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Advanced Deep learning

» Generative models
» Variational Auto-Encoders
» Generative Adversarial Networks

» Flow Matching and Diffusion models

» Al4Science - Physics Based Deep Learning

General introduction to Al4Science

v Vv

Neural Nets and Ordinary Differential Equation

» Neural Networks for modeling spatio-temporal dynamics

v

Applications: weather prediction
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Generative models

Variational Auto-Encoders
Generative Adversarial Networks
Diffusion models




Generative models

» Obijective

» Learn a probability distribution model from data samples
Given x1,...,xY € R™ learn to approximate their underlying distribution X

For complex distributions, there is no analytical form, and for large size spaces
(R™) approximate methods (e.g. MCMC) might fail

Deep generative models recently attacked this problem with the objective of
handling large dimensions and complex distributions
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De Bezenac et al. 2021
Generating female images from
male ones

https://en.wikipedia.org/wiki’/Edmond de Belamy Xie et al. 2019
432 k$ Christies in 2018 artificial smoke
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Generative models

» Obijective

» General setup of deep generative models

Learn a generator network gg: R? — R™ that transforms a latent distribution
Z < R9to match a target distribution X’

0O Z is usually a simple distribution e.g. Gaussian from which it is easy to
sample,qg <n

O This is unlike traditional statistics where an analytic expression for the
distribution is sought

Once trained the generator can be used for:
O Sampling from the latent space:

00 z € R1~Z and then generate synthetic data via g4(.), gg(z) € R"
0 When possible, density estimation pg(x) = [ pg(x|2)pz(2)dz

0 with pg(x|z) a function of gg
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Generative models intuition

» Let {z%,..,2z"},z' € R9 and {x1, ..., x"},x' € R", two sets of points
in different spaces

» Provided a sufficiently powerful model g(x), it should be possible to
learn complex deterministic mappings associating the two sets:
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Generative models intuition

» Given distributions on a latent space p,(z), and on the data space
P, (x), it is possible to map p,(z) onto p,(x)?
» g defines a distribution on the target space p, (gg (Z)) = pg (x)
pe (x) is the generated data distribution, objective: pg (x) = p,(x)

» Data generation: sample z~Z, transform with gg, gg(2)
ﬂk

o p.z (Z)

Latent z spéce

o(2)

n

9o (2)
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Generative models intuition

» Data generation: sample z~Z, transform with gg, gg(2)
data space, n = 784
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» Important issue

» How to compare predicted distribution pg(x) and target distribution
Px (x)?
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Generative models key ideas

» Obijectives

» Generative modeling aims at learning how to sample from a target
distribution py (x)

» Learn to sample using a training dataset, drawn from py-(x): x1, ..., x
» Challenges

» Enable fast sampling

» Generate high quality samples

» Cover py(x)
» How

» Choose from a simple distribution, easy to sample from

» Learn to push this distribution to the target distribution

» The push operation is performed by a learned model (here a neural
network)

» Note

» Generation can be performed conditionally on a context
e.g. generating image/ video from a text promt

N
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Course objective

» Introduce three popular families of generative models

Joint requirements

0 Learn a generator gy from samples so that distribution gg(Z ) is close to data
distribution X, pg(x) = p,(x)

0 This requires measuring the similarity between go(Z ) and X
O Different similarities are used for each family

» Three families

O Variational autoencoders
0 gg:RT >R q<Kn
00 Trained to maximize a lower bound of the samples’ likelihood
00 Assumption: a density function explains the data

0 Generative Adversarial Networks
0 gg:RT >R, q<Kn
[0 Can approximate any distribution (no density assumption)

O Similarity between generated and target distribution is measured via a
discriminator or transport cost in the data space

0O Flow matching and Diffusion models
0 gg: R1 = R™, q < nis an iterative process
[0 Assumption: a density function explains the data
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Variational Auto-Encoders

After Kingma D.,Welling M., Auto-Encoding Variational Bayes,
ICLR 2014

Plus some blogs — see the references




Prerequisite KL divergence

» Kullback Leibler divergence
» Measure of the difference between two distributions p and g
» Continuous variables

Diu(pINaG)) = [, (logZ2Hp()dy
» Discrete variables

DI = i (ogZ2p ()

» Property

» D(pNlq(y)) =0
» D (pWllq(y)) =0iffp=gq

D (0Ia () = —Ep(y) [log T8 > —log Epy) ["gi

O the first inequality is obtained via Jensen inequality:
0 For a convex function f, f(E[x]) < E[f(x)],and —log x is a convex function

» note: Dg; is asymmetric, symmetric versions exist, e.g. Jensen-Shannon
divergence
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Preliminaries — Variational methods

» Generative latent variable model
» Let us suppose available a joint model on the observed and latent variables

po(x,z) 6
\
@ —®

» The observations x are generated by the following process
» Sample from z ~py (2) - pg(2) is the prior
» generate pg(x|z) - pg(x|z) is the likelihood

» Training objective
»  We want to optimize the likelihood of the observed data
pe(x) = [ pe(x|2)p(2)dz - pg(x)is called the evidence

Computing the integral requires evaluating over all the configurations of latent variables,
This is often intractable, motivating variational inference

In order to narrow the sampling space, one may use importance sampling, i.e. sampling
important z instead of sampling blindly from the prior

We will introduce a sampling function q4 (z|x)
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VAES - Intuition

» Intuitively, z might correspond to the factors conditioning the

generation of the data

MNIST:

Frey Face dataset:
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Generative models intuition

» What we want: organize the latent space according to some
characteristics of the observations (images)

An Oversimplified Example of a Cat/Dog Image Latent Space

daytime

time of day of the
image

night time ‘L

More cat-like More dog-like

how dogHike versus catiike an imags is Fig.: https://ml.berkeley.edu/blog/posts/vqg-vae/

» See also the demos @

» https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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Importance sampling and the variational approximation

» pe(x) = [pe(x|2z)p(2)dz

» The integral is intractable because

» pg(x | z) is implemented by a NN, not analytically tractable

» The latent space is high dimensional

» Direct Monte Carlo sampling from p(z) has high variance

16

most samples from p(z) do not lead to samples from pgy(x)
almost all likelihood terms pg(x | z) are nearly zero
the estimator collapses, the log is dominated by —= contributions

gradients are giant or undefined, training fails catastrophically.
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Importance sampling and the variational approximation

» We introduce another distribution gq(z) with the same support as
p(2)
» o) = [po(x12)25q(2)dz

po(X|Z)p(2)
Po(x)

» The variance of pg(x) is minimized for q*(z) =
» This is exactly pg(z|x)
However it is itself intractable (pg(x) in the denominator)
» VAE introduces a distribution g4 (z|x) that approximates pg(z|x)

» And optimizes an evidence lower bound of the likelihood pg(x) that
allows us to get rid from pg(z|x)
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VAE
Loss criterion — summary

» The log likelihood for data point x can be decomposed as

> logpg (x) = Di1(q4(2]x)|Ipe(2]X)) + VL(O, §; x)
» with

» V(0,85 x) = —=Di1 (09 (2|x)[|p(2)) + Eq (21 [l0g Po (x]2)]
»  Why is it useful?
» Dgi(.|].) = 0,then V, (6, ¢; x) is a lower bound of log pg (x)
» In order to maximize log pg (x), we will maximize V; (6, ¢; x)
» Thus we get rid of pg(z|x)
» V.(0,¢; x) is called the ELBO: Evidence Lower Bound
»  With an appropriate choice of q4(z|x) this is amenable to a computationable form
» q¢(z|x) approximates the intractable posterior pg(z|x)

» This method is called variational inference

In general inference denotes the computations of hidden variables given observed ones (e.g. infering
the class of an object)

» Note

» Because each representation z is associated to a unique X, the loss likelihood can be
decomposed for each point — this is what we do here

» The global log likelihood is then the summation of these individual losses
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VAE
Loss criterion — summary

» Variational lower bound:
» V,(0,¢;x) = —DKL(CI¢(Z|X)||P(Z)) + Eq¢(Z|X) [log pe (x|2)]

» Remarks

Eq4zix) [log pg(x|2)] is a reconstruction term

0 Measures how well the datum x can be reconstructed from latent
representation z

Dk1(q4(z|x)||p(2)) is a regularization term:

O Forces the learned distribution g4 (z|x) to stay close to the prior p(z)

1 Otherwise a trivial solution would be to learn a Dirac distribution for
q¢(z|x)
0 We want the z to be close in the latent space for similar xs

0 p(2) has usually a simple form e.g. V'(0, ), then g4 (z]|x) is also forced to
remain simple

19 Advanced Deep learning



VAE details
Derivation of the loss function

» logpg (x) = Dgr(qe(z|X)||pe(z]X)) + V(0, ;X)

Proof
» logpg (x) = [, (logp(x))q(z|x) dz ([, a(zlx)dz=1)
 logpe(x) = J, (log2>5)q(zlx) dz

>

20

logpo (%) = , (log 723 L2 0 q(z1x) dz

_ p(x.2) a(zl)
logpg (x) = J, (log +9q(z]x) dz + [, (log_~"9q(z|x) dz

logpg(x) = Eq(zx)[logp(x,2) — logq(z|x)] + Dk (q(z]|x)||p(z]x))

logpg(x) =V,(8, ¢; x) + Dk (94 (2|x)|Ipe(2]x))

with

VL (9: ¢; X) — Eq(z|x) [lOg Pe (x' Z) o log d¢ (le)]
Maximizing log pg (x) is equivalent to maximizing V; (6, ¢; x) (and minimizing
Dk (g¢ (z|x)|pe (z|x))

V. (8, ¢; x) is called an Evidence Lower Bound (ELBO)
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VAE details
Derivation of the loss function

» Vi(0,¢;x) = —Dg1(q4(z|x)||P(2)) + Eq,z1x)[l0g Pe(x|2)]
Proof:

» V(6,¢;x) = Eqyzx)[logpe (x,2z) —log g4 (z|x)]

» V10,95 %) = Eqyz1)[logpe (x]2) +logpe(2z) —log qy(z]x)]

» V(6,95 x) = =Dx1(q¢(z]%)[|pe(2)) + Eq (z1x)[logpe (x]2)]
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VAE
Loss criterion — summary

» Variational lower bound:
» V,(0,¢;x) = —DKL(CI¢(Z|X)||P(Z)) + Eq¢(Z|X) [log pe (x|2)]

» This form provides a link with a NN implementation

The generative py(x|z) and inference g4 (z|x) modules are implemented by
NNs

They will be trained to maximize the reconstruction error for each (z, x):
Eq4zix)[logpe(x|z)] term

The inference module g4 (z|x) will be constrained to remain close to the
prior p(z): =Dk (q¢ (z|x)||pg(2)) = 0
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VAE
Loss - summary

» Loss function in the NN model

Regularization loss Reconstruction loss
—KL(q¢ (z|%)|pg (2)) Eqg (20 [logpe (x]2)]

X 9(x) = q¢(z]x) z f(z) = pe(x|z) X

—> Encoder - NN |[/~—2 —> Decoder - NN [--->

» Training performed via Stochastic gradient

» This requires an analytical expression for the loss functions and for gradient
computations

~==">  Sampling

—> deterministic
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VAE- reparametrization trick

» Training with stochastic units: reparametrization trick

» Not possible to propagate the gradient through stochastic units (the zs
and xs are generated via sampling)

» Solution

Parametrize z as a deterministic transformation of a random variable €: z =
J¢(x, €) with e~p(€) independent of ¢, e.g. e~N(0,1)
Example

0O If z~N (u, 0), it can be reparameterized by z = u + d®¢, with e~N'(0,1),
with ® pointwise multiplication (u, o are vectors here)

0 For the NN implementation we have: z = pu,(x) + 0,(x)O¢,
This will allow the derivatives to « pass » through the z

0 With this expression, one may compute the gradients of the ELBO with to
the NN parameters of u,(x) and o, (x)

O For the derivative, the sampling operation is regarded as a deterministic
operation with an extra input €,, whose distribution does not involve
variables needed in the derivation
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VAE - reparametrization trick

» Reparametrization (fig. from D. Kingma)

IX = £(2)|?

Decoder :lﬁJﬁL\‘U!LY)-EJJ()HL\%‘L1}” Decoder
[KLIN (1(X), £(X))[IN(0, 1)]] (i) I t 51

= ———
Sample z from N (p( X)), X( X JII I

Encoder

(@)

Encoder |Samp|e( from (0, [1]

(@)

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
25 only to the right network. S v e

I e ettt sl AL~ |




VAE
Exemple: Gaussian priors and posteriors

» Special case: gaussian priors and posteriors

» Hyp:
» p(2) =NV (0,1)
» po(x|2) = N(u(z),0(2)), 0(2) diagonal matrix, x € RP
> qp(z]x) = N (u(x), o(x)), o(x) diagonal matrix, z € R/
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VAE
Exemple: Gaussian priors and posteriors - illustration

» Decoder:

» in the example z is 1 dimensional and x is 2 dimensional, f is a 1 hidden
layer MLP with gaussian output units and tanh hidden units

> full arrows: deterministic m—l

» dashed arrows: sampling
O
O

@ m— m—
O

O anz (2)
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VAE
Gaussian priors and posteriors - illustration

» Encoder

» in the example z is 1 dimensional and x is 2 dimensional, g is a 1 hidden
layer MLP with gaussian output units and tanh hidden units

> full arrows: deterministic m—l

» dashed arrows: sampling
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VAE
Gaussian priors and posteriors

» Putting it all together

~
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VAE
Gaussian priors and posteriors

» Additional illustration

Probabilistic Encoder

e (2z[x)

Mean 7

Ideally they are identical.

X ~ x’

Sampled
latent vector
Probabilistic
Decoder

Std. dev

Z=p+oOe

30

e ~N(0,I)

po(x|z)

An compressed low dimensional
representation of the input.

Reconstructed
input

https://lilianwengq.qgithub.io/posts/2018-08-12-vae/
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VAE details
for Gaussian priors and posteriors




VAE — instanciation example
Gaussian priors and posteriors

4
4

Special case: gaussian priors and posteriors

Hyp:

» p(2) =N(0,D)

»  pe(xlz) = N (u(2),0(2)), 0(z)diagonal matrix, x € RP
b qe(zlx) = N (u(x), o(x)),o(x) diagonal matrix, z € R’

Variational lower bound
> V(6,95 %) = =Dy (99 (210)Ip(2)) + Eq,,(z1x)[10g Po (x]2)]

» In this case, Dy, (qy (z|x)||p(2)) has an analytic expression (see next slide)

D (ap I P(@) = 151 + log<(az,.)2> ~(1,) = (o,))

> Eq¢(Z|X) [log pg (x|z)] is estimated using Monte Carlo sampling

1
Eqyzi0llogpe(x|2)] = - Xi log(pe (x12®)

e (2(D)2
log(pg (x|z(l)) = _(Z?ﬂ%lOg (afj(z(l))) + w)

20%,(z1)

ie. L samples with z) = g, (x,e®)
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VAE - instanciation example
Gaussian priors and posteriors (demos on next slides)

12 € RV =Dy (ap (20 IIp() = 22,1 +1og((0))°) = ()" = (9)*)

» proof

> DKL(qu(Z)”P(Z)) J q¢(2) log
» Consider the 1 dimensional case

» [qp(2)1ogp(2)dz = [ N(z; u,0)log N (2;0,1)dz
[ 4g(2)logp(2)dz = —;log(2m) = (4> + 0?)

Property of 2" order moment of a Gaussian

| ap(2)1ogqy(2)dz = [ N (z; u, 0) log N (z; p, 0)dz
J 44(2)log gy (2)dz = _%108(2@ —%(1 + log 0%)

d¢(2)
dz
p(2)

v

v

v

Since both ddps are diagonal, extension to |/ dimensions is straightforward,
hence the result
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VAE - instanciation example
Gaussian priors and posteriors —demos for the 1 dimensional case

Remember g4 (z|x) = N (u(x), a(x))
Then [ q4(2)logp(2)dz = [ N'(z; p, 0) log N'(z; 0,1)dz
b = E,,[log N (z;0,1)]

= Eq, llog(=exp (— 2 ))]

1 z?2
= chb —EIOgZTE—?]

v Vv

1 1
= —ElOgZT[ _EECICD [Zz]
What is the value of E[z*] ?
» Eq [(z—p)?] =07
v Egn[2%] — 2E, [zu] + u* = o?

2

v

» Egp[2%] = p* +0°

v

Then fq¢(z) logp(z)dz = — % log2m — % (u?* + a%)
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VAE - instanciation example
Gaussian priors and posteriors —demos for the 1 dimensional case

» [ qp(2)logqy(2)dz = [ N (z;u,0)log N (z; u, 0)dz
1

(z—p)?
= ECch [lOg(mG exp (_ 22:2 ))]
(Z_.u')z]

202

1
= —Eloan—loga—chp[

__1 _1 2 _1
= 2loan 2loga x

= —%loan—%(loga2 +1)
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VAE - instanciation example
Gaussian priors and posteriors

» Loss
» Regularization term

 —Dru (s IOl = 251, (1 +1og((9)7) = ()" = (9))")

» Reproduction term

| (xj—11j(2))?
» log(p(xl2)) = 7= 5 log(af (2)) + ——

ZJJ2 (2)

» Training
» Mini batch or pure stochastic
Repeat

O x<«— random point or minibatch
0 € < sample from p(e€) for each x

0 80— VoV, (6, 9;x,9(€,d))

0 G VgV (6, d; x, g (€, $))
Until convergence
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Learning discrete distributions: VQ-VAE (highlights)

» So far we considered continuous latent distributions

» There are several instances were discrete distributions are more
appropriate
» Text data, objects in images (color, size, orientation,...), etc

» There are several algorithms, e.g. transformers designed to work with
discrete data

» Teaser: Dall-e — makes use of a discrete VAE together with transformers
in order to generate diverse images

https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/

https://gpt3demo.com/apps/openai-dall-e

https://www.craiyon.com/ (mini version of Dall-e)
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Learning discrete distributions: VQ-VAE

» What is a discrete latent distribution?

Encoder Decoder

56|73 |67|23|81|19

discrete codes
to image

AR
4 o e b ¥

image to *
discrete codes :
56| 73|67|23|81|19] ... o
L ..-‘.—m,‘!u» 5

Fig: https://ml.berkeley.edu/blog/posts/vg-vae/
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Learning discrete distributions: VQ-VAE

» VQ-VAE modifies the vanilla VAE by adding a discrete codebook of
vectors to the VAE - It is used to quantize the VAE bottleneck

» General scheme:VQ-VAE paper - https://arxiv.org/pdf/1711.00937.pdf

Cocé.c Laoatz: e, G:/\_\KD ) k=S (#£ bf wp‘ﬂ ueL‘rms)

eK
Embedding
Space

—maode 32 x32 [

2, "\\; i5 g ;Tx)' z,() ~ g(zix)
t 53
Encoder v )Decoder
Zq (n
. .
ZQ\( ) lnlexas : V--CP, 7
305(30"1 gc‘)x30)\'b \\LFSOV\

v
29 303 O xD Ve ngon

;’:fii“t:’\og’m — I H'\t 11\&.{\&0§:ka LQO'\%\( 81\(’— (R.O.A "
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Learning discrete distributions: VQ-VAE

4

Loss function

» L =|lx—Dec (zq(x)) 12+1 sg(ze(x)) — 2, (x) 12 +B Il zo(x) — sg (Zq(x)) 112
» With sg(z) stop gradient, i.e. do not back-propagate through z
| x — Dec (zq (x)) I?: train decoder and encoder
I sg(ze (x)) — z4(x) |?: train the codebook e = Zq(x)
Il z.(x) — sg (zq (x)) 12 train encoder, forces z,(x) to stay close to e = Zg(x)

0 This is because the codebook does not train as fast as the encoder and the decoder
01 Prevents the encoder values to diverge

Gradients

» Since it is not possible to compute the gradient through the VQ component, it is proposed to simply
copy the gradient w.r.t. z, to z,

» Vol x —Dec (Zq (x)) 2= qu(x) | x — Dec (zq(x)) 1K
» This is called straight-through gradient

Note
» This is an incomplete description, the model requires additional steps
» Dall-e makes use of a slightly different discrete VAE (called dVAE)
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» References

» Nice blogs explaining VAEs
https://lilianweng.github.io/posts/2018-08-12-vae/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

https://www.fenghz.xyz/vector-quantization-based-generative-model/

Luo, C. (2022). Understanding Diffusion Models: A Unified Perspective.
http://arxiv.org/abs/2208.11970 - positions hierarchical VAEs w.r.t diffusion
models

» Blogs introducing variational inference
https://blog.evjang.com/20 | 6/08/variational-bayes.html

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-
variational-inference-25a8aa9bce29

» Papers

Kingma, D. P, & Welling, M. (2014). Auto-Encoding Variational Bayes. ICLR
(2014), MI, 1-14. http://arxiv.org/abs/1312.61 14
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Generative Adversial Networks - GANs

lan J. Goodfellow, et al. 2014

There has been a strong hype for GANs for several years - O(10000) GAN papers on
Arxiv




GANs

» Generative latent variable model 2] \
» Given Samples x1,...,xN € R™, with x~X, latent space distribution z~Z e.g z~N(0, 1),
use 2 NN to learn a possibly complex mapping gg: R? = R™ such that:

Z Px(ge (Z)) = po(x) = px(x) X
9o (2)
----- > NN >

» Different solutions for measuring the similarity between pg(x) and p, (x)
» In this course: binary classification
» Note:
» Once trained, sample from z directly generates the samples g4 (2)
» Different from VAEs and Flows where the NN g4 (.) generate distribution parameters
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GANSs — Adversarial training as binary classification

» Principle

» A generative network generates data after sampling from a latent
distribution

» A discriminant network tells if the data comes from the generative
network or from real samples

The discriminator will be used to measure the distance between the distributions
Pe(x) and p, (x)
» The two networks are trained together

The generative network tries to fool the discriminator, while the discriminator
tries to distinguish between true and artificially generated data

The problem is formulated as a MinMax game

The Discriminator will force the Generator to be « clever » and learn the data
distribution

» Note

» No hypothesis on the existence of a density function
i.e. no density estimate (Flows), no lower bound (VAEs)
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GANs — Adversarial training as binary classification

Intuition - Training

» Discriminator is presented alternatively with true (x) and fake

(X = gg(2))data

O Real data
X~Py(X)

52

Latent

variable
pe(x|2)

ZNPZ(Z)

9o (2)

Generator Network

X

2db)

45

Discriminator
Network
Dy (x)
X
> S
Generated
data

Dy and gg are typically

MLPs/Deep CNNs/...
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GAN — Adversarial training as binary classification

Intuition - Training

» Algorithm alternates between optimizing D (separate true and

generated data) and gy (generate data as close as possible to true
examples) — Once trained, G should be able to generate data witha

v

Train Dy

—_—

46

S Train Dy,

—_— 7’

distribution close to the ground truth

A

7’
7’

v

04

L4
. :
5 " Train gg

A

v

Advanced Deep learning

v



GANs - Adversarial training as binary classification
Loss function (Goodfellow et al. 2014)

» x~p,(x) distribution over data x

» z~p,(z) prior on z, usually a simple distribution (e.g. Normal distribution)
» Loss

» minmax L(Dg, go) = Ex~p,x) [logDy(x)] + Ezep,()[log (1 — Dy (9o (Z)))]

Jo: R1 = R™ mapping from the latent (z) space to the data (x) space

Dg:R™ — [0,1] probability that x comes from the data rather than from the
generator gy

If gg is fixed, L(Dgy, go) is a classical binary cross entropy for Dy, distinguishing
real and fake examples

» Note:
Training is equivalent to find D 4+, gg+ such that
0 Dg+ € arg mq?xL(Dd,,gg*) and gg+ € arg mein L(Dg*, go)
00 Saddle point problem
O instability
» Practical training algorithm

Alternates optimizing (maximizing) w.r.t. Dy optimizing (minimizing) w.r.t. gg
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Adversarial training as binary classification
Training GANs

» Training alternates optimization (SGD) on D4 and gy

» In the alternating scheme, gg usually requires more steps than D+
different batch sizes
» It is known to be highly unstable with two pathological problems

» Oscillation: no convergence

» Mode collapse: g collapses on a few modes only of the target
distribution (produces the same few patterns for all z samplings)

» Low dimensional supports (Arjovsky 2017): p,and pg may lie on low
dimensional manifold that do not intersect.

It is then easy to find a discriminator, without pg close to p,
» Lots of heuristics, lots of theory, but

Behavior is still largely unexplained, best practice is based on heuristics
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GAN- Adversarial training as binary classification
Equilibrium analysis (Goodfellow et al. 2014)

» The seminal GAN paper provides an analysis of the solution that could be
obtained at equilibrium

» Let us define

» L(Dg, 6) = Expy(0[109Dg ()] + Expy(ayllog (1 — Dy () )]
0 with p,(x) the true data distribution and pg(x) the distribution of generated data
0 Note that this is equivalent to the L(D, G) definition on the slide before
» If gg and Dy have sufficient capacity

» Computing argmin g* = argmin m(glx L(D¢,gg)
0 0

» |s equivalent to compute

0 g* = argmingD;s(py, pe) With Djs(,) the Jenson-Shannon dissimilarity measure
between distributions

O The loss function of a GAN quantifies the similarity between the real sample
distribution and the generative data distribution by JSD when the discriminator is
optimal
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GAN- Adversarial training as binary classification
Equilibrium analysis (Goodfellow et al. 2014)

» If the optimum is reached
0 Dg(x) = % for all x — Equilibrium

» In practice equilibrium is never reached

» Note

Maximize log (D¢, (g6 (z))) instead of minimizing log (1 — Dy (g6 (z)))
provides stronger gradients and is used in practice, i.e.log (1 — Dy (ge (Z)))

is replaced by —log (D¢ (99 (Z)))
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GAN equilibrium analysis (Goodfellow et al. 2014)
Prerequisite KL divergence
» Kullback Leibler divergence

» Measure of the difference between two distributions p and g
» Continuous variables

Diu(pINaG)) = [, (logZ2Hp()dy
» Discrete variables

DI = i (ogZ2p ()

» Property

» D(pNlq(y)) =0
» D (pWllq(y)) =0iffp=gq

() (y)
D @OII)) = ~Epcy |10g 22| = ~1og Epiyy [22] 2 0

O where the first inequality is obtalned via Jensen inequality

» note: Dg; is asymmetric, symmetric versions exist, e.g. Jensen-Shannon
divergence
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GAN equilibrium analysis (Goodfellow et al. 2014) - proof

» For a given generator g, the optimal discriminator is
N D* — px(X)
&) = e
Let f(y) = alog(y) + blog(1l—y),witha,b,y >0

a
——— — =0 y = — and this is 2 max
dy y 1-y dy Y= b

Maxp L(D,G) = Exp,(x)[10gD (x)] + Ex~py(xy[l0g(1 — D(x))] is then
obtained for:

* _ px(X)
0D ) = e @
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GAN equilibrium analysis (Goodfellow et al. 2014) - proof
» LetC(g) = mgle(g,D) = L(g,D")
» It si easily verified that:
» C(g) = —log4 + KL (px(x); px(x);rpe(x)) 1 KL (pe(x); px(x)+pe(x))

2
> Since KL(p; Q) > 0 and KL(p, q) =( |ffp =q
C(g) is minimum for pg = py with D*(x) = l

At equilibrium, GAN tralnln optimises Jenson Shannon Divergence, /SD(p; q) =
—KL (p p+q) + =KL (q, g) between py and py

> Summary

» The loss function of a GAN quantifies the similarity between the real sample
distribution and the generative data distribution by |SD when the
discriminator is optimal

» Note
px(x) _ pixly=1) _ , pO=1x) _ , D'(x) . _ p(y=0)
Pt~ pGely=0) K pimom ~ K 1preo M K =00

» The discriminator is used to implicitely measure the discrepancy between
the distributions
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Training GANs

» Training alternates optimization on D and G
» In the alternating scheme, G usually requires more steps than D

» It is known to be highly unstable with two pathological problems

» Oscillation: no convergence

» Mode collapse: G collapses on a few modes only of the distribution (produces the
same few patterns for all z samplings)

» Low dimensional supports (Arjovsky 2017): py4tqand p, may lie on low dimensional
manifold that do not intersect. It is then easy to find a discriminator, without training
pg to be close to P 4ta

» Very large number of papers offering tentative solutions to these problems
e.g. recent developments concerning Wasserstein GANSs (Arjovsky 2017)

» This remain difficult and heuristic although various explanation heve been developped
(e.g. stability of the generator — related to optimal transport or dynamics of the
network — see course on ODE)

» Evaluation
» What could we evaluate?

» No natural criterion
Very often beauty of the generated patterns!
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Objective functions

» A large number of alternative objective functions have been
proposed, we will present two examples
» Least Square GANs

» Wasserstein GANs

55
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Objective functions — Least Square GANS (Mao et al. 2017)

» If a generated sample is well classified but far from the real data
distribution, there is no reason for the generator to be updated

» LS-GAN replaces the cross entropy loss with a LS loss which
penalizes generated examples by moving them close to the real data
distribution.

» The objective becomes
4 L(D) — Ex~px(x) [(D(x) _ b)z] + Ez~pz(z)[(D(.g(Z)) o a)z]
 L(9) = Epopyin) | (0(9@) = )|

» Where a, b are constants respectively associated to generated and real
data and c is a value that g wants D to believe for the generated data.

» They use for examplea =0,b =c =1
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Objective functions — Wasserstein GANs (Arjovski et al. 2017)

» Arjovski advocates that Dg; (or Djs) might not be appropriate

» They suggest using the Wasserstein distance between the real and
generated distributions (also known as Earth Moving Distance or EMD)

» Intuitively, this is the minimum mass displacement to transform one
distribution to the other

» Wassertein distance is defined as

» W(px,po) = yen%g){’pe) E (e x"y~y LI X = x"1I]

where I[1(py, pg) is the set of distributions over X2, with X c R™ the space of

data, whose marginals are respectively py(x) and pg(x), ll x — x|l is the
Euclidean norm.

» Intuitively,

W (,) is the minimum amount of work required to transform py(x) to pg(x) —
see next slide

it makes sense to learn a generator g minimizing this metric
0 g° = argmingW (px, Pe)

57 Advanced Deep learning



Wasserstein GANs (Arjovski et al. 2017)

» Earth Mover distance illustration
» 2 distributions (pink (1) and blue (u'))
» An elementary rectangle weights %4

» The figure illustrates the computation of W (u, '), the Wasserstein
distance between pink and blue: this is the earth mover distance to
transport pink on blue.This is denoted as u’' = #u, u' is the push
forward of u

1 1 1 1
= 1111.2] + 21[3.4] + Elio.mj p' = 5115.7]
1 1 1 Fig. from F. Fleuret 2018

“.' .’:41—‘4—2!—-4-3')!—:3
(s, 3 r 2
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Objective functions — Wasserstein GANs (Arjovski et al. 2017)

» Let x and y respectively denote the variables from the source and
the target distributions

» py(x) = fy Y (x,y)dy is the amount of mass to move from x,
pe(y) = fy y(x,y)dx is the amount of mass to move to y

» Transport is defined as the amount of mass multiplied by the
distance it moves, then the transport cost is: y(x,y).ll x — y |l and

the minimum transport cost is inf E...n_ [l x—x"1]
P yel(px.pg) XY
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Wasserstein GANs (Arjovski et al. 2017)
Optimal Transport interpretation

T X T) Fig. Santambrogio, 2015

v

Left: standard ways to compute distance between functions (point distance)
Right: Optimal Transport way

» Seek the best map T which transports the blue distribution on the red one.
» The smaller T, the closest f and g.

» Wasserstein distance is definedas W (f, g) = T|Ti¢rtlff fx |IT(x) — x|dx
=g

v

»  Which can be translated in:
» “You look at all the ways to transport f on g with a map T (denoted T#f = g ).
» For a given such transport map T, you look at the total distance you traveled on the
x axis , that is [ _|T(x) — x|dx.

» Among all these transport maps, you look at the one which achieves the optimal (i.e.
minimal) distance traveled. This minimal distance is called the Wasserstein distance
between f and g.”
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Wasserstein GANs (Arjovsky et al. 2017)

» The W(,) definition does not provide an operational way for learning G

» Arjovsky uses a duality theorem from Kantorovitch and Rubinstein, stating the
following result:

» W(px,pg) = sup Exp |f(0)| = Expylf ()]

IfllL=1

» Where f: X - R is 1-Lipchitz,ie. |f(x) = fWI<1llx—yI,Vx,y € X
i.e. |l f lI,< 1 denotes the 1-Lipchitz functions

» Implementation
» Using this result, one can look for a generator g and a critic f,,:
g* = argmingW (px, pe)
g = argming ﬁ}lupEx~px|fw(x)| - Ex~p9|fw(x)|
L
g’ = argming ﬁ;lupEx~px|fw(x)| — Ezp, 1 fw(G(2)]

L

fwis implemented via a NN with parameters w, it is called a critic because it does not classify
but scores its inputs

In the original WGAN,f,, is made 1-Lipchitz by clipping the weights (Arjovski et al. 2017)
O Better solutions were developed later
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Wasserstein GANs (Arjovski et al. 2017)

» Algorithm

» Alternate
Optimize f,,
Optimize gg

From Arjovski 2017

62

Algorithm 1 WGAN, our proposed algorithm. All exper-
iments in the paper used the default values a = 0.00005,
c = 0.01, m = 64, ngitic = 5.

Require: : o, the learning rate. ¢, the clipping parameter.
m, the batch size. 1.0, the number of iterations of the
critic per generator iteration.

Require: : wy, initial critic parameters. ), initial genera-
tor’s parameters.

I: while ¢ has not converged do

2 fort =0..... Ncritic do

3: Sample {2V} | ~ P, abatch from the real data.
4

5

Sample {z(V)}, ~ p(z) a batch of priors.
G  Vulm il fu(=?)
_% :n:1 .fu)(.(m(:(i)))]

w +— w + o - RMSProp(w. g,,)

w + clip(w, —c, c)
end for
Sample {z(V}™ | ~ p(z) a batch of prior samples.
| go — =V 37 ful(ge(z?))
11: 0+ 6 —«a-RMSProp(0. gg)
12: end while
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GANs examples
Deep Convolutional GANSs (Radford 2015) - Image generation

» LSUN bedrooms dataset - over 3 million training examples

- - _— i

- e

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

Fig. Radford 2015
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Gan example
MULTI-VIEW DATA GENERATION WITHOUT VIEW {n ﬂ]
SUPERVISION (Chen 2018 - Sorbonne) '
» Objective
» Generate images by disantangling content and view
Eg. Content 1 person,View: position, illumination, etc
» 2 latent spaces: view and content

Generate image pairs: same item with 2 different views
Learn to discriminate between generated and real pairs

N{0. 1) \‘N><x;<x)<: .'_‘_-A--AL : _—-D“--:__'"k.-p.[ Flg- Chen 201E
3 G X3 '_.-—b real pair
olumn = view nnw Column = view

| S Shem——
sSame person l

. a.- P d.,- <
S g

<— 1row =1 conten{—> i ’l a8 ﬁ:‘;.';{_ -

g 8 En e Rl 4
SHOCSDE e

Iy & |53

e =
T
e i =

T | ¥ o
At & [
T Y Y=
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Conditional GANs (Mirza 2014)

» The initial GAN models distributions by sampling from the latent Z
space

» Many applications require to condition the generation on some data
» e.g.:text generation from images, in-painting, super-resolution, etc

» (Mirza 2014) proposed a simple extension of the original GAN
formulation to a conditional setting:

» Both the generator and the discriminator are conditioned on variable y
— corresponding to the conditioning data

mgin max L(D,g) = Expy[logD(x]y)] + Ez-pz[log (1 - D(Q(ZD’)))]
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Conditional GANs (Mirza 2014)

minmax L(D, 9) = Ex-py (o llogD (xI)] + E;-pcsllog (1 = D (g (z1)))]

66
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Conditional GANs example
Generating images from text (Reed 2016)

» Obijective
» Generate images from text caption
» Model: GAN conditioned on text input

» Compare different GAN variants on image generation

» Image size 64x64
Fig. from Reed 2016

F :L A fw ¥ )
Te s
{ fa "N T " T
R0 e 13
e :

b

ke :-.I.-‘I r- ;—. -3}&-&" k- —' o

vycy X B

ﬁ I. Rl -.;'1 "3 i o -.:2-: '™ .-‘.."':.‘ .'3‘ -4 "‘ - -'" 5-...- ..'.-T.:' -‘J =

Figure 4. Zero-shot generated flower images using GAN, GAN-CLS, GAN-INT and GAN-INT-CLS. All variants generated plausible
images. Although some shapes of test categories wem not seen during training (e.g. columns 3 and 4}, the color information is preserved.
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Conditional GANs example — Pix2Pix
Image translation with cGANs (Isola 2016)

» Obijective

» Learn to « translate » images for a variety of tasks using a common
framework

i.e. no task specific loss, but only adversarial training + conditioning

» Tasks: semantic labels -> photos, edges -> photos, (inpainting) photo and
missing pixels -> photos, etc

. Edges to Proto Input

b

1
nput output

Ours
ﬂﬁ
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Conditional GANs example — Pix2Pix
Image translation with cGANs (Isola 2016)

>

Loss function
» Conditional GAN

min mgle(D, 9) = Exp,rollogD(x,y)] + E z-p(z) [108(1 —D(g(zy), }’))]
g y~p(¥) y~p(¥)

» Note: the formulation is slightly different from the conditional GAN model of (Mirza
2014): it makes explicit the sampling on y , but this is the same loss.

This loss alone does not insure a correspondance between the conditioning
variable y and the input data x

» They add a loss term, its role is to keep the generated data g(z,y) « close » to the
conditioning variable y

» Lia(g) = Ex,y,z”x -9, 2|
Where ||.||; is the L! norm

Final loss

b mgin(mgx L(D,g)+ AL;1(g))
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Conditional GANs example — Pix2Pix
Image translation with cGANs — Examples (Isola 2016)

4 put. Input Ground truth Output

A8
/Trwi

Figure 15: Example results of our method on automatically detected edges— handbags, compared to ground truth.

Fig. (Isola 2016)
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Conditional GANs example — Pix2Pix
Image translation with cGANs - Examples - (Isola 2016)

Output

Ground truth

Input

Ground truth Qutput

— e Jer—-
 BEIIIN a2 01 .ill‘_."_-._

AL R oy an
AP TRIE i

1 o
g --{-- e

1 omamm, |7

-----

Figure 13: Example results of our method on facades labels—photo, compared to ground truth.

Fig. (Isola 2016)

Advanced Deep learning
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Conditional GANs example — Pix2Pix
Image translation with cGANs — Examples - (Isola 2016)

» Failure examples

Night Labels Facade Labels Street scene

-h --
4

Edges Shoe Edges Handbag | Sketch Shoe %ﬂcﬁ Handbag

)

Figure 20: Example failure cases. Each pair of images shows input on the left and output on the right. These examples are selected as some
of the worst results on our tasks. Common failures include artifacts in regions where the input image is sparse, and difficulty in handling
unusual inputs. Please see https://phillipi.github.io/pix2pix/ for more comprehensive results.

Fig. (Isola 2016)
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Cycle GANs (Zhu 2017)

» Objective

» Learn to « translate » images without alighed corpora

2 corpora available with input and output samples, but no pair alighment between
images

» Given two unaligned corpora, a conditional GAN can learn a
correspondance between the two distributions (by sampling the two
distributions), however this does not guaranty a correspondance between
input and output

» Approach

» (Zhu 2017) proposed to add a « consistency » constraint similar to back
translation in language

This idea has been already used for vision tasks in different contexts

Learn two generative mappings
0 g:X —>Yand f:Y — X such that:

0 fog(x)=xandgef(y) =y
and two discriminant functions Dy and Dy
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Cycle GANs (Zhu 2017)

~ ,>h<U

cycle-consistency
\/ i 1 it i ﬁl‘.\s."_‘_,. loss
i cycle-consistency | ..s !

E ; ! loss " O« |

Figure 3: (a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial discriminators Dy and Dx. Dy
encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for Dx, F', and X. To further regularize the mappings, we
introduce two “cycle consistency losses™ that capture the intuition that if we translate from one domain to the other and back again we should arrive where we
started: (b) forward cycle-consistency loss: * — G(z) — F(G(x)) = «, and (c) backward cycle-consistency loss: y — F(y) — G(F(y)) = y

Fig (Zhu 2017)
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Cycle GANs (Zhu 2017)

» Training

» The loss combines two conditional GAN losses (g, Dy) and (f, Dy) and
a cycle consistency loss

¥ Leyeie (F, 9) = Epy ool (9C0) = 0] + Epgaran lg(F D) —
;]

> L(g» DY»f' DX) — L(g» DY) + L(f» DX) + Lcycle(f»g)

» Note: they replaced the usual L(g, Dy) and L(f, Dyx) term by a mean
square error term, e.g.:

L(g,Dy) = Epy(y)[(DY(y) — 1D?] + Ep ) [Dy (G(xX))]
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Cycle GANs (Zhu 2017)

» Examples

Output

summer Yosemite — winter Yosenute

¥
. ot &
% el

apple — orange orange — apple

&

Figure 7: Results on several translation problems. These images are relatively successful results — please see our website for more comprehensive results.
Input Monet Van Gogh Cezanne Ukiyo-e

Fig (Zhu 2017) . .

apple — orange

» Failures

horse — zebra
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(Karras et al. 2019) — Style GAN

» (Karras et al.2019) — Style GAN
» Noyte: now (2020) StyleGANS3: https://nvlabs.github.io/stylegan3/
» https://nvlabs.github.io/stylegan2/versions.html

destination

Coarse styles copied
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Style Gan
Preliminary: Adaptive Instance Normalization (AdalN)

» Recall batch normalization

» BN(x) =y (x;’;g)) + [, here all the quantities are vectors (or tensors)

of the appropriate size

» The mean for channel ¢ is computed as:

_ 1 N H w
Uc (x) = mzn=1 Zh=1 szl Xnchw

With N the number of images in the batch, H the height and W the width, i.e.
x is of shape [N, C,H, W]

Y and [ are trainable parameters that are different for each channel
BN averages over all the images in the batch
O i.e. all the images in the batch are averaged around a single « style »
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Style Gan
Preliminary: Adaptive Instance Normalization (AdalN)

» Adaptive Instance Normalization (Huang 2017)

» ldea: inject through the linear transformation defined by y, 5 the feature
statistics from another image (e.g. its style)

» Let x (content) and y (style) two images or image transformations

AdaIN(x,y) = 0(y) (S52) + u()

This simply replaces the the channel-wise statistics of x by those of y

AdalN can normalize the style of each individual sample to a target style

‘: 37 e g .
B | (Huang 2017)
’ %8 c

c.

Figure 2. An overview of our style transfer algorithm. We use the
first few layers of a fixed VGG-19 network to encode the content
and style images. An AdalN layer is used to perform style transfer
in the feature space. A decoder is learned to invert the AdalN
79 output to the image spaces. We use the same VGG encoder to
compute a content loss £. (Equ. 12) and a style loss £¢ (Equ. 13).



Style Gan
Preliminary: Adaptive Instance Normalization (AdalN)

» (Huang 2017) examples

Style Content Ours
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Architecture of Style Gan

Latent z € Z

Normalize

f

| Fully-connected |

PixelNorm

|  Conv3x3 |

i

PixelNorm

J H
.
B

| Upsample |
|
| Conv3x3 |

|  Conv3x3 |

PixelNorm

mI

%8

(a) Traditional
81

Latent z € Z

| Normalize |

Mapping
network f

Karras et al. 2019

Synthesis network g

[ Const 4x4x512 |

(b) Style-based generator

Noise

A mapping network
generates a
representation vector w

Affine transformations
(A) are trained to
compute A and 8
vectors for different
resolution of the image
generator from w — this
induces different styles
for each resolution

Noise input are single
channel images
consisting of
uncorrelated Gaussian
noise — a single noise
image is broadcasted
to all the feature maps
— this induces
stochastic variations
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Architecture of Style Gan

Latent
Code

512X1

82

Synthesis
Network

-A—>] ax4|

Normalize ‘L

AdalN
A
AdalN < exe
Y ‘.L
| 16%16|
¥ "
r -A—> 1024x1024

Upsample 2
_A_’ 'J

n channels

Qo

=
2 X; g5
5 =

w 1x512 | i
Learned affine " Normalize channel
transformation .(by its mean and variance)
o
| D
2xn . . ) =
Ys,i _ Scale and bias

Yb.i '_ channel

x; — u(x;)

ﬂ"l:xz') + Y-

AdaIN(x;,¥) = ¥

» Affine transformations computed from w

https://towardsdatascience.com/explained-a-style-
based-generator-architecture-for-gans-generating-
and-tuning-realistic-6cb2be(f439d Deep learning




Architecture of Style Gan

Generator

. Noise
Synthesis network g

Random vector TR :
_[ st 4x4x512
(Latent Code) Mapping s
P network f
F‘é b s S S e S R S R Training----------
FC
] > ProGAN

Discriminator

1024x1024
4x4

Loss ‘

j > (e.g. WGAN-GP)

1024x1024

Real Sample

r N Trajning.........:

* Global architecture of StyleGAN

83 https://towardsdatascience.com/explaiiea<astyE ased-generator-
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GANSs
» Making GANs work is usually hard

» All papers are full of technical details, choices (architecture,
optimization, etc.), tricks, not easy to reproduce.
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Flow Matching

Used in different forms in many recent image/ video
generators, e.g. Google Banana, OpenAl Sora, Google
Veo, ...




Flow matching - key notions

» Ordinary differential equation ODE

» An ODE describes the evolution of a system that depends of a variable,
usually called time

y - x(t) = v (x(D)
» x(0) = xq - initial condition
the evolution function v, (x(t)) is called the vector field of the ODE
» Trajectory

» The solution of an ODE is a trajectory, i.e. a function that maps time to a
location in R?

x(t):[0,1] » R¢

Said otherwise, a trajectory is the integral curve of the vector field starting
from an initial condition

Fig. Lipman et al. 2024
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Flow matching - key notions

» Velocity field
» A vector field v, assigns a velocity vector to every point x € R¢
» 1,:[0,1] X R% —» R
» It describes the instantaneous velocity (direction and speed) of a
« particle » at each time t and position x

» You can visualize it as a field of arrows, where each arrow shows how a
particle located at x would move at that instant.

i
e \e 1 ” e N

— e

Figure6 A flow ¥, : RY — R (square grid) is defined by a velocity field u; : RY — R (visualized with blue arrows)
that prescribes its instantaneous movements at all locations. We show three different times ¢.

Fig. Lipman et al. 2024
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Flow matching - key notions

» Flow of the ODE

» The flow @, is the map that takes an initial condition x, and a time ¢,
and gives the state of the system at that time: ®,(xy) = x(t; x()

> q)t: [0,1] X Rd - Rd) (x()) t) — (Dt(xo)
d
> Eq)t(xO) — vt(cbt(xO))

» ®;(xy) = xq - initial condition

» The flow is determined by the vector field

- = x = —_— —— . ——

......

Figure 5 A flow model X, = ,(Xo) is defined by a diffeomorphism %, : RY — R? (visualized with a brown square grid)
pushing samples from a source RV X (left, black points) toward some target distribution g (right). We show three
different times t.

Fig. Lipman et al. 2024
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Flow existence and uniqueness

\

If v:[0,1] X R% - R% is continuously differentiable with a bounded derivative,
the ODE,%CDt(xO) = vt(cl)t(xo)), ®;(x9) = xg, has a unique solution given
by flow ®,. ®,is a diffeomorphism for all ¢, i.e. continuously differentiable with
a continuously differentiable inverse.

o /

-
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Flow matching - key notions

Vector fields define ODEs - ODE solutions are flows

Concept definition Relation

Vector field v, (x) Function assigning a Defines the dynamics
velocity vector to each
point

Trajectory x(t; xg) Solution curve starting  Integral curve of v,
from x

Flow ®,(x() Map giving position Generated by
after time ¢t integrating v,
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Flow matching - key notions

» To simulate the flow, we need to numerically integrate the ODE.

Time is discretized between 0 and 1: 0, h, 2h, ..., 1

» The simplest numerical integration method is Euler’s scheme:

(

-

Start at x
Iterate Xk+h = Xk + hvt(xk), k = 0, h, vee) 1—~h

~

/

» This approximates the true trajectory x,.p = X(tr+pn)

91
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Flow matching - key notions

» Euler integration

Noise Distribution o Euler integration of the predicted velocity field FMg(x,, t) Target Distribution ma
2.0 ?F ‘ 2.0
15 . #‘ ‘ 15

- e N
1.0 1.0
' . R —

0.5 0.5
x 0.0 ‘ 0.0 x
-0.5 ‘ -0.5
-1.0 — -1.0
P— Ste

- @ Euler Integration Step X = 0.85 _
2.0 L . E i | 2.0
0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5

t: flow step

N -

-2 -1 0 1
Velocity field value (red pushes up, blue pulls down)

« Velocity field is shown as a heatmap
« The figure shows the integration of a sample from the noise distribution to the
target distribution (an approximation of the true trajectory), using the velocity field

Credits: https://peterroelants.qgithub.io/posts/flow matching intro/
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Flow matching

» Obijective

» Learn a mapping from distribution py(x) to a target distribution p; (x)
» Probability path

» Flow matching learns a probability path p;, t € [0,1].

This is a time dependent probability that interpolates between two
distributions py and p;

0 pe:[0,1] x R - R*
0 p:(t,.) is a probability function of variable x

» The probability path is generated by a velocity field v; which defines the
instantaneous velocities of samples (direction and speed)

v (t, x) provides the instantaneous velocity at time t and sample x

» The velocity field generates the probability path py, if its associated flow
d, satisfies

Xt = Dp(x0)~p; for xo~pg
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Flow matching

» The velocity field is the only tool required to sample from p; using
the ODE ——x(t) = v, (x(t))

Hence the objective of flow matching is to learn a parameterized vector
field v¥(x,)

» Once trained, the flow is defined by the ODE

4 )
ﬁo’vpo
ﬁ = VUt (xt)

S W|th Xy = D (xp) )
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lllustration: probability path and velocity field

Probability path surface (t = 0.00)

95
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Flow matching inference

» Sampling (inference)

» Once the parameterized vector field is learned, the target
distribution can be sampled by solving the ODE

/xo~p0 )
Integrate the ODE % =vd(x,) fromt=0tot =1

e.g. Euler integration x,,, = x; + hv? (x,)
Output x4

N /
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Conditionals and marginals probability paths

» Flow matching will learn the (marginal) probability path as the
agregation of conditional probability path

» Let z € R%,a conditional probability path is a set of distributions
p:(x|z) such that:
» po(.|2) = pg and p,(.]|z) = 6, forall z € R
» i.e.it maps distribution p, to a single point z

» A conditional probability path defines a marginal path p,(x)
obtained by sampling target points x; ~p; and then sampling from

pe (x]x1)
The marginal probability path p; results from the agregation of the
conditional probability paths p;; for multiple samplings x,, x;

pe(x) = j pe (xl)py () dxs
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Conditional and marginal velocity fields

>

Accordingly, one will define the conditional and marginal velocity
fields.

Let z € R%, let v,(. |z) denote a conditional vector field, whose
corresponding ODE defines a conditional probability path p;,(. [2):

d
x0~p0,§ = ve(x¢]|2) = x~pe(x]2),t € [0,1]

Then the marginal vector field v;(x) is defined as:

2o (x) = J v, (x]2) pt@;ltz();j)l(z) i

It will be shown later

» That this marginal vector field follows the corresponding marginal
probability path

» Training a flow model proceeds by learning conditional probability paths
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Conditionals and marginals probability paths

» lllustrating the conditional/ marginal probability paths and velocity
fields

P pel|x1)

\
| Sy

] 1

(a) Conditional probability (b) (Marginal) Probability (c¢) Conditional velocity field (d) (Marginal) Velocity field
path p¢(z|z1). path p¢(z). ue(z|z1). ut ().

Figure 3 Path design in Flow Matching. Given a fixed target sample X = z;, its conditional velocity field u.(z|z1)

generates the conditional probability path p:(z|z;). The (marginal) velocity field u:(z) results from the aggregation of
all conditional velocity fields—and similarly for the probability path p:(z).

Fig. Lipman et al. 2024
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Example: Gaussian conditional probability path
» Let a;, B¢ be two continuous differentiable monotonic functions
suchthatayg =y =0anda; =5, =1

The Gaussian conditional path

pe(.|2) = N (asz, BEI)
Fulfills
po(.12) = N(agz, BEI) = N(0,1) and p1 (. |2) = N (ayz, BE]) = 6,

Sampling from the marginal path consists in
X1~P1, E~N(0,1) = x = a;x, + Bre~p;
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Conditional and marginal probability paths for the Gaussian
probability path

Figure 5: Illustration of a conditional (top) and marginal (bottom) probability path. Here, we plot a Gaussian
probability path with oz = ¢, 5 = 1 — ¢. The conditional probability path interpolates a Gaussian pinie = N(0, I4)
and py... = 4. for single data point z. The marginal probability path interpolates a Gaussian and a data distribution
Pdasa (Here, paa., is a toy distribution in dimension d = 2 represented by a chess board pattern.)

Marginal

Fig. Holderrieth& Erives
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Recap: Flow, velocity field, probability path

'::#: i
" %
. B --

Figure 5 A flow model X, = v:(Xo) is defined by a diffeomorphism v : RY — R? (visualized with a brown square grid)
pushing samples from a source RV Xy (left, black points) toward some target distribution g (right). We show three
different times t.

Figure6 A flow ¢ : RY — R? (square grid) is defined by a velocity field u; : R? — R? (visualized with blue arrows)
that prescribes its instantaneous movements at all locations. We show three different times ¢.

Fig. Lipman et al. 2024

Figure 7 A velocity field u, (in blue) generates a probability path p, (PDFs shown as contours) if the flow defined by
102 uy (square grid) reshapes p (left) to p, at all times t € [0,1).



Training

» Flow matching loss

» vf should approximate the a target field v,
» The flow matching loss is defined as:
2
Lpy = Et~U[O,1],xt~pt [”Uz? (x¢) — vt(xt)” ]
0 With v, a target field and v its parametric approximation

» Target v; is unknown (it is untractable), flow matching proposes to
optimize instead a conditional loss
— 0 2
LCFM - Et~U[O,1],x1~p1(x), Xe~De(xe|x1) “lvt (xt) _ 17t(xt|xl)” ]

The conditional field v;(x;|x;) will have a tractable analytical expression,
enabling the training - We have the following property;

VoLry = VoLcrm
minimizing L-ry is equivalent to miminizing Lgy,
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Training

» CFM introduces an anchor point x; ~p;4

» Instead of modeling directly the marginal p; on the whole domain of p4,
training is performed around this anchor point

» Then by sampling several target points x; one progressively aggregates
the local informations in the target space

» This simplifies the problem of modeling the marginal p; because one can
often find a conditional vector field satisfying the following equation

analytically by hand.

d
X0~Por g, = Ve(xelz) = xe~p(x|2),t € [0,1]
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Training:building the conditional probability path and the
conditional vector field

>

Considering L rs , one needs tractable expressions for p;(x;|x;) and

U (X¢|x1)

» There is an infinite number of (conditional) probability paths mapping a distribution
Do to a target distribution p; (and p, to x;)

A popular choice for the conditional path is the linear path:
Pej(x|xg) = N (x|txq, (1 — t)?I)
Using this probability path, let us define the following random variable
xy = ©p(xg) = txg + (1 — t)xo with xo~py = N(0,1)
x ~N (x|txy, (1 — t)%])
» Given xo~N(0,I) and x;1~p4, the flow x; follows a linear path between x, and x;

The flow defines the following vector field

ve(xelxq) = Ext = —Xo T X1

this is obtained by simple differentiation of the field ®;(x,) expression

And the loss L, becomes

Lerm = Eeulo,1], x0~p1 (), 2e~pe(aelxy) [||"7t9 () — (1 — xo)”Z]
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Training: Building the conditional probability path and the
conditional vector field

} Noise Distribution 1o Sample of straight line reference paths Target Distribution m
; ]
—(
1 ; — B 1
¥ -
1 ) 1
2 2
0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.5
t: flow step
Noise Samples Xo Reference path density between Xo and Xu Target Data Xu

densit: Y t: flow step densit; y

« Top: sample straight line reference paths
« Bottom: reference paths distribution generated by sampling a large nb
of straight line reference paths

Credits: https://peterroelants.qgithub.io/posts/flow matching intro/
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Training: Building the conditional probability path and the
conditional vector field

>

Noise samples Xo Average velocity field with pathlines Target data Xa
2.0 - - ‘——= 2.0
15 — ———
10 ol 10
0.5 i 0.5
x 0.0 v é;_ 00 x
-0.5 % -0.5
e \-\ ———
-1.0 N | - -1.0
-15 = | g -15
-2.0 =§:_' -2.0
0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.5
density t: flow step density
B B
_lz —|1 é Il 2I

Velocity field value (red pushes up, blue pulls down)

Average flow field computed by sampling a large nb of reference paths
and computing the average velocity for fixed bins over the flow field

Credits: https://peterroelants.qgithub.io/posts/flow matching intro/
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Training algorithm

» This leads to the following training algorithm

/Samp|e Xo~Po s X1~P1 » tNU[O,].]

Compute x; = O (xy) = (1 — t)xo + tx;
Compute the loss £ = ||vt‘9 (xg) — (xq — x0)||2
Gradient descent 8 = 0 — eVyL

-
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Flow matching
A few explanations




The marginalization trick used in flow matching

» Explains why the conditional vector fields allow us to build the

marginal field
~

/For z € RY, let v,(.|z) denote a conditional vector field, whose
corresponding ODE defines a conditional probability path p;,(.|z):

d
x0~p0,§ = v (x¢|z) = x~p(x]2),t € [0,1]
Then the marginal vector field v;(x) defined as:

2o = j v (x]2) pt(J;ltZ())f)l(Z) iy

Follows the marginal probability path:

d
xo’“Po,% = ve(x¢) = x~pe t € [0,1]

N /
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Continuity equation

\

/ Let a flow model defined by its vector field v; and initial condition xy~p,, then
X¢~Ds, t € [0,1],if and only if the continuity equation is verified

0
pgt(rx) = —V.(pve)(x), vx € RY, t € [0,1]

Where V. Is the divergence operator:

V.o(x) = Zgl:l al;t;jc), and x = (Xl, . .X'd)T

o

» The continuity equation expresses the conservation of quantities
like physical mass, energy, probability mass.

Ipe(x)
ot
divergence —V. (p;v;) expresses the total inflow of probability mass.

/

» Here, describes how much p; changes over time, and the negative

» Probabiliy mass being conserved, the two quantities must be equal
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Using the continuity equation to demonstrate the
marginalization trick

' 20 22 [l )2
= [ 2 Ami(z)d
D [-Vila| Dl | ) m() d:
D0 ([nte e D))

) _y. (pt(x) [ute12 pirlni) d”’)

pi()

Note: (ii) uses the continuity equation for the conditional probability path p;(x|z)

By theorem 3 this demonstrates theorem 2
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Training

. N

The marginal flow loss L), equals the conditional flow matching loss
Lcry up to a constant, hence their gradients coincide
VoLry = VgLcrm
\_ and minimizing L.g) is equivalent to miminizing Lz, )

>
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Guided flow matching




Data coupling

» For training flow matching, we need to sample from pg ;1 (xg, x1)

» In the Gaussian probability path example, for the conditional probability
path/ velocity field we have been sampling independently the source and
the target.

» We then assumed pg 1 (xg, x1) = Po(x0)p1(x1)
» Other coupling may be used leveraging a dependency between x, and x4
> e.g.Do1 (X0, X1) = Poj1 (Xolx1)p1(%1)
» This means that we first sample x;and then conditioned on x;, we sample
X0
» Example: recovering a full image from a partial/ noisy image

» This is a ill-defined problem: given a partial/ noisy image, there are several
possible reconstructions

» How to build a training set!?
Sample target images x4

Apply a transformation (inpainting, noise, super-resolution, etc) to get the
conditioned x,

» Train as in the flow matching algorithm describe above
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Guidance

» Up to now, we have been considering generating target data x; from
noise x, or incomplete versions of x;

» Consider the more general setting of generating x; (e.g.an image)
conditioned on context y (e.g.a class indicator or a vector
embeding of a text query)

» The objective then becomes generating/ sampling from p; (x|y) and
not from p; (x)
» This is called guided generation
» This amounts at learning a guided vector field v;(x|y)

» Note: the term guided is used to distinguish the conditioning on the
context from the conditional vector field v;(x|x;) used in flow matching
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Guidance
Guided conditional flow matching objective

» Let y be a conditioning vector — e.g. text prompt embedding —

» Suppose that we sample from p;(x|y) instead of p;(x) in the
unconditional flow matching model.

» Then the corresponding CFM objective is simply

By ey, xpecien) [ [0 Ge19) = ve el ]
Note: U (x|x;) does not depend ony.The dependence comes through the
sampling process: x; ~p1 (x|y), then x~p; (. |x1)

» Taking the expectation over all the choices of y and on the
distribution of t we get the guided conditional flow matching
objective

LCFM—guided(g) = Et~U[O,1], (x1,Y)~p1(x,y), x~pe(x]|x1) “lvtg (le) - vt(xlxl)”Z]

Note: the difference with the unconditional loss is that sampling is performed
on the joint distribution p, (x, y) instead of p; (x) in the unconditional case
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Classifier-free guidance

» This principled procedure is not the one used in practice

» A popular procedure for training a guided generator is classifier-free
guidance

» It replaces v¢ (x|y) with ¥¢ (x|y) defined as
~0 — 0 6
v¢ (xly) = (1 =w)vy (x) +wry (x|y)
0 This is a linear combination of the unguided field v (x) and the guide
term v? (x|y)
O Both velocity fields are implemented through the same network 6

0 The absence of label in v¢ (x) is implemented as new label place-holder
vector @

O w = 0 is the guidance scale

1 Note: the term « classifier-free » comes from the score diffusion model for
which the first version of guidance was derived using a classifier p(y|x)

01 Here one only makes use of densities p(x|y)
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Classifier-free guidance

» The corresponding loss function becomes

2
LCFM—CFG (9) = Et~U[O,1], (x1,y)~p1(x,y;m), x~pe(x]|x1) [”vt‘:9 (xl)I) - Ut(X|X1)|| ]

0 p,(x,y;n) means y is replaced by @ with a given probability n
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Classifier-free guidance
Training algorithm for Gaussian probability path

» We consider the Gaussian probability path defined as
pe(x|x1) = pt|1(x|x1) = N(x|atx1»,3t21)

» Classifier-free guidance algorithm
Iterate for each mini batch
0 Sample (x1,¥) ~ p1(x1,y)
0 Sample t ~ Unif[0,1)
0 Sample € ~ NV (0, 1)
0 With probability 17 set sety « @
0 Compute loss
0 L(6) = |[vf (xly) = e + 0|
0 Update gradients

» Note, in the derivation for the non guided case,we used a; = t,3; =1 — t,
so that the loss becomes

0 LO) = |vexly) — € — xi|°
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Classifier-free guidance - examples

]
"-

Figure 1: Classifier-free guidance on the malamute class for a 64x64 ImageNet diffusion model. Left
to right: increasing amounts of classifier-free guidance, starting from non-guided samples on the left.

Fig. Ho & Salimans, 2022, https://arxiv.org/abs/2207.12598
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References on flow matching

» Tutorial and great site at MIT, the course is largely inspired from this
presentation

4
4

https://diffusion.csail.mit.edu/
Course notes https://arxiv.org/abs/2506.02070

» A simple visual introduction to flow matching

>

https://peterroelants.github.io/posts/flow_matching_intro/

» An easy to follow introduction

>

https://nilsschaetti.ch/2025/02/02/flow-matching-comprendre-les-derniers-modeles-
de-generation-
dimages/#:~:text=Qu'est%2Dce%20que%20le,texte%200u%20m%C3%AAmMe%20des
%20vid%C3%A90s.

» Reference papers

4

122

Lipman,Y., Havasi, M., Holderrieth, P, Shaul, N., Le, M., Karrer, B., Chen, R.T. Q., Lopez-
Paz, D., Ben-Hamu, H., & Gat, |. (2024). Flow Matching Guide and Code.
http://arxiv.org/abs/2412.06264 (lots of details but more tricky than the course note

above)

Lipman,Y., Chen, R.T. Q., Ben-Hamu, H., Nickel, M., Le, M., & Ai, M. (2023). Flow
Matching for Generative Modeling ICLR.
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Diffusion models

» Diffusion models emerged in 2019, gained momentum in 2021
» As in 2025, diffusion models are used in several popular large scale
models for text to image generation

» e.g.Imagen https://imagen.research.google/, stable diffusion
https://stablediffusionweb.com/, Dall-e-2 https://openai.com/dall-e-2/

» Generative modeling tasks

Continuous space models: Image generation, super resolution, image editing,
segmentation; etc.

Discrete space models, e.g. applications to text generation, protein structure
» Several approaches including

» Discrete time models
Denoising Diffusion Probabilistic Models (DDPMs)
Score based Generative Models (SGM)

» Time continuous models
Stochastic differential equations
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Diffusion models

» We introduce diffusion models through stochastic differential
equations — this provides a unifying — synthetic view of these models

» A stochastic differential equation extends the deterministic
dynamics of ODE by adding a stochastic component
» It is usually denoted as
dX; = v,(Xy)dt + o, dW;
Xo = Xg (initial condition)
Here
X, € R%is a random process
v, is the drift (the vector field)
o, € Rtis a diffusion coefficient
W, € R%s a Brownian motion also called Wiener process
The solution X of a SDE is called a stochastic trajectory

X:[0,1] » R%, t - X,
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Diffusion models
SDE solution existence and uniqueness

>

-

o

If v:[0,1] x R - R% s continuously differentiable with a bounded derivative,
and o;is continuous, then the SDE, dX; = v;(X;)dt + odW; ,X, = x; (initial
condition) has a solution given by a unique stochastic process

~

/
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Diffusion models
Brownian motion

» A brownian motion W = (W;) for t € [0,1] is a stochastic process
and satisfies

» Wy =20
» Independent increments: W, — W, _ are independent variable of the
pastforany 0 < ¢ <t; <---<t, =1
» Gaussian increments: W, — W.~N(0,(t —s)I;),0 <s <t
» They can be simulated through

» Weyp, = W, 4+ Vhe, fore,~N(0,1;),h > 0 is the step size

rownian Motion with Multiple Trajectories

ajectory 2
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Diffusion models
Simulating a SDE

» The simplest integration scheme for a SDE is the Euler-Maruyama
method

» This is the SDE analogue of forward Euler for SDEs
Initialise Xy = x
Xt+h = Xt + hvt(Xt) + \/EO-tEt Et"’N(O, Id)

Where h is the step size

Source po(x) SDE: dX; = u(X;, t)dt + o(t) dW; (00=0.8) Target p;(x)
N 0.40 A
4
0.5 - 0.35

R 0.30 -

e . 0.10 4
24 |}V | Ppb—/—m—m—Am—mm
e 0.05 -
"
1 ——— ] 0.00 -

T T T T T T
-5 0 5 0.0 0.2 0.4 0.6 0.8 1.0 -5 0 5
X time t X

=]
w
state x
o
o
N
o
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Diffusion models

» Suppose that we have trained a vector field v¢, we can then build a
generative model with an SDE as we did for an ODE

/ Sampling from a diffusion model \

Set t = 0, set step size h =

S|k

Sample Xy~p, e.g.a Gaussian

Fori=1,..,n—1do
draw a sample €;~N'(0,1;)
Xern = Xe + hf (X)) + Vhoge,
t=t+h

Qeturn X4

s

A diffusion model will be defined by

A parametric vector field v?[0,1] x R¢ — R¢
A diffusion coefficient g;:[0,1] — [0, +0),t - o;

AN
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Diffusion models
Score function

» Together with a vector field, diffusion models learn, a score function

» The score function of a data distribution p(x),x € R% is:
s(X) = Vylogp(X) € R
» Interpretation

Given a point x in data space, the score tells us which direction to move
towards a region with higher likelihood

How to use this information for generating data from the distribution p(.)?

0 Sample x, from a prior (e.g. Gaussian) distribution py(x) in R¢ and
iterate X; 1 = X; + Vylogp(X;)

T T T e e %

Sl Fig. Song 2022
Low density _/—H—fr-{j AN oA |Ilustrlates the score
region ZESSSNSEEEEE function (arrows) and
S, ,’?;;ES the density for a
High density el 722 m;ﬁ?giear?; two
region N7 9
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Diffusion models
Score function — example Langevin dynamics

» Langevin dynamics

» The Langevin dynamics for sampling from a known distribution p(X) is
an iterative procedure:
Xiv1 = X; + € Vxlogp(Xy) + V2ae;
i =0,..,K,with €,~N(0,]), a is a small constant
When a@ = 0 and K = 00, xi converges to a sample from q(x) under some
regularity conditions
O In practice take € small and K large (100 to 1000)

NUTTHTT T T ™= e R At A vy

| ioooioeo Fig. Song 2022

Z=SS=t B e Langevin dynamics for sampling from a mixture
ZESSEN ’ _;:j;;; : f: 5:;: of 2 gaussians, arrows indicate the score vector
B A NS S values, the animated Gif shows the

OSEER AR ‘{' :} :{:; convergence of the dynamics towards the target
cowwsecsan Bl distribution
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Diffusion models

» Lets define the (marginal) score function of p;as Vlog p;(x), we can define
a SDE that follows the probability path p,

4 Let v;(x)a marginal vector field, then the following SDE follows the same
probability path p;as the ODE, with arbitrary diffusion coefficients o; :

2
o
Xo~Do, dX¢ = [ve(Xe) + %Vlogpt(Xt)]dt + o, dW;

:>Xt~pt,0 S tS 1
In particular X; ~p; the target distribution

~

/

>\N ote

» The same property holds for a conditional vector field v;(x|z) and the

conditional probability path p;(x|z)
» This will allow us to define a training algorithm as we did for the flow model

with the ODE, by training to approximate a conditional score Vp;(x|z)

132
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Diffusion models
Training algorithm

» Score matching loss
» Loy () = Et uniflonl, Z~p1,e~N(0,14) [”51:9 (x) — Vlogpt(x)”z]
» Conditional score matching loss
» Lesy(0) = Et~Unif[0,1],z~p1,e~N(0,Id) [”51? (x) —Vlog Pt(x|Z)||2]

( )

he score matching loss equals the conditional score matching loss up to a constan

Lsy(0) = Lesy(0) +C

Their gradient coincide:

Vo LSM (9) — VHLCSM (9)
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Diffusion models
Training algorithm

» We consider the following SDE

2
> Xo~po, dX¢ = [ve(Xp) + %Vlogpt(Xt)]dt + o dW;
» Training

» Training will amount to train parametric approximations vte of the
vector field v, and s¢ of the score function Vlog p,
» Learning v? will proceed as for Flow matching

» We indicate how to learn s?

» Inference

» After training we can choose a diffusion coefficient g; and simulate the
following SDE:

2
o
Xo~po, dX; = [v{ (Xe) + —-s{ (Xpldt + oW,
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Diffusion models
Score matching training

>

135

/ Score matching training

Given: a dataset of samples z~p4, a score network sf
Repeat

Sample z~p,

Sample t~Uniform|0,1]

Sample x~p(.|2)

Compute loss

£(8) = ||s () — Viogp.(x2)||”

Update the model parameters

\ 0 —6—VL(O)

~

/
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Diffusion models
Score matching training for Gaussian probablity path

» The Gaussian probability path allows us to derive an algebraic
expression for Vlog p;(x|z)

» Recall: Gaussian probability path:

» Let a;, B¢ be two continuous differentiable monotonic functions such

thatag =y =0anda; =5, =1

The Gaussian conditional path

pe(.12) = N (az, BEI)

Fulfills
po(-12) = VW (aoz, B51) = N (0,1) and p; (. |2) = N (a12, B1) = 6,
Sampling from the marginal path consists in
X1~P1, €E~N(0,1) = x = a;xq + Lre~p;
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Diffusion models
Score matching training for Gaussian probablity path

» For the Gaussian probability path

X—Q¢Z
Bt
» Plugging in this expression gives the conditional score matching loss:

|

» Vlogp.(x|z) = —

6 E
s (aez + fi€) + —
t

Lesm (‘9) =E t~Unif[0,1], z~p1,e~N(0,I4) [
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Diffusion models
Score matching training for Gaussian probablity path

Score matching training

Given:

A dataset of samples z~p;, a score network s¢

Schedulers a;, Bywith ag = 1 =0, a1 =y =1
Repeat

Sample z~p,

Sample t~Uniform|0,1]

Sample e~N(0,1,;)

Set x; = a;z + (€

Compute loss

€

L£(0) = ||sf (x) + .

deate the model parameters
0 0—VL(O)

2

~

/
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Diffusion models
Denoising diffusion model

» Denoising diffusion models, one of the early, and popular diffusion
model corresponds to a diffusion model with a Gaussian probability

_ 2
path p:(. |z) = N (a;z, B¢ 1)
» The initial formulation did not use SDEs but constructed Markov
chains in discrete time
» For the Gaussian probability path, the vector field and the score
function can converted one to the other post training

» It is not necessary to train both, train for one of them only, and the
other could be obtained post training

» In particular we can choose if want to use flow matching or score
matching to train it
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Denoising Diffusion Probabilistic Models
Original presentation




Denoising Diffusion models

» Denoising Diffusion models implement the following idea
» Forward diffusion
Gradually add noise to an input image until one get a fully noisy image

» Reverse denoising
Generate data from the target distribution
Sample from the noise space and reverse the forward process

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

» Forward and reverse processes are used for trainin . .
. Pro . & Fig. Kreis et al. 2022
» At inference, generation is performed via the reverse process
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Denoising Diffusion Probabilistic Models - DDPM

» DDPM are based on two Markov chains

» A forward chain that adds noise to data —> Forward process

Hand designed: transforms any data distribution into a simple prior
distribution — here we will use a standard Gaussian for the prior

» A reverse chain that converts noise to data —> Reverse process

The forward chain is reversed by learning transition kernels parameterized
by neural networks

New data are generated by sampling from the simple prior, followed by
ancestral sampling through the reverse Markov chain

142
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Denoising Diffusion Probabilistic Models
Forward (diffusion) process

» Data distribution xy~q(x,)

» The forward MC generates a sequence of random variables
X1, X9, ..., X Starting at xo with transition kernel q(x;|x;_1)

» Given sufficient steps, g(x7) will be close to a prior distribution
m(x), e.g. gaussian distribution with fixed mean and variance

Forward diffusion process (fixed)

Noise Fig. Kreis et al. 2022

» The forward process corresponds to a probability path p;(.|z) with
z sampled from the target distribution
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Denoising Diffusion Probabilistic Models
Forward (diffusion) process

Forward diffusion process (fixed)

» A typical design for the kernel is a gaussian perturbation q(x;|x;_1) =
N (xe; V@xe—y; (1 —a)l) vt € {1, ..., T}
» Using the reparametrization trick, one can write:

Xt = \/(X_txt_1+ A/ 1-— a:Zz, with ZNN(O, I)

» [ is the identity matrix, with the same size as image x,, a; € (0,1) is a variance
parameter hand fixed or learned, we consider it hand fixed here.

a; is chosen so that a; > --- > ar,e.g.T = 2000,a; =1 —10"% a; =1 — 1072 witha
linear increase
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Denoising Diffusion Probabilistic Models
Forward (diffusion) process

» The forward diffusion process is then defined as

¢ XONq(XO)!

¢ q(xlr ""lexO) - H{:l q(xtlxt—l)!

¢ N(xt, V Ay X¢—1; (1 - at)l) Vt € {1) rT}
* Xy = Jarxe—1+ /1 —ae, with e~N(0,1)

 a; €[0,1] is a variance hyperparameter,a; > -+ > ar
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Denoising Diffusion Probabilistic Models
Forward process — Diffusion kernel

» Property: the forward process can be sampled at any time t in closed
form

q(xelxg) = N (xg; \/&_txo, (1 — a;)l) — this is called the diffusion kernel
with C_(t = H§=1 (043
» This allows us to sample x;~p(x;) using the reparametrization trick:

Sample xy~q(x,) and then sample x.~q(x;|x,) (this is called ancestral
sampling) and this is the main formula for the forward process

[ Xy = \/c_(_txa + (1 — @;)e, with e~N(0,1),Vt~U{1,...,T}) ]

Forward diffusion process (fixed)

Data

e, S Fig. Kreis et al. 2022
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Denoising Diffusion Probabilistic Models
Forward process - lllustration

» lllustration of the forward diffusion process — discrete trajectories in
the x space

Fig. Ayan Das 2021

q(xa[x1) i EQ(XtIXt 1) E

|
|

Samples

Samples
x0~q(xo) ! g

xr~q(xr|xp)

Pcomplex “-.
mpldd
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Denoising Diffusion Probabilistic Models
Reverse denoising process

» The reverse distribution is

» q(xg, .., x7) = q(xo.r) = q(x7) [Ti=1 q(xe—11x¢)
» The q(x;_1|x;) are complex multimodal distributions, they are
approximated as normal distributions pg (x;_1|x¢)

» The reverse factorization is then

> pg (X, o, 1) = P (Xo:r) = p(or) [Ti=1 o (-1 %)

» We can then generate a data sample x by first sampling a noise vector
from a prior distribution x;~p(x7) and then iteratively sampling from
the learnable transition kernel x;_;~pg(x;~1|x¢) until t = 1 where we

get pg(xo|xq)

_ Reverse denoising process (generative)

Data

e Fig. Kreis et
al. 2022
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Denoising Diffusion Probabilistic Models
Reverse denoising process

» The reverse MC is then parameterized by
» A prior distribution p(x;) = N (x; 0,1)
» A learnable transition kernel pg (xc_1|xt) = N (x¢_1; g (x¢, t), 62 1)
tg (x¢, t) is typically implemented via a U-Net, ug (x;, t) is the same size as x;
o; can be learned as g;(x¢, t) , but in (Ho et al. 2020) it is simply set to

1 - C(t
B voise  Fig, Kreis et
. al. 2022

_ Reverse denoising process (generative)

149 Advanced Deep learning



Denoising Diffusion Probabilistic Models
Training and sampling algorithms

» Training algorithm

/Repeat

Sample
x0~q(xo)
t~Uniform [1, T]
Draw a sample
Xy = \/c_x_txo + /(1 — @;)e, with e~N(0,1)
Take gradient descent on

Volle — €9 (xe, DI
Qtil convergence
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Denoising Diffusion Probabilistic Models
Training and sampling algorithms

» Inference (generation) take the following simple forms

x7~N(O,I)
fort=Tto1ldo
z~N(0,1)
Update according to
Xe_q = \/ia_t (xt — %69 (x¢, t)> + o(t)z with z~N (O, )
end for
return x

N

~

/

Fig. Ho et al 2020
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Denoising Diffusion Probabilistic Models
Implementation

EEEEE

Time Representation

Fully-connected

Layers Flg Kreis et

al. 2
» €g(x¢, t) is often implemented with a U-Net with ResNet blocks and self

attention layers (recent implementations have been proposed with
transformers)

» Time features are fed to residual blocks, time encoding follows the
transformers sinusoidal position embedding

» The parameters are shared for all the time steps, only the time
representation makes the difference between the time steps
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Denoising Diffusion Probabilistic Models
Comments

» In Ho et al. 2020
» T =1000,5; = 107% B = 0.02, B; increases with a linear schedule
» The pixel values are normalized in [—1,1]

» As usual, lots of influential architecture/ algorithmic parameters conditioning
the good behavior of the model

» The process of generation is extremely slow (the original model takes up
to 20 h to generate 50k images of size 32x32)
» Several variants/ improvements proposed since the Ho et al. 2020 paper
» Conditional models allow to generate e.g. images conditionned on text

» Latent diffusion models (Rombach et al. 2022) perform diffusion in a latent
space, accelarating the generation (used e.g. in stable diffusion)

The image is first encoded in a smaller dimensional latent space and decoded in
order to produce the generated image in the original space

Diffusion and denoising happen in the latent space
The model allows for conditioning image generation (on text, classes, ...)

» Faster models, such as DDIM (Denoising Diffusion Implicit Models, Song et
al. 2021)
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