by Microsoft. It is
can be downloaded initialised with ECMWF analysis. Aurora operates at 0.1° resolution. initialised with ECMWF analysis. Aurora operates at 0.1° resolution
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Biology — Alphafold series
» Alphafold | >

» 2018, several modules trained separately

» Alphafold 2

» 2020, tertiary protein structure, end-to-end
training, model: « Evoformer » - 20 K
citations

» Alphafold 3

» 2024, structure of protein complexes with
DNA/ RNA, ligands, new model:
« Pairformer »

» Input: list of molecules

Output: joint 3D structure

Credit: Google DeepMind

The predicted structure of this enzyme
(blue) binding to a calcium ion and

» Classical techniques several monosaccharides (yellow)
matches closely with the experimental
structure (gray)

»
» Applications include drug design
» Alphafold server

» Cristalograpy, nuclear magnetic resonnance,
etc
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Biology — Alphafold series

» Foundation model

Multiple Sequence Alignment (MSA):

compares the target amino acid sequence
with similar sequences from other proteins

Diffusion module: predicts raw
atomic coordinates of atoms
from a cloud of atoms

Template | 3!
search "
_— ' < »|Confidence|
Genetic | = s \ > module
—-—| L 4 Y T .
search | == 1 l (4 blocks)
Input Template MSA ¥ L
5~ embedder ~+— module — module — - 0 -100
Col?f?'g‘” (3blocks) | pair . | @blocks)| | (4 blocks) Pairformer Diffusion ; 210
Sequences, HENEELLR) i L (48 blocks) R -5 module i 7
ligands, ] - N % (3 + 24 + 3 blocks)| "R~ %.
cgval(;ent Sing!z?@ & : VAR, B N
onds :

Recycling

Diffusion iterations

Attention Mechanism: focus on different parts of the data
to understand the relationships between amino acids in the
sequence and across different sequences in the MSA

(Multiple-Sequence-Alignment).

Trained on multiple protein datasets, estimated
15 in.the Q(10°) protein, seguences.and structures




Al as scientific partner: complementing physical models

Drug design and discovery, Wu et al. 2025
https:/ /www.biorxiv.org/content/10.1101/2024.01.08.574635v1.full.pdf

» /Objective
» Drug design: Speed up the drug discovery

process

» Designing molecules/ compounds with high
binding affinity to given pathogenic protein
targets

» Method

» GPT like self trained generative model

» Operates on string representations of
molecules (SMILES) + encoding of molecules
geometry

» Pre-trained on |10 millions compounds
representations self supervised as for NLP

» Tests

whibitor compounds against tubercolosis
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Drug design and discovery, Xia et al. 2024
https://www.biorxiv.org/content/10.1101/2024.01.08.574635v1.full.pdf

» Main architecture modules - (©)

GPT-like chemical language model

>

n 1 <end> 1 <end>

GPT like pretrained

transformer — self +S
attention g8
Cross-attention:
conditions generation :
tO the tal’get DrOtein o (10M SMILES from PubChem) '/\‘
Transformer - Protein replresemanm - 7!

encodes the

sequential and FFN e i

, i
geometric data of the a(zlx.y) \

Self-attention with
target protein
/ 4 ."u\ ,"' +
[T et s

‘Dg
3 3
o =
o®
o
(1<)
[ 10:

¥
o
b3
o
=]
o
=
Q
o
[=8
(]
=

geometric information

VAE - encodes the PSTGGA...RLYN Celesent
com PO un d Amino acid geometric Amino acid SMILES of drug
information sequence molecule
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Al as scientific partner: complementing physical models
Drug design and discovery, Xia et al. 2024

https://www.biorxiv.org/content/10.1101/2024.01.08.574635v1.full.pdf

4
Generation of 2612 Screening (docking) Generation of 8365
the binding site select 4 compounds the protein+seed compound
(a) Stage 1. Design (b) Stage 2. Refine
» Experinental X -
1. selected (3) ,ﬁ\: '
DN P2 N 1
2,612 %O 4 cmpds 8,365 %
Input: protein Input: protein; compound
296 cmpds
(c)
= ; 3 cmpds
> L;:;— e 159 cmpds 5 cmpds
L RES = N T A
rg paEv s WY o '\___/ i !
library similarity search Single-dose assay IC;, determination De novo synthesis
(446k molecules),
Stage 3. Test
Fig. 3 Illustrgtion of the Design-Refine-Test pipeline for Tuberculosis drug gen-
eration. (a) A he Design stage. (b) The Refine stage. (¢) The Test stage
Screening to select
296 compounds
18
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Material science
A foundation model for atomistic materials chemistry, Batatia et al. 2024 70+ co-
authors, https://arxiv.org/abs/2401.00096

» Problem:

» Scientists use simulations to study materials at the atomic level which is crucial for developing new
materials with desired properties.

» Traditional methods like Density Functional Theory (DFT) are highly accurate but computationally
expensive and slow.

» The Role of Machine Learning:

» ML models can achieve near-DFT accuracy but require significant effort to develop and are often
specific to particular materials.

» Objective:

» Foundation Model: a general-purpose ML model trained on a large dataset of 150,000 inorganic
crystal structures.

» Versatility: this new model can be applied to a wide range of materials and scenarios without
needing to be specifically retrained for each new case.
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Material science
A foundation model for atomistic materials chemistry, Batatia et al. 2024 70+ co-
authors, https://arxiv.org/abs/2401.00096 - Applications

» Material Property Prediction

» Solids, Liquids, and Gases: Simulate the behavior of materials in various states, helping to predict
properties like hardness, melting points, and thermal conductivity.

» Chemical Reactions: By modeling the interactions between atoms during chemical reactions, the
model helps in understanding reaction mechanisms and predicting the outcomes of chemical
processes.

» Interface Dynamics:

» Material Interfaces: The model can simulate the interactions at the boundaries between different
materials, which is crucial for understanding and designing composite materials and coatings.

» New Material Discovery:

» High-Throughput Screening:The model enables high-throughput computational screening of new
materials, accelerating the discovery and optimization of materials with specific desired properties,
such as superconductors, battery materials, and catalysts.
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| Context - Al for Science - Material science
A foundation model for atomistic materials chemistry, Batatia et al. 2024, 70+
co-authors, https://arxiv.org/abs/2401.00096

Pre-training
| 50K inorganic crystals
Predict the potential
energy

Generalizes to multiple
downstream tasks

MATERIALS PROJECT
O =

Downstream tasks

MACE-MP-",

Equivariant Graph
Tensor Network

Material properties
Chemical reactions

Density Functional
Theory

% Superconductors
Intensive and costly st et ot Battery material

of molecular dynamics simulation across a wide variety of chemistries in the solid, liquid and gaseous phases
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Simulation in the industry
Deep NN as emulators for physical processes

» ANSYS Sim-Al

» https://www.ansys.com/fr-fr/ai

} N e u ral CO n Ce Pt MeanPressureCoefficient MeanWallShearsStress Magnitude
| —

» https://www.neuralconcept.com/
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Simulation in academy: the rise of foundation models
DPOT - Hao et al. (ICML 2024) http://arxiv.org/abs/2403.03542

Objective: simulate
multiple physics dynamics

Multiple PDE datsets

Sl 1 B

Pre-training l

PDE Foundation Model @

Fine-tuning Downstream tasks

Zlemm e
o w R SH

Long trajectory 3D data High resolution Trregular mesh

Figure 1. An illustration of pre-training a PDE foundation model
using massive data from multiple PDE datasets. The pre-trained
model is then used for fine-tuning different downstream operator
learning tasks, which can be complex. (Best viewed in color)

» Challenges

- Trajectories with uneven length and
different time frames

- Different resolutions, number of
variables (channels), shape

- Unbalanced datasets from the
different PDE simulations
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Simulation in academy: the rise of foundation models
DPOT - Hao et al. (ICML 2024) http://arxiv.org/abs/2403.03542

Model: large scale transformer

i \( v‘" o e1ghted Tempora
Data Paddlng, / I_VIixedDataset - = c_, ﬁ_’m l— Weighted Temporal MLP
mas ki ng, sampl i ng ‘g 1% "Fd_‘] [PatchfPosnmning Embeddmg]}_J_' Z . ® == - )
to get a uniﬁed \\ Sampl_ing Noise [Tem})OralAggregationLayer

Padding | mnjection v | [
- Y 5

representation XX ﬂf;{ge

Fourier Transform ]

Va

Multi-Head
““ 11 St

Pretrained /[;g;;gggl } ........ < _.a< o
Fourier Attentign Layer X N

operator auto- |
. . -&: A [ Output Projdction Layer ] [ Inverse Fourier Transform J
regressive model T R 4 ,

igure 2. An illustration of our model architgture. We first sampld trajectories from mixed datasets of multiple PDEs. We optimize the

model by predicting the next frame using noise-corrupted previoug frames, which is also denoted as auto-regressive denoising training.
‘We design a new model architecture consisting of a temporal aggrggation layer and multiple Fourier attention layers. They can extract
spatial-temporal features efficiently and can be easily scaled up to Jarge models. (Best viewed in color)

Tranformer in a spectral
space

24
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Simulation in academy: the rise of fundation models
DPOT - Hao et al. (ICML 2024) http://arxiv.org/abs/2403.03542

» Data

4

25

The model is trained on 12 datasets, with 100k+ trajectories
Different model sizes: from 7M to 1 B parameters

Claim a 100.000 acceleration factor w.r.t. classical solvers

DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

L2RE Params FNO-v PDEBench CNS.DR.SWE PDEArena CFDBench
Subset - le-5 le-4 le-3 1.0.1 1.0.01 Ml 0.1,0.1 0.1,0.01 MO.1 DR SWE NS NS-cond -
Small Model
FNO 0.5M 0.156 0.0834 0.0128 0.098 0.096 0.097 0.360 0.170 0.265 0.12 0.0044 0.0912 0319 0.00761
UNet 25M 0.198 0.119 0.0245 0.334 0.291 0313 0.569 0.357 0.463 0.0971 0.0521 0.102 0.337 0.209
FFNO 1.3M 0.121 0.0503 0.0099 0.0212 0.052 0.0366 0.162 0.0452 0.104 0.0571 0.0116 0.0839 0.602 0.00714
GK-T 1.6M 0.134 0.0792 0.0008 0.0341 0.0377 0.0359 0.0274 0.0366 0.0320 0.0359 0.00692 0.0952 0423 0.0105
GNOT 1.8M 0.157 0.0443 0.0125 0.0325 0.0420 0.0373 0.0228 0.0341 0.0285 0.0311 0.00678 0.172 0.325 0.00877
Oformer 1.9M 0.1705 0.0645 0.0104 0.0417 0.0625 0.0521 0.0254 0.0205 0.0229 0.0192 0.00717 0.135 0.332 0.0102
FNO-m ™ 0.116 0.0922 0.0156 0.151 0.108 0.130 0.230 0.076 0.153 0.0321 0.00912 0.210 0.384 0.0274
MPP-Ti ™ - - - - - 0.0442 - - 0.0312 0.0168 0.0066 - - -
MPP-S 3I0M - - - - - 0.0319 - - 0.0213 0.0112 0.0024 - - -
Ours-Ti ™ 0.0976 0.0606 0.00954 0.0173 0.0397 0.0285 0.0132 0.0220 0.0176 0.0321 0.00560 0.125 0.384 0.00952
Ours-S 30M 0.0553 0.0442 0.0131 0.0153 0.0337 0.0245 0.0119 0.0187 0.0153 0.0379 0.00657 0.0991 0.316 0.00696
Pre-trained
MPP-L 400M - - - - - 0.0208 - - 0.0147 0.0098 0.00220 - — -
Ours-S 30M 0.0553 0.0442 0.0131 0.0153 0.0337 0.0245 0.0118 0.0188 0.0153 0.0379 0.00657 0.0999 0.316 0.00696
Ours-M 122M 0.0409 0.0285 0.00474 0.0116 0.0238 0.0177 0.00866 0.0129 0.0108 0.0292 0.00290 0.0812 0.276 0.00752
Ours-L 500M 0.0550 0.0274 0.00528 0.0100 0.0216 0.0158 0.00872 0.0115 0.0101 0.0232 0.00233 0.0798 0.240 0.00650
DPOT-FT
T-200 ™ 0.0511 0.0431 0.00729 0.0136 0.0238 0.0187 0.0168 0.0145 0.0157 0.0194 0.00280 0.103 0313 0.00537
S-200 30M 0.0449 0.0342 0.00680 0.0152 0.0211 0.0182 0.0150 0.0151 0.0151 00171 0.00224 0.0892 0.290 0.00442
M-200 100M 0.0255 0.0144 0.00427 0.0123 0.0179 0.0151 0.0182 0.0117 0.0149 0.0142 0.00218 0.0329 0.191 0.00452
L-200 400M 0.0235 0.0117 0.00383 0.0114 0.0153 0.0133 0.0171 0.0108 0.0140 0.0158 0.00197 0.0307 0.182 0.00480
T-500 ™ 0.0520 0.0367 0.00580 0.0112 0.0195 0.0153 0.0174 0.0138 0.0156 0.0148 0.00241 0.0910 0.280 0.00391
S-500 30M 0.0322 0.0237 0.00437 0.0129 0.0167 0.0148 0.0152 0.0126 0.0139 0.0129 0.00235 0.0867 0.268 0.00382
M-500 100M 0.0229 0.0126 0.00335 0.00998 0.0146 0.0123 0.0161 0.00947 0.0128 0.0103 0.00227 0.0294 0.172 0.00373
L-500 400M 0.0213 0.0104 0.00323 0.0108 0.0131 0.0119 0.0160 0.00905 0.0125 0.00739 0.00170 0.0278 0.170 0.00322
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Al as a reasoning engine
Al4Math

/ Datasets and problems \
High school problems
» MATH benchmark (2021)

» GSM8K benchmark (2021)
» AIME benchmark (2024)

p Complex mathematical problems
» IMO International Mathematical Olympiad

» Frontier maths (2025)

» USAMO (may 2025)

(2024)

Methods

645 or codelLMs pretrained aD

finetuned on step by step exercise
solutions

» e.g.Minerva (2022)

P Combination of LLMs and formal
representations s.a. LEAN symbolic

component

» Alphaproof (2024)

N
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Al as a reasoning engine
Al4Math
Example MATH Benchmark

> ataset

» 12.5K problems from high school
competitions + large pretraining dataset

Problem: The equation x? + 2z = i has two
complex solutions. Determine the product of their
real parts.
Solution: Complete the square by adding 1 to
eachside. Then (z +1)2 =1+i=eTv2. 50
x4+ 1 = +e¥ /2. The desired product is then
(—1 +{‘u.-('—:} “2) (—l - t'UH{%) \'/5) =1-
1- v?
5|

rus"’(%] Vi=1- (i"";(%))v/?:

» Models: LLMs

Math-related
web documents
Problems w/ step-
by-step solutions
Problems wi
integrated s

Yang et al. 2024

’ _-.
o’ e

(XX X

@
0
I BN N ]
® e

Finetuned
math LLM

LLM pretrained
on text and code

Base math LLM

Figure 1: SNte-of-the-art math LLMs such as NuminaMath [49] typically undergo three stag
pretraining, i\etuning on step-by-step solutions, and further finetuning on tool-integrat

that interleave myyral language reasoning with Python tool invocation.

i/ tool-
olutions

Tool-integrated
math LLM

27

s: math
solutions

Performances

» 2021

Hendriycks et al. 2021

Number Counting & Geometry Intermediate Pn:calcuh( Average

Model Prealgebra Algebra
Theory Probability Algebra

GPT-20.1B 52 3.1 50 28 S 6.5 3 34 40
GPT-20.3B 6.7 6.6 2.5 38 6.9 6.0 7.1 6.2 +15
GPT-20.7B 6.9 6.1 e 5.1 8.2 58 T 6.4 +19
GPT-2 1.5B 8.3 6.2 4.8 54 8.7 6.1 8.8 6.9 +28
GPT-3 13B7 4.1 24 i . 435 1.0 3.2 2.0 3.0
GPT-3 13B 6.8 53 55 4.1 7.1 4.7 58 5.6 +4
GPT-3 175B* 7.7 6.0 44 47 3.1 4.4 4.0 5.2

Table 2: MATH accuracies across subjects.

*** indicates that the model is a few-sh

t model. Tt

character ‘B” denotes the number of parameters in billions. The gray text indicatds the relariy

improvement over the 0.1B baseline. All GPT-2 models pretrain on AMPS, and
percentages. GPT-3 models do not pretrain on AMPS due to API limits. Model accurac

i1l values a
is increasir

=t

very slowly, so much future research is needed. \ J
» 2025 vals.ai/benchmarks

()

Model (44) & Accuracy v CostiIn/Out  Latency (s) &

€ G Gemini25ProExp * P 952% | $1.25/ $10.00 2583s

e ® o3 P ou6% [$10.00 / $40.00 16.59s

e <2 Qwen 3 (2358) § & o4.6% $1.20/$1.20 142.75s

4 ¥ Grok 3 Mini Fast High Reasoning B ou2% $0.60 / $4.00 22.77s

5 & o4 Mini # Mou2% | $1.10/ %440 12545
—/
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Context: Al as a reasoning engine
Al4Math
Example Alphaproof (DeepMind)

International Mathematical Olympiad
Silver medal 2024

-Be-
Gold medal 2025 problems ey

malize
Formalizer _100M Solver

network network
» Algebra + number theory pb Alphesiang
Process infographic of AlphaProofs reinforcement learning training loop: Around one million
} Com bines P retrai n ed LLM With Al Phaze ro informal math problems are translated into a formal math language by a formalizer network.
. . . Then a solver network searches for proofs or disproofs of the problems, progressively training
I"el nfO rcem ent Iea. rn I ng aIgO rlth m itself via the AlphaZero algorithm to solve more challenging problems

» Prooves math. statements in the formal
language « Lean » - formal proovers

» Gemini is used to translate informal
statements into formal language

» Trained on millions of problems
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NNs as numerical schemes for solving ODEs - summary

» The dynamics of Neural Networks — explained by ODE

>

30

NNs with an infinite number of layers can be modeled as ordinary
differential equations (ODE)

Inference and training can be formulated as solving ODEs
NNs interpretation as numerical schemes for solving ODEs

Opens the way to the
Use of numerical ODE solvers for a variety of ML problems

Use of ODE numerical solvers theory for analyzing NNs dynamics — e.g.
stability — convergence

This helped popularize the use of differentiable numerical solvers in the
ML community

Implemented in DL libraries, e.g. PyTorch

Opens the way to integrating physics and ML:

O Physics-aware deep learning
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NNs as numerical schemes for solving ODEs

» Several NNs use skip
connections, e.g. ResNet

e
} b

i
: i

Ay .f’\[“f\q VYV VY YV

|'w .}l |'* I { "r m
ol a3 s s il
it gl ful i
WhEEEEREERE

Resnet Module

Xey1 = X + (X, 01)

|
'
y
H
H
.
N
'
wlk
~
-
> >
o §
2
M

Input x is progressively modified by
a residual f(x, 6)

» ODE for initial value problem
= = f(x(£); () for t € [0,T],
x(0) = x,
What is the value of x(T)?
» Equivalent integral formulation

» x(T) = x(0) + [ f (t,x())dt
b fOTf (¢, x(t))dt is approximated

via numerical integration
» Exemple: Euler numerical scheme
Xey1 = X + hf (g, 01), x(0) = x

31

Forward pass of ResNet is similar to Euler scheme for solving IVP
(E 2017, Haber 2017, Chang 2018, Lu 2018, ...)
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NNs as numerical schemes for solving ODEs — Learning problem

» Learning problem with ResNets
» Ming L(F(x,8),y)
s.t. x1=xX1_1+ filxj—1),l=1..T,xy = X «——The constraint describes the
Forward graph of the Resnet
» X input,y target, 0 parameters, X; layer [ activation, T layers
» Solving this problem requires alternating
Forward pass — Euler numerical scheme for solving
0 %= f(x(t),0()) for t € [0,T],x(0) = x,

Backward pass — differentiation through Euler scheme for solving

ag _ _aL(e®) _
E— 6—69 ,0(0)—00

» Could this idea be generalized?

» Replace Euler with any numerical integration scheme
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NNs as numerical schemes for solving ODEs
Euler derivation

» ODE — IVP problem
» == f(x(t)) for t € [0,T1],x(0) = x,

» Continuous to discrete time
» Divide [0, T] in intervals of size At: t,, = nAt

» The objective is to find x,, an approximation of x(t,) at each ¢,

» Taylor expansion

b x(tnsr) & x(ty) + A

> X(tn+1) = xX(ty) + Atf (x(th))

» Discrete approximation and algorithm
» xo = x(0)
> Xnpi1 = X+ ALf(xp)
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NNs as numerical schemes for solving ODEs
ODE formulation of a gradient algorithm

» Steepest gradient descent

» O:41 = 0; — €;VL(6;), with initial value 6,
» Continuous formulation

» Lete; = e(t)At

» O(t+1) =0(t) —e(t)AtVL(6(t))

y HEDZI — _e(DAVL(A(D)
» 28 = —e(vLO(1)
» ODE IVP
» 28 = —e(VL@(t)with 6(0) = 6,
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NNs as numerical schemes for solving ODEs
Continuous limit

» Continuous limit
» If we let h — 0 in Euler, the ResNet learning problem becomes

» | MingL(F(x,0),y)

s.t. g—f =F (x(£),0(t)),t €[0,T] ,xo = x

» Two different families of methods for solving the learning problem:
» Discretize then Optimize
Discretize in time and then solve
Leads to back-propagation like algorithms
The ResNet derivation described before is an example
This is the framework used in this course
» Optimize then Discretize
Solves the continuous optimization problem
Advocated by NeuralODE (Chen 2018)

Amounts at solving a forward and a backward differential equations
O See notes in the next slides
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NNs as numerical schemes for solving ODEs

» Key ideas

>

36

Training of NNs can be formulated as solving ODEs with a numerical
scheme

Different numerical schemes could be used

To be implemented with specific NN architectures
Allows us using numerical schemes theory for deriving NN properties

The link between NNs and differential equations will be most relevant
for modeling dynamical systems

Note

ODE are central in several ML contexts involving dynamical processes such as
generative models (e.g. diffusion models, flow matching models)
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Interlude
Crash notes on ODEs and PDEs

ODEs




.
n

Crash notes on OD!

» Initial value problem

0x
== f (6 x(t)
x(0) = xq
With f:]0,T] X R™ - R™

differentiable and x; € R™ an
initial value

» What is the value of x(T)?

>

(1)

» Integral formulation: solution of Exargfle
(1) Fri 2t;x(0) = 1;x(1)?
(1) = 2(0) + J, f (t,x(D)de x(1) = x(0) +]12tdt
> .Prope.rty: the integral forjmulation x(1) = 1 + 12 _%2 _ >
is equivalent to formulation (1)
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Crash notes on ODEs

» Property (Cauchy- Lipschitz)

» If fis uniformly Lipschitz w.r.t. t and globally w.r.t. variable x, (|| f ((¢t, x) —
ft, x|l < L|lx — x'|]) in a neigborhood of (0, x,), then a solution
exists and is unique

» Corollary

» If f is continuously differentiable w.r.t. t, x, the solution to the initial
value problem is unique

» Geometrical interpretation

» Solution curves for different solutions (initial values) do not intersect
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Crash notes on ODEs

» Trajectories (solution curves)

» Flow of an ODE
» ¢: R X R"™ - R"of fis
defined by ¢ (t, xy) = x(t)

» Geometric Interpretation

» The flow traces the trajectory of
the solution in the state space:

. g emm——— I e 7 i - i g

{p:(xy):t € R} o =
} Th ese trajecto ries are SOI utions Figure 2.2.: ]llu':stration (in'da.shc(l l%ncs) of the Fontinuops ﬂo_w of an ODE, with a
particular solution that is plotted with a solid thicker line. The black
Of the ODE and fO”OW the vector arrow represents the tangent to the highlighted solution, which is fully
. . . determined by its derivative and initial condition according to variants of
flel d f, Satl SfY| ng. the Cauchy-Lipschitz theorem (Demailly, 2006, Chapter V, Section 3.4). In
this example, [ is defined as f: (t,y) — %(('051’ —y), the ODE admitting

d¢t as solutions over I = (0, +00) functions ye:t (T +sinct for all C € R.

f(¢t(xo))

dr

i.e. it describes all the trajectories
for different initial conditions
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Crash notes on ODEs

» Numerical solvers

» x(T) = x(0) +[f0Tf (¢, x(t))dt ]

What if the integral cannot be analytically integrated?

T
> fo f (t,x(t))dt is approximated via numerical integration

Objective: build a sequence of values x, x4, ... Xy that approximate the

solution at the discretization points x(ty), x(t1), ..., x(ty)

» Exemple: Euler forward X A
» Step size h
thoi =t, +h
» Update using the gradient at f (t,,)
Xns1 = Xn + hf (X, 6)

Note: the same solver can be recovered also via the
differential formulation through derivative approximations

x(tn+3)

e.g. 2 =XV eads t0 Xy = Xy + Af (tn Xn)
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Crash notes on ODEs

» One step methods - exemples
Xp41 = Xn + Wy O (L, x5, hy) With ¢ a function depending on f
Euler forward (explicit)

4
>

42

Euler backward (implicit)

11t u(t))

Xn+1 = Xn + hf (tn, xp)

Xn+1 = Xn + Af (tpt1, Xnt1) [reevten
Requires solving a fixed point equation ~

Runge Kutta e.g. RK2

A

)

(explixit, RK4 often used as a default option)

t

ta n+l
Méthode du trapéze

( Xn’l = Xn I(R0)
Xn2 = Xp t hf(tn: xn,l)

h h
an+1 =Xp t+ Ef(tn: xn,l) + Ef(tn+1:xn,2)
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Crash notes on ODEs
NNs as numerical schemes for solving ODEs

» NN architectures motivated by ODE numerical schemes

» This link between numerical schemes and NNs has been exploited by
some authors

Different discretisation methods used in place of Forward Euler
» Linear multi-step (Lu et al. 2018)
Xev1 = (L —ke)xe + kexe—q + f(xg; 0;), 8, are the parameters of f
» Leapfrog Network (Chang et al. 2018)
Xep1 = 2%¢ — Xe—q — h*f (xt, 6p)
4
» Implicit schemes
e.g. backward Euler scheme
O Xpyq = X¢ + Af (X115 0p41)
00 Note: requires solving a non linear equation at each step
» Each numerical scheme leads to a specific NN architecture (a la ResNet)
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Crash notes on ODEs

» Summary: using numerical solvers for ODEs
» consider the initial value problem

ox

% f(t,x(0)
x(to) = xg
» What is the value of x(t;)?

Note: we introduced here ty and tq, lketususe ty =0andt; =T

v

()

v Vv

Solver call for the forward pass

x(t;) = ODESolve(f(x(t),t,0),x(ty),to =0,t; =T)

R

Numerical solver Differential 'Mt@l |nitial  Final
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Crash notes on ODEs

» Properties

» For simplicity we consider one step methods of the form

> Xpy1 = Xn @ (tn, X0, ) (2)

» Stability
Intuition: a perturbation of the initial value and of the ¢ term does not lead
to a divergence of the schema
Property

0 If there exists L > 0 such that Vx,x’ € R™,Vh € [0,1],Vt € [0, T],
lp(t,x,h) — d(t,x', h)|| < L||lx — x'|| then the numerical scheme is
stable

0 i.e. ¢ is Lipschitz continuous w.r.t. x, uniformly w.r.t. t and h

Note: stability is important e.g. for the robustness of NN to adversarial
attacks
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Crash notes on ODEs

» Properties

» For simplicity we consider one step methods of the form
¥ Xpy1 = Xp + hpd(ty, xp, hy)  (2)
» Consistency
Measures how well the sequence x, X1, ... X approximates x(t,), x(t;), ..., x(ty)
Truncation error
0 €y = X(tpe1) — x(t) — hd(t,, x(t,), h), with x(t) a solution of the ODE (1)

A numerical scheme is consistent if the summation of all the truncation errors, for
all discretization steps goes to 0 with h

» Convergence

What are the conditions on ¢ for schema (2) to be convergent, i.e. for x,, to
converge to x(t,) when h - 0?

If the scheme (2) is stable and consistent then it is convergent, meaning that

. 2
}lll)% sup ||xn — x(tn)|| =0

0<n<sN
Xo—x(0)
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Interlude
Crash notes on ODEs and PDEs

PDEs




Crash notes on PDEs

» We will consider general PDEs of the form

ra”;’;'x) + Lu(t,x) =0, (tx) € [0,T]xQ
» Y u(0,x = uy(x), x € Q
u(t,x) =gt x), x € [0, T]x00Q

» With u: [0, T]xQ = R™, 0L the boundary of domain Q
» L is a differentiable operator

» Different types of boundary conditions, e.g.
» Dirichlet u(x) = g(x) specifies the value at the boundaries

» Neuman Z—Z (x) = g(x) specifies the value of the normal derivative at the
boundary

» Periodic u(a) = u(b), 5= (a) = 5= (b), ... for example if = [a, b]
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Crash notes on PDEs

» Example: IBVP for the Heat (Diffusion) equation 1D

ou 0%u x=da *=
—~ == t>0,x € [a,b]
» u(a,t) =0and u(b,t) =0fort >0 o ou  9%u -
» u(x,0) = f(x) ot  0x?2

u(x,0) = f(x)
Evolution of the temperature in a
square metal plate -heat equation.
The height and redness indicate
the temperature at each point. The
initial state has a uniformly hot
hoof-shaped region (red)
surrounded by uniformly cold
region (yellow). As time passes
the heat diffuses into the cold

» Heat equation 2D
ou 0%u , 0%u

ot  9x2  9y?2

. . _ re%ion.
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Crash notes on PDEs — method of lines

» Many applications of NN to PDE proceed as in the method of line
(Hamdi et al. 2007)

» Replace spatial derivatives in the PDE with algebraic approximations.

» The spatial derivatives don't appear anymore and the only remaining
independent variable is the time.

» This transforms the PDE into a system of ODE that can be solved with
classical ODE solvers using a time stepping scheme

» This is the scheme used for most discrete space ML solvers
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Crash notes on PDEs — method of lines

» Example Diffusion (heat) PDE in one dimension

ou 0%u .
» =0 with boundary conditions u(—L,t) = u(L, t)

» Spatial discretization of u(x,t):
Denote u(—L,t) = u,u(—L+Ax,t) =u,, .., u(L,t) = U4
» Replace spatial derivatives in the PDE with algebraic approximations.

» Discretization of the spatial derivative with a second order scheme :
du; c
dt  Ax?

» The spatial derivative do not appear anymore

[wiv1 — 2u; + w4, vie {1,n}

» We are left with a system of n ODEs
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Crash notes on PDEs — method of lines

» This system of PDE can be solved using appropriate classical ODE
solvers.

» Let us derive the ODE integration using an Euler discretization scheme

n+1_,n

duj u i

for the temporal component:; ~ —
P P dt At

» The integration scheme for the system of ODEs can be rewritten as:

u™t =um+ 2@, - 2ut+ut,)  Vie{l,n)

with 4 = c% the CFL (Courant-Friedrichs-Lewy ) number that
conditions the stability of the ODE

The values of u at time step m + 1 can be obtained from the values at time
step m using neighbourhood points at space index u;

Two dimensions, is slightly more complex, but the PDE can be reduced to a
system of linear ODEs as in the example above

» End Interlude PDEs
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Modeling Spatio-temporal dynamics with Neural Networks
Motivations

» Modeling the complex dynamics arising in natural/ physical
processes

» Objective: understanding, predicting, controling

» Physical models
» Mathematical equations of dynamical systems
» Often take the form of PDEs and associated numerical models

» Stem from a deep understanding of the underlying physics

» Data driven modeling
» In many cases data are plentiful (climate, simulations, etc)
» Can we leverage ML for modeling these complex systems?

Way more complex than current ML successes (vision, language)

» Challenge: Interaction between the physical model based and the
statistical paradigms
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Modeling Spatio-temporal dynamics with Neural Networks

» Applications domains - examples

Computational Fluid Dynamics Earth System Science —Weather Graphical design

prediction/ Climate

DrivaerNet 2025 o =

Experimental: Aurora ML model: 500 hPa
geopotential height and 850 hPa temperature

ECMWEF 2025 Tompson et al. 2017

» Potential major application field for ML
» Obijectives

» Fast alternative to numerical solvers
Reduce computational cost and facilitate the design and deployment

Complement physical models

» Focus of the presentation: pure data-driven models
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Explicit modeling of physical dynamics: Partial Differential Equations

Spatio temporal dynamics are usually modeled through partial differential equations
We consider a class of spatio-temporal partial differential equations dependent on parameters

[ Explicit modeling \
du 2 / \
—=g(fixtuVu,Vuy,...)

at V(x,t)EQXR:

Partial Differential Equation Parameters that influence the dynamics:

PDE coefficients (c), forcing terms (f),
boundary conditions (b), initial conditions
(u® ), any physical parameter.

Initial — u(x,t =0) =u’x) Vx € Q
constraint

Boundary — B(b;u, Vu,x,t) = 0 V(x,t) € 0O X R}

constraint \ )

56
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Implicit modeling of physical dynamics: Neural surrogates

Neural surrogates are trained on trajectories sampled from an underlying dynamics
We consider pure data driven approaches: no prior on the PDE form

[ Explicit modeling

a—u—g(cfxtul7u|72 )

Partial Differential Equation

Initial ~~ —> u(x,t =0) =u’(x)
constraint

Boundary —— p(p;u, Vu,x,t) =0
constraint

Ve

V(x,t) € QX RS

Vx € ()

V(x,t) € 90 X R

Implicit modeling

W raining ' - -

Hataset of N
rajectories

y,
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Surrogate
Model
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Tackling the generalization problem for physical dynamics
Generalizing to changes in discretization and domain

Existing neural surrogates face several challenges for emulating the evolutions of systems governed by

PDEs

(

s

ou

at

Explicit modeling

~\

gl fix t,u,Vu, Vu,...) V(x,t)x]R;f

N

4— Domain
u(x,t =0) =u’(x) vx E &

frid

Initial condition

Implicit modeling

2) Neural Surrogates should generalize to

changes in the discretization grid X

e N\
Surrogate

r’ Model /—l

w

s ~
Surrogate
i

Model
L J

e N\
urrogate Surrogate
Model Model

L J

= 3AL
-

Sparse grid

And to changes of domain ()

~

B(b;u,Vu,x,t) =0 V(x,t) €00 xRS

y,
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Surrogate
Model
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Tackling the generalization problem for physical dynamics
Generalizing to changes in the parameters: solving parametric PDEs

Existing neural surrogates face several challenges for emulating the evolutions of systems governed by
PDEs

Forcing terms /7 Implicit modeling N\
PDE coeff|C|ent§ | Neural Surrogates snouia generalize to
Explicit modeling \ changes in new initial conditions and PDE
parameters like forcing terms, coefficients,
— = g x t,u, Vu,V2u,...) -
boundary conditions

Initial cindition

u(x, t =0) =u(x)

B(b;u,Vu,x,t) =0 V(x,t) € 0Q X R]

\ y

Boundary type
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Basic NN architectures
Used on discrete grids

Convolutional Neural Networks
Unet
Graph Neural Networks




Convolutional Neural Networks

» Convolution of function u(x), x € R™ with kernel g(x)

(u * g)(x) — fRdu()’)g()’ _ x)dy 1 ......... ......... ......... Iz'lxund'erfc:m-xﬁ'
SN VO S b | 22D,

w* @) = [pauly —x0gMdy |

Fig. https://en.wikipedia.org/wiki/Convolution

» Discrete convolution in 2 D of u[i, j] with g[i, j]

» Let us suppose that g has a finite support set {—N,—N + 1, ..., N}*
(u* OIiJ] = iy Zni-y ulm nlglm —i,n — ]
(u* @i, j] = Em=—n Zn=—~uli + m,j + nlg[m,n] 100

1 The latter is the convolution used in CNNs
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Convolutional Neural Networks

r (ux @i, j] = Zm=-n Zn=—nuli + m,j + nlg[m,n]

Filter g
Image u indication of the indexing positions

u u u u _&._M
1 |[Uz U3 [Uyg 41 101 | 11 21

Y3l Va
Us | Ug | U7 | Ug 40 |00 |10
Ug |Uqp| U11| U2

-1-1 101 | 1,-1

1 1

y; = (u*g)[2,2] 2 Z ul2 +m,2 + njlg[m,n]

m=—1n=-1
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Convolutional Neural Networks

» Relations with finite difference

» Classical stencils used for finite differences can be implemented via NN
convolution operators

» NNs operating in discrete spaces (CNN, Unet, ResNet, ...) have the
potential to learn differential operators

» Example

Let u: R? - R be a function,and x € R?,and h the grid size of a discretized
representation for x

Central difference operator for approximating ((i,j) respectively denote the row
and the column)

uli+1,j]-u[i—1,j]
2h

] .
a—xlu(x) is

) 0 0 O
implemented as o1 0 1
0 0 O

9? uli+1,j]-2uli,j]+uli- 1] [0 0 0
ﬁu(x) is : th — implemented asﬁé _02 é

» Note, more on that in Long et al. 2019
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UNetS ' Input Convolutional Encoder-Decoder output
» Introduced for image to image h ' _

transformations (initially image RGB Image e ooy segmentation
segmentation, could be used to . o |
associate a source to the solution Fig. Badrinarayanan et al. 2015
of a PDE)
» Encoder-decoder type o
architecture, V- Cycle: |
0 First, upscale the image resolution n{:%g R | S S -
and increase the number of EREE
channels
00 Then downscale to the initial ) o =
resolution and reduce the number
of channels u_H
» Close to Multigrid numerical ?T'i
methods
L > = . - 4
Makes use of I ! [!‘I.I ‘22;1;223 CTEFL)U
0 Convolutions |~.-’ E’-I- :max poo|22>;2
2 1024 LA up-conv 2x
00 skip connections combine S — = conv 1x1

information at the same resolution

Recent versions incorporate Fig. Ronneberger net al. 2015
Attention mechanisms
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Graph Neural Networks

» Extends the CNN ideas to irregular grids (graphs)
» Better adapted to irregular meshes used e.g. in fluid mechanics

» Computational cost high compared to CNNs

Needs to compute the neighbours for several operations — not so adapted to
GPUs

» Notations
G = (V,E) a graph
To each v € V, is attached a set of node features x € R%: [TTTT]
N (v) is the neighborhood of note v in the graph

Alternatively, G can be described by its adjacency matrix A

[TIT11
[T1T11

== O

oo P O

===
R R RO

[TTTT1
[TIT11
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Graph Neural Networks

» GNNs are multilayer NNs where each layer has a graph structure

» As for CNNs, nodes in layer k + 1 compute their activation from
activations in layer k.

» The regular CNN convolution is replaced by a message passing
operation

» Message passing
» Let xX the embedding vector associated to node v at layer k

» Message passing operation for nodes has the following general form

k

k+1 k Xu
Update v statex; " = o(w Z”EN(”)U”J|N(v)||N(u)|)

O N(v) is the neighborhood of node v in the graph

is a2 normalization factor

\/IN(v)IIN(U)I
k

xg , :
O ZuEN(”)U”J|N(v)||N(u)|) is an aggregation operator over N (v)
k

O w™ is a matrix of the appropriate dimensions
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Graph Neural Networks

» Message passing operation has the following general form

k

Xu
Update v state: x{f“ = O'(Wk ZueN(v)Uv JlN(v)IIN(u)I)

00 Normalization factor introduces a relative independence

1
VIV @)V W)
w.r.t. the nodes (V) degree compared to a basic aggregation rule s.a.

ZuEN(v)Uv xX where nodes with high degree would dominate

00 Many variants, this one was proposed in the graph convolutional network
(GCN) by (Kipf et al 2017) — which remains popular GCN approach

0 Note: any aggregation operator must be permutation invariant, i.e.
independent of the node order

O Note: aggregagtion can also be performed on edges

1 Note: more on GNNs in Hamilton, 2020
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Graph Neural Networks

» Attention with GCN

» A popular set aggregation rule relies on neighborhood attention

» Attention was popularized with transformers in NLP

» Example

> Aggregation rule X, c - yup Ay X8

» With coefficients a,,,, denoting the attention on neighbor u € NV (v)

exXp (aT (Wx, Wxy,))
exp(aT (Wx,®Wxy,))

Ay y , @ concatenation operation

Zu’eN(v)
Wa matrix of the appropriate size

And possible extensions to multiple head attention as in Transformers
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NNs as surrogate models for solving PDEs
Discrete space models

v" Regular grid: Learning from partial observations — ResNets - UNets

Irregular mesh: passing PDE solvers — Graph NNs



Learning from partial observations (Ayed et al. 2019- 2022)

» Forecasting non linear dynamical systems from observations only
» Data-driven approach: without any knowledge of the physics
The form of the PDE is unknown
» Only assumption
The underlying system follows a differential equation, but the PDE is unknown
» Obijective

» Learn the evolution of this system (observations and state) from scratch
with a NN

» Discover automatically the relation between states (dynamics)
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Learning from partial observations (Ayed et al. 2019- 2022)

» lllustration
» Navier Stokes equations
Discretised on a spatial 64x64 grid
State: fluid particle density + 2D velocity field
Observations: density only Y

Initial state: true full state X,

Ground Truth ) ) ) ’ 3
Our model, Setting 2 ) ) ) ) .‘

Forecasting NS — horizon prediction T = 30 (in blue
density Y, in color 2D velocity field with color code
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Learning from partial observations (Ayed et al. 2019- 2022)

» Assume an underlying dynamical system with initial conditions

(X, Initial state of the system
> < % = F*(X;) State dynamics
Y = H(X;) Observations

» Variables

» X, € R%: state of the system at time t
function of time and space, partially observed

e.g. 3 D dynamics of the Ocean: velocity, pressure of the ocean

v

Y, : observation, i.e. only available data for training {Y;,0 <t < T}

e.g. satellite observations: temperature, salinity, ocean color, waves height, ...

v

H: measurement process linking state to observation is known

F*describes the evolution of the state and is unknown

v
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Learning from partial observations (Ayed et al. 2019- 2022)

» Objective

» Learn the evolution of the system (observations and state) from scratch
with a NN

» Learning problem

SN2

miergn;gze Ey [ZLO”Yt — H(Xt)”2 learn trajectories from observations
. ax 5 .

Subject to Vt,d—tt = Fy (Xt), learn the state dynamics

Xo=90(Y_;,0 < k <K) learn initial state from previous
observations

» Implementation
» Fy is implemented as a ResNet, similar to forward Euler for ODEs
A% . 1o
Solves - = Fy (Xt)
0 Xlpse = X2 + 8tFa(XF)
» gp is a Unet or a ResNet
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Learning from partial observations (Ayed et al. 2019- 2022)
Examples

» NEMO — Nucleus for European Modelling of the Ocean Engine

» State:7 variables, we make use only of 2 variables corresponding to the
velocity field

» Observations: Sea Surface Temperature
» Initial state: interpolated from previous observations
» For all test, data are partitioned into a training and a test set

» Horizon of 6 time steps used for the target sequence for training
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Learning from partial observations (Ayed et al. 2019- 2022)
NEMO — Global Ocean Physics Reanalysis

Targets (Y;)
Targets (X;)
Predictions (Y;)

Predictions (X,)

Figure 4. Forecasting Glorys2v4. From top to bottom: input and target observations, along with the associated ground truth partial hidden
state, our model’s outputs, our model variant when the initial conditions are estimated from the observations, outputs from the PKnl
baseline, and from the ConvLSTM.
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NNs as surrogate models for solving PDEs
Discrete space models

Regular grids: Learning from partial observations — ResNets — Unets

v Irregular meshes: Message passing PDE solvers — Graph NNs



Graph Neural Networks

» GNN are well adapted to handle irregular meshes
» Several efforts for developing PDE solvers based on graphs
(Sanchez-Gonzales et al. 2020, Belbute-Peres et al. 2020, Pfaff et al. 2021, ...)
» Grid cells/ nodes are mapped to a graph which is processed via message
passing
» Example used in the course:
» Brandstetter et al. 2022: Message Passing Neural PDE Solvers
Representative GNN solver
O Handle multiple situations:

O Multiple resolutions, boundary problems, parametric PDEs, etc
0 New improvements for training w.r.t. previous GNN PDE solvers

» Inference
The mesh (precomputed) is mapped onto a graph
Objective: forecast spatio-temporal dynamics
Auto-regressive model u(x,t) - u(x, t + At) - u(x, t + 2At) ...
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

Fig. Bransdtetter et al. 2022
» General framework

» Framework: Encode-Process-Decode (Sanchez-Gomzales 2020)

Process: message passing on the graph node embeddings

Node-wise mapping Message passing Node-wise shallow
to the hidden space 1D convolution

... output time

==

input time

—_—

MLP m 5 i
L T
| MLP oo —p

Node i,step k

Encoding Process Decode
Input: last K values at each node i | M message passing steps Output: next K values
f2 =Encode(uX7X, ..., uk) fifm=1..M uktl L ultK
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

» Encode
» Compute node embeddings for each node i
» [ = embed(uf ¥ x;, ty, Oppr ) (vector)
ué‘_K:k: K last values, x;: node position, t;.: time step k

OppE: parameters of the equation, e.g. PDE coefficient values, boundary
condition indicators etc

Encoder
Node-wise mapping
to the hidden space

input time
MLP

MLP

i

MLP

80

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

» Process

» Compute M steps of node update, f, ..., £ for all nodes i via message

passing
» Stepm
Message for edge j » i m;; = ®(fi", i, uk—Kk _ u}c_K:k,Xi — X, OppE)
Update for node i fimt = l/J(fim, 2 jen (i) Mij» HPDE)
@, 1) are MLPs

- :
— :
o -
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

» Decode
» From the last node embedding f; , compute next Kvalues
uktl L uftK for all nodes i

» fMis a vector and is considered as a time contiguous signal and

processed through a 1D CNN to compute the next K predictions

k+1 k+K
u; y ey U

output time

B —

CNN

CNN
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

» Claim
» Able to handle

parametric PDEs, with the Opp coefficients

Multiple resolutions, message passing allows for multiple resolutions in the
GNN

Multiple boundary conditions (Dirichlet, Neuman, mixture)
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

» Example

» Generalization : family of PDE equations with different parameters and
different resolutions

» %+%(au2 —ﬁg—z+y%) = f(x,t)

» u(0,x) = uy(x)

» Encompasses several classical equations
(a,B,v) = (0,1n,0) Heat equation

(a,B,v) = (0.5,n,0) Burgers equation (simplified equation for fluid flows)
Etc

» Oppr = (a,B,7)
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Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
Example

Generalization : to PDE equations with different parameters values for
(a, B,y) and different resolutions

Not real generalization but interpolation in the range of training values for
(@, B,v)

Colours correspond to different times

Exemplary 1D rollout of an unseen equation (@ =0.05, 8=0.14, y=0.55)

INNNIY,

~1/nx=200
ground truth

— t=0.0s
— t=0.2s

A — t=0.3s
— t=0.5s
) t=0.65

t=0.8s

3=

t=1.0s
t=1.1s
nx=50 nx=40 .35
prediction prediction t=13
t=1.6s
—— t=1.8s

A
. /% 0 8 0 8 8 — t=1.9s
resolutions : v Parameter values (a, 5,v)

Exemplary 1D rollout of an unseen equation (a=2.90,8=0.20, y=0.15)
1

u\A, L

nx=100
prediction

— t=0.0s
— t=0.2s
— t=03s
— t=0.5s
t=0.6s
t=0.8s
t=1.0s
t=1.1s
t=1.3s
t=1.4s

— o Fig. Brandstetter et al. 2022

0 8 0 8 ] 8 0 8 — t=19s
X

1.5

1.0

0.5

0.0

A=2oo

ground truth

nx=100
num baseline

x=50 .
num baseline

nx=40
num baseline
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Neural surrogate models: Neural operators

Classical numerical solvers operate on
grids or meshes (finite differences,
finite elements, finite volumes)

» Early neural solvers operate on tensors
(grids) or on graphs (irregular meshes)

Neural operators is a relatively recent
topic aiming at learning maps between
function spaces instead of vector
spaces
» e.g.images are considered as continuous
functions
» Potential benefits

» Functions and operators are mesh/
resolution invariant

» Handle different geometries, multiple
resolutions

» Query at any space-time coordinate
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Neural surrogate models; Neural operators implementations

)/ Encode-Process-Decode has become
the standard framework for spatio-
temporal forecasting problems

88

Ut Ut+ At

[-. ............... ,-}

Processor: time stepping
Unroll the dynamics in a latent space

Encoding: maps physical inputs to a fixed-size

small dimensional latent space

Processing: model the dynamics into this
small latent space

Decoding: maps back to the physical space

Implementations adapt recent
developments and concepts from NLP,
vision etc to the field lof physics

» Attention/ NLP Transformers or Vision
Transformers

» Generative models: diffusion, flow matching
etc
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NNs as surrogate models for solving PDEs —
Continuous space models

v" Fourier Neural Operators




NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» We consider
y P = V(Q c R<: R"),‘u =U(Q) c Rd'; R™) two function spaces
» G:V — U a non linear unknown mapping between the two function
spaces

FNO considers mappings G that correspond to the solution operator of a
parametric PDE

v € V and u € U could correspond respectively to
O an initial condition and a solution for a time dependent PDE
00 A parameter function and a solution for a time independent PDE

» Obijective
» Learn Gy an approximation of G from a finite set of samples

» Samples are provided as p-points discretization of functions v € V and
ueU

i.e.in practice we learn from discrete spaces, the representation of the
continuous functions v € V and u € U
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» FNO considers mappings G that correspond to the solution
operator of a parametric PDE
» v €V and u € U could correspond respectively to

An initial condition and a solution for a time dependent PDE
0 E.g.Advection-diffusion eq. (Sea Surface Temperature)

u(t) u(t + At)

A parameter function and a solution for a time independent PDE
0 e.g. elliptic equation (Darcy Flow)
0 —=V.(a(x)Vu(x) = f(x),x € Q,u(x) = 0,x € 09, f piecewise constant

u(x) steady
state solution

a(x) diffusion
coefficient

* Fig Li et al. 2022
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» Classical neural network

u = (KTO Op ©+++0 0y © Kto +++0 ;0 KO)U

» With K; a linear operator, g; a non linearity, u, v vectors

» Neural operators (simplified)

» Follow a similar framework but u and v are no more vectors but
functions

Vi1 (X) = Opyq (Kt (ve) (x))

» With K;(v;) an integral operator

K, (v) (x) = fﬂ e (6, )0 () dy

» »:(x,y)is a kernel function
» v Q> R v1:Q > R™ Q c RY abounded space
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» How to learn the kernel function 3,?
» We consider the simplified update rule

() = KW)(x) = j (%, 9)v(y)dy

Q

»  withv,u: Q - R"
» FNO works in Fourier space
» Let us make x(x,y) = #(x — y)
u(x) = [, #(x —y)v(y)dy
u(x) = fj;o u(x —y)v'(y)dy with v'(y) = 1g(y)v(y)  <<<<<< convolution

ulx) = Ge*v')(x)

» Convolution theorem:

u(x) =F1(FG).F) )

» Convolution in space is equivalent to pointwise multiplication in Fourier domain
F () is a linear transformation

v
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» Fourier transform — Linear Transform — Inverse Fourier

u(x) = F Y FGo).F(w"))(x)

=00

Fig Lietal.,, 2021

» Findings
» In practice, it is sufficient to take the lower frequency modes

» Fourier filters operate at the global level, different from CNN filters
operating at a local level

» R is a linear operator — implemented as a tensor
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» Whole module

®—> Fourier layer 1—Fourier layer 2|—> @ @ @ —»{Fourier layer T

—_— —_ . Fourier layer
F %% e
P

» Fourier Layer works only with periodic conditions Fig Li et al. 2021

» W captures non periodic conditions
» o transforms are performed in the spatial domain
» In practice
» F is implemented via a Fast Fourier Transform (complexity nlogn, n nb of spatial points)
» Operates on regular grids only

» But FFT is independent of the grid size
Could be used on resolutions different from the training ones
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» Example: zero shot super-resolution
» 2 D Navier Stokes, vorticity form, viscuous incompressible fluid
%W(x, t) + ulx, t). Vw(x, t) = vAw(x,t) + f(x),x € (0,1)%,t € (0, T]
V.u(x,t) = 0,x € (0,1)%,t € (0,T)

u(x, t) velocity field, w(x, t) vorticity, characterizes local rotation of the

fluid
» Fig. lllustrates super-resolution: trained at 64x64, test on 256x256
Initial Vorticity t=15 t=20 t=25 t=30

™ hal Ne
», IT&{

Prediction

Fig Li et al. 2021 \ 'L

Zero-shot super-resolution: Navier-Stokes Equation with viscosity v = le—4; Ground truth on top and
9¢  prediction on bottom; trained on 64 x 64 x 20 dataset; evaluated on 256 x 256 x 80 (see Section 5.4).

S
>




NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» Details on N-S example
» 2 D Navier Stokes, vorticity form, viscuous incompressible fluid
2 w(x, £) + u(x, £). Vw(x, ) = vAw(x, t) + £(x),x € (0,1)%,t € (0,T)

V.u(x,t) =0,x € (0,1)%,t € (0,T)
w(x,0) = wy(x),x € (0,1)?

Ju ou
0O Vu = (a,@
0 Au =V.Vu
O V.= = T Fm for a 2 D vector v — divergence operator

O w = V xu with x the curl operator
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» Many extensions/ variants

» Irregular grids, Physics informed FNO (Li et al. 2022) Transformer FNO,
large size application to weather forecasting (Pathak 2022)

» Approximation theorem

» Universal property approximation of operator classes by (F)NO e.g.
Kowachki 2022
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NNs as surrogate models for solving PDEs —
Continuous space models
Learning grid free models

v AROMA: Preserving Spatial Structure for Latent PDE
Modeling with Local Neural Fields, Serrano et al. Neurips 2024




Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)

» Principled Encode/ Process/ Decode framework

» Properties
Handle diverse geometries: inputs and outputs may consist in point sets, grids, meshes, with different
formats

Handle variable size inputs, e.g.. no fixed resolution, irregular samples

Can be queried at any spatial position within the spatial dynamics’ domain
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AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework

coordinatesz € RV*?  function vaiues u'e RV*¢
predicted value

ﬂH» t(ﬂl)
h

latent thkens with a predicted tokens

Encoder .’ '

) compressed dimension
2 AT .
ncoder @ a Bk =
palala = I : . : Diffusion ; .
; :_._ Transformer [ .
fr] | lﬁitf?:;g Decoder
. .

i xh zsIAt e RMxh

1
T Toeoe RMd Z'eR
\@wﬁwns geometry-aware tokens j coordinate query

Cross-attention encoder: ut — 7t

* Maps variable size discretized input u (point set, mesh, grid) into a fixed size
& small dimensional sequence of latent embedding tokens Z
* Latent space encodes local spatial information on problem geometry +

variable values
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AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention

Example: Navier Stokes — cylinder flow
Cross attention illustration

» Cylinder flow ground truth » Tokens capture and encode local
spatial information — cross attention

between T9¢° tokens and "x"
r \/ N

*® 800
09 coeese8es | (1000000 90000000 650
rzc:uo..nouomnaum.o..
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C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)

General framework

!:

latent tokens with a predicted tokens
compressed dimension \

coordinatesz € RV*?  function vaiues u'c R

predicted value

ﬂH» t(ﬂl)
h

A
Processor lm ml
Diffusion | ! :
_. Transformer | .7 ;
Latent
H . L Refinel: ) .
r oo Encoder . v t
"""""""" oo gMxd ) 7t RMxh it
learnable tokens geometry-aware tokens \ j coordinate query

Dynamics is modeled by a time stepping diffusion transformer: Zt — Zt+At

* Learns the dynamics in the small dimensional latent space

* Self attention models relations between spatial latent tokens

* Inference: dynamics is enrolled in the latent space starting from an initial
condition — low complexity

* Diffusion: introduces a stochastic component
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AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework

4
coordinatesz € RV*?  function vaiues u'e RV*¢
- predicted value
B — & t(m)
latent tokens with a Aredicted tokens
compressed dimension
]
Decoder .
falale = I . Diffusion
! . ©| Transformer :
Latent 3
' . Refinel ,1
Encoder_‘ i v t
"""""""" %@;’E"R’M&]{”""' 7t e Mk ot ¢ pMxh n
learnable tokens geometry-aware tokens L coordinate query /
Decoder: cross-attention neural fields decoder: Zt At — yt+At
* Maps the latent representation forecast Z:*A¢ to the original physical space
* Can be queried at any position x of the physical space
104

Advanced Deep Learning - Physics-Aware Deep Learning - Dynamical Systems



AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
Cross-attention encoder captures spatial attention

» Burgers equatmmﬁg&yﬁhuation — perturbation analysis on the tokens

» Tokens encode local spatial
information

a Y h

’ Token 0 ” - Token 1 .
i /v " w /\/ :m [
i i
. Token 2 " Token 3 "
0 lC téﬂ F * . e N . - B
i
. . |

\ A S
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AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
Stability on long rollouts

Burgers equation
Trained to predict next step on 50 time steps
trajectories
Unrolled for 200 steps

Long rollout prediction 10 gt 200

°
5
2
-
2
3
2

rrrrrr

Rollout Steps

Figure 3: Correlation over time for long roll-
outs with different methods on Burgers
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NNs as surrogate models for solving PDEs — Continuous
space models
In-context generative pretraining — discrete transformers

v’ Zebra: In-context and generative pretraining for solving parametric pdes (Serrano
et al. ICML 2025)




ZEBRA - In-context generative pretraining (Serrano et al. 2025)

https://arxiv.org/abs/2410.03437

» Inspired by In-context learning in NLP decoders (LLMs)

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Fig. Brown et al. 2020 (GPT3)

In-Context examples (u,;1= 3u, — 1)

Sequence I:,2,5, 14, ...
Prompt Sequence 2:2,5,14,41, ...
Sequence 3: 8,8, 23,68, ...
Sequence 4: M
Query new initial condition

Answer  Sequence 4:4, 11,32, 95, etc..

Without optimization LLMs are somehow capable of
inferring the correct pattern in the sequences, i.e the
underlying parameters: U, .1 = 3u, — 1

Fig. Serrano 2025

No gradient update — only context
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

[How does in-context learning works: Two main interpretations ]

4 Gradient update interpretation N\

Dai et al. ACL 2023.Why can, GPT learn in context ?
Transformer attention has a dual interpretation as gradient descent in the linear attention case.

Interpret LLM as meta-optimizers that perform implicit fine tuning for in-context examples.

\

/ Bayesian interpretation \

Xie et al. https://ai.stanford.edu/blog/understanding-incontext/

1\

Pretraining learns latent concept distributions, inference identifies the prompt latent concept

p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept)

concept

N J
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
https://arxiv.org/abs/2410.03437

Inference

\enerared Trajectory

O

Initial condition

— DeTokenize

~

Context trajectory: trajectory from the same PDEs starting from another Initial Condition
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference: discrete model i.e. LLM structure

N

ﬂon text trajectory

N{mrared Trajectory \

Initial condition

- DeTokenize

v

Tokenize

!

Tokenize ]

y

Context trajectory and |C are compressed into sequences
of discrete tokens (similar to word encoding)
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
https://arxiv.org/abs/2410.03437

Inference

\enerared Trajectory

ﬂontext trajectory \ f \ (

Initial condition

- DeTokenize

~

] Auto-fegressive
l | g@ eration
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discrete tokenized
representations of

the data to predict
next tokens

sequence
autoregressively —
similar to LLMs




ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference: discrete model i.e. LLM structure

ﬂontext trajectory \ f \

Initial condition

DeTokenize

. The predicted

ngk __________________ 1 N token sequence is
mapped back to the

physical space

~

N

Tokenize ’ Tokenize ] Auto- gressivé
) i | gbleration
81 ] { 89 ]
.........
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

Training: 2 steps

Encode-decode:VQVAE
Maps a frame to a finite set of
tokens

Processor: LLM

Predicts discrete distribution
of tokens

Training loss: cross entropy

(1) vavae

Input: physical field

me

- 1
2) In-context Pre!raini_

Trajectories sharing the same dynamies

Trajectory 1 /

!

Tokenize

codes

1234
: 777
 Encoder] [ |
1 arg min ||z{; —
_____ s“dll i — =l
1 1 zl

\ Trajectory 2

[ mhontstion |
n

-/ quantized codes

Output: reconstruction

Output: Next token probabilties

p(S2) p(Ss) p(Ss) p(Ss) p(Sx

AR L [ O T

S S: Sy Sy SN Sn

Input: Sequence of indices

OS> | tepn of sequence qgg_~.|.v.«;.;.-u

Special
tokens
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

https://arxiv.org/abs/2410.03437
Examples

» [ Heat equation ]

Context prompt Initial condition

0.

0.64

0.44

0.24

Prediction

Figure 26: One-shot adaptation on Heat

[ Combined equation ]

j Context prompt [

Figure 30: One-shot adaptation on Combined
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
https://arxiv.org/abs/2410.03437

Examples

[ Vorticity ]

Context prompt
Ground truth
;

Example t={
GT t=0

Figure 35: One-shot QoD adaptation on Vorticity. Example 1.
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NNs as surrogate models for solving PDEs — Continuous space
models
In-context generative pretraining: continuous transformers

v" ENMA:Tokenwise Autoregression for Continuous Neural PDE Operators (Kassai
et al. Neurips 2025)




ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)

» Follows an encode-process-decide framework

» Extends the in context learning ideas of ZEBRA to a fully continuous token space instead of
a discrete space
» More natural for physical phenomena
» No more token quantization with the corresponding information loss

» Trained as a generative model using a flow matching loss

v

Properties
Handle irregularly positioned and possibly faulty sensors
Allows performing in context learning and well as forecasting from past history
Adapt to changes in the discretisation grid

Models uncertainty
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)

Continuous

— encoder
eneration 2« [[[TT]]1] !
process T
hysical field - :
P)ysrcal fie : \f,frame' Flow Matching _bfb ‘ 5
Historical %] —— \]/ " Spatidl |
context Spaltial aitoregressive
generation
L frames — Transformer
arbitrary domain ks 5 ‘
L frames L .
\ Zh [LLLLELE] LI mase ; Continuous VAE
Y 2 : detokenizer
Continuous VAE Spatio-Temporal
tokenizer Causal Transformer
h
Irregular input grid l L
I — Temporal autoregressive

Compact Zys m generation |

continuous token L L L e i ' -

sequence encoding e Zisos Z0F 1 Output grid
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.

2025)

|

Generation
process

|

Irregular input grid

Autoregressive Generative
continuous transformer

120

hysical field —
Physical fie . \;Lfrajnes Flow Matching _bfb\‘
S )
e MEE N Spatial
il s ¥ I autoregressive
S Spatial generation
Transformer
L
Zo [ LLJTTIL [ L[] ] s
v L
Continuous VAE Spatio-Temporal
tokenizer Causal Transformer
A
L
Temporal autoregressive
Zgos m generation
(AI] | «--------- <o eeoeeceeneeoeeend '
ZO:L—I [ZBDS,ZO:L—E. 1
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.

2025)

|

Generation
process

Continuous
decoder

Continuous VAE
detokenizer

hysical field
P ysrca. Jre \f frames Flow Matching
x 2 MEE Spatial
I autoregressive
Spatial generation
e Transformer
L frames L
\ Zb (LTI [ L[] T[] s
e
Continuous VAE Spatio-Temporal :
% : LT Causal Transformer §
| 3 :
Irregular input grid l L
Temporal autoregressive
Zgos Eﬁﬁ% generation :
LD e '
ZO:L—I [ZBDS,ZO:L_]' 1
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)
Examples: Gray Scott

In-distribution

Out-of-distribution

ENMA vs Ground Truth Parameters: F =0.0332, k= 0.0607
ENMA vs Ground Truth Parameters: F = 0.0467, k = 0.058

t=15

w

HOF)O
1.0
HOJ
0.0

0.0

ENMA Prediction Ground Truth
ENMA Prediction Ground Truth

MSE Error
MSE Error

Figure 37: Qualitative comparison between ENMA prediction and ground truth for an in-distribution  Figure 39: Out-of-distribution (OOD) generalization for the Gray-Scott equation. ENMA prediction
sample from the Gray-Scott dataset (F = 0.0323, & = 0.0606). remains consistent despite being evaluated at unseen parameters (F' = 0.0467, k = 0.058).
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)
Examples: vorticity at different viscosities

In-distribution Out-of-distribution

ENMA vs Ground Truth Parameters: v=0.0019

ENMA vs Ground Truth Parameters: v= 0.0007
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Figure 43: Qualitative comparison between ENMA prediction and ground truth for an in-distribution Figure 45: Out-of-distribution example from the Vorticity dataset (» = 0.0007), highlighting ENMA’s
sample from the Vorticity dataset (» = 0.0019). robustness in extrapolating vortex dynamics.
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NNs as surrogate models for solving PDEs — Data free approaches
(Lagaris 1998, Sirignano 2018, Raissi 2019)

» Obijective

» Build a reduced order (parametric) model, implemented by a NN, to
offer a cheap approximate solution of a PDE

» Assumption: the form of the PDE is known as for classical solvers
» Data free approach: no need for simulated data/ observations as
required by all the other approaches seen before
» Results

» The algorithm solves the PDE using a single parametric function, for all
space and time conditions

» The original algorithm solves a unique IBVP — and shall be re-trained for
a new |IBVP
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NNs as surrogate models for solving PDEs — Data free approaches
(Lagaris 1998, Sirignano 2018, Raissi 2019)

» Problem
» Parabolic PDE with d spatial dimensions
(a“g;'x) + Lu(t,x) = 0,(t,x) € [0,T] x Q,Q c R PDE
» Yu(t =0,x) =ug(x),x €Q Initial conditions
\u(t,x) = g(t,x),x € 0Q Boundary conditions

» u(t, x) is the spatio-temporal quantity of interest
» Lu(t,x) is the differential term of the PDE

2
e.g. Burgers 1D: au;i’x) = — augi’x) % I gf;’x)
» Obijective
» Approximate u(t, x) with a NN f(t,x; 0),0 € RXare the network
parameters
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NNs as surrogate models for solving PDEs — Data free approaches
(Lagaris 1998, Sirignano 2018, Raissi 2019)

» Formulate the problem as minimizing an objective function

» Foe simplification we only consider initial conditions (remove BC)

Initial condition loss PDE loss: constraint
6f(t x;0)
I = 1£0,2:0) — (Ol + |22 — Lf (e, x;0)||
0 T X V2
uoO):

 Learn f(0, x; 8) by sampling from Q, * Constrains f(t, x; 8) to follow the PDE

the initial condition expression by sampling uniformly
« This is a regression problem from [0,T] x Q
« This provides a parametric e Y and Lu(t, x) computed by

. . B ot ’
approximation of target u(x, ¢ = 0) automatic differentiation

» Solved using stochastic gradient descent
» Several extensions, e.g. sampling from data from the PDE loss, etc
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NNs as surrogate models for solving PDEs — Data free approaches
Sirignano 2018, Raissi 2019

» Algorithm
» lterate

Sample (t,, x,,) from [0, T] X Q, v,; sample the initial condition point z,, from
.Q., V1

Calculate the squared error G (0, s,,) at the sampled points s, =
{(tnr xn); (Tn; yn); Zn} with:

Of (tn,Xn;0n 2
0 GOy, 5) = (L) £f (1, x05.0,0)2 + (O, 23 ) — o (20)

Take a gradient step
0 Opy1 = 0 — €,V9G (6, Sp)
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NNs as surrogate models for solving PDEs — Data free approaches
Sirignano 2018, Raissi 2019

» Comments
» Mesh free approach, similar in that to INR
» Several extensions (Karniadakis et al. 2021)

» Popularized the idea of approximatin a differential equation via a
parametric function

» Still much slower than classical solvers

» Requires learning a solver for each specific equation/ initial & boundary
conditions

More on that later

» No extrapolation in time
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NNs as surrogate models for solving PDEs — Data free approaches
(Sirignano 2018, Raissi 2019)

» Example: Burger equation

u(t, x)
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Fig. A.6. Burgers’ equation: Top: Predicted solution u(t,x) along with the initial and boundary training data. In addition we are using 10,000 collocation
points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal
snapshots depicted by the white vertical lines in the top panel. The relative Ly error for this case is 6.7-10~%. Model training took approximately 60 seconds
on a single NVIDIA Titan X GPU card.

Fig: Raissy 2019
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