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 Generative models
 Variational Auto-Encoders

 Generative Adversarial Networks
 Flow Matching and Diffusion models

 AI4Science - Physics Based Deep Learning
 General introduction to AI4Science
 Neural Nets and Ordinary Differential Equation

 Neural Networks for modeling spatio-temporal dynamics

 Applications: weather prediction
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Generative models

Variational Auto-Encoders
Generative Adversarial Networks

Diffusion models
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Generative models

Advanced Deep learning

 Objective
 Learn a probability distribution model from data samples

 Given 𝑥ଵ, … , 𝑥ே ∈ 𝑅௡ learn to approximate their underlying distribution 𝒳

 For complex distributions, there is no analytical form, and for large size spaces
(𝑅௡) approximate methods (e.g. MCMC) might fail

 Deep generative models recently attacked this problem with the objective of  
handling large dimensions and complex distributions
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https://en.wikipedia.org/wiki/Edmond_de_Belamy
432 k$ Christies in 2018

De Bezenac et al. 2021
Generating female images from
male ones

Xie et al. 2019
artificial smoke
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Generative models
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 Objective 
 General setup of deep generative models

 Learn a generator network 𝑔ఏ:𝑅௤ → 𝑅௡ that transforms a latent distribution 
𝒵 ⊂ 𝑅௤to match a target distribution 𝒳
 𝒵 is usually a simple distribution e.g. Gaussian from which it is easy to 

sample, 𝑞 ൏ 𝑛
 This is unlike traditional statistics where an analytic expression for the 

distribution is sought

 Once trained the generator can be used for:
 Sampling from the latent space: 
 𝑧 ∈ 𝑅௤~𝒵 and then generate synthetic data via 𝑔ఏ . , 𝑔ఏ 𝑧 ∈ 𝑅௡

 When possible, density estimation 𝑝ఏ 𝑥 ൌ ׬ 𝑝ఏ 𝑥 𝑧 𝑝𝒵 𝑧 𝑑𝑧 

 with 𝑝ఏ 𝑥 𝑧 a function of 𝑔ఏ

Generative models intuition

Advanced Deep learning

 Let 𝑧ଵ, … , 𝑧ே , 𝑧௜ ∈ 𝑅௤ and 𝑥ଵ, … , 𝑥ே , 𝑥௜ ∈ 𝑅௡, two sets of points 
in different spaces
 Provided a sufficiently powerful model gሺ𝑥ሻ, it should be possible to 

learn complex deterministic mappings associating the two sets:

gሺzଵሻ

gሺzଶሻ

gሺzଷሻ
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𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑅௤

𝑅௡

zଵ

zଶ
zଷ
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Generative models intuition

 Given distributions on a latent space 𝑝௭ሺzሻ, and on the data space
𝑝௫ሺ𝑥ሻ, it is possible to map 𝑝௭ሺzሻ onto 𝑝௫ 𝑥 ?
 𝑔ఏ defines a distribution on the target space 𝑝௫ 𝑔ఏ 𝑧 ൌ 𝑝ఏሺ𝑥ሻ

 𝑝ఏሺ𝑥ሻ is the generated data distribution, objective: 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ

 Data generation: sample z~𝑍, transform with 𝑔ఏ, 𝑔ఏሺ𝑧ሻ

Advanced Deep learning

𝑔ఏሺzሻ

𝑔ఏሺzሻ

𝑔ఏሺzሻ

𝒑𝒛ሺ𝐳ሻ 𝒑𝜽ሺ𝒙ሻ ൎ 𝒑𝒙ሺ𝐱ሻ
Latent 𝑧 space Target 𝑥 space
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Generative models intuition
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 Data generation: sample z~𝑍, transform with 𝑔ఏ, 𝑔ఏ 𝑧

 Important issue
 How to compare predicted distribution  𝑝ఏሺ𝑥ሻ and target distribution 
𝑝𝒳 𝑥 ?

𝑔ఏሺ𝒵ሻ𝒳
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Generative models key ideas
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 Objectives
 Generative modeling aims at learning how to sample from a target

distribution 𝑝𝒳 𝑥
 Learn to sample using a training dataset, drawn from 𝑝𝒳 𝑥 : 𝑥ଵ, … , x୒

 Challenges
 Enable fast sampling
 Generate high quality samples
 Cover 𝑝𝒳 𝑥

 How
 Choose from a simple distribution, easy to sample from
 Learn to push this distribution to the target distribution
 The push operation is performed by a learned model (here a neural 

network) 
 Note

 Generation can be performed conditionally on a context
 e.g. generating image/ video from a text promt

Course objective

Advanced Deep learning

 Introduce three popular families of generative models
 Joint requirements

 Learn a generator 𝑔ఏ from samples so that distribution 𝑔ఏ 𝒵 is close to data 
distribution 𝒳, 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ

 This requires measuring the similarity between 𝑔ఏ 𝒵 and 𝒳
 Different similarities are used for each family

 Three families
 Variational autoencoders

 𝑔ఏ:𝑅௤ → 𝑅௡, 𝑞 ≪ 𝑛
 Trained to maximize a lower bound of the samples’ likelihood
 Assumption: a density function explains the data

 Generative Adversarial Networks
 𝑔ఏ:𝑅௤ → 𝑅௡, 𝑞 ≪ 𝑛
 Can approximate any distribution (no density assumption)
 Similarity between generated and target distribution is measured via a 

discriminator or transport cost in the data space
 Flow matching and Diffusion models

 𝑔ఏ:𝑅௤ → 𝑅௡, 𝑞 ≪ 𝑛 is an iterative process
 Assumption: a density function explains the data

10
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Variational Auto-Encoders

After Kingma D., Welling M.,  Auto-EncodingVariational Bayes, 
ICLR 2014

Plus some blogs – see the references

Advanced Deep learning11

Prerequisite KL divergence

Advanced Deep learning12

 Kullback Leibler divergence
 Measure of the difference between two distributions  𝑝 and 𝑞
 Continuous variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ׬ ሺlog ௣ሺ௬ሻ

௤ሺ௬ሻ
ሻ𝑝 𝑦 𝑑𝑦௬

 Discrete variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ∑ ሺlog ௣ሺ௬೔ሻ

௤ሺ௬೔ሻ
ሻ𝑝ሺ𝑦௜ሻ௜

 Property
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൒ 0
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ 0 iff 𝑝 ൌ 𝑞

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ| 𝑞 𝑦 ൌ െ𝐸௣ ௬ 𝑙𝑜𝑔 ௤ ௬

௣ ௬
൒ െ log𝐸௣ ௬

௤ ௬

௣ ௬
ൌ 0

 the first inequality is obtained via Jensen inequality:
 For a convex function 𝑓, 𝑓 𝐸 𝑥 ൑ 𝐸ሾ𝑓 𝑥 ሿ, and െlog 𝑥 is a convex function

 note: 𝐷௄௅ is asymmetric, symmetric versions exist, e.g. Jensen-Shannon 
divergence
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Preliminaries – Variational methods
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 Generative latent variable model
 Let us suppose available a joint model on the observed and latent variables 
𝑝ఏ 𝑥, 𝑧

 The observations 𝑥 are generated by the following process
 Sample from 𝑧 ~𝑝ఏ 𝑧 - 𝑝ఏ 𝑧 is the prior
 generate 𝑝ఏሺ𝑥|𝑧ሻ - 𝑝ఏሺ𝑥|𝑧ሻ is the likelihood

 Training objective
 We want to optimize the likelihood of the observed data

 𝑝ఏ 𝑥 ൌ 𝑝ఏ׬ 𝑥|𝑧 𝑝ሺ𝑧ሻ𝑑𝑧 - 𝑝ఏ 𝑥 is called the evidence
 Computing the integral requires evaluating over all the configurations of latent variables,
 This is often intractable, motivating variational inference
 In order to narrow the sampling space, one may use importance sampling, i.e. sampling 

important 𝑧 instead of sampling blindly from the prior
 We will introduce a sampling function 𝑞஍ሺ𝑧|𝑥ሻ

Z x

θ

VAEs - Intuition

Advanced Deep learning14

 Intuitively, 𝑧 might correspond to the factors conditioning the 
generation of the data

Fig.  (Kingma 2015)
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Generative models intuition

Advanced Deep learning15

 What we want: organize the latent space according to some
characteristics of the observations (images) 

 See also the demos @
 https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ 

Fig.: https://ml.berkeley.edu/blog/posts/vq-vae/

Importance sampling and the variational approximation

Advanced Deep learning16

 𝑝ఏ 𝑥  ൌ 𝑝ఏ׬ 𝑥 𝑧 𝑝 𝑧 𝑑𝑧

 The integral is intractable because
 𝑝ఏ 𝑥 𝑧 is implemented by a NN, not analytically tractable

 The latent space is high dimensional
 Direct Monte Carlo sampling from 𝑝 𝑧 has high variance

 most samples from 𝑝 𝑧 do not lead to samples from 𝑝ఏ 𝑥  

 almost all likelihood terms 𝑝ఏሺ𝑥 ∣ 𝑧ሻ are nearly zero

 the estimator collapses, the log is dominated by −∞ contributions

 gradients are giant or undefined, training fails catastrophically.
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Importance sampling and the variational approximation

Advanced Deep learning17

 We introduce another distribution 𝑞ሺ𝑧ሻ with the same support as 
𝑝 𝑧

 𝑝ఏ 𝑥  ൌ 𝑝ఏ׬ 𝑥 𝑧
௣ሺ௭ሻ

௤ሺ௭ሻ
𝑞 𝑧 𝑑𝑧

 The variance of 𝑝ఏ 𝑥  is minimized for 𝑞∗ 𝑧 ൌ
௣ഇ 𝑥 𝑧 ௣ሺ௭ሻ

௣ഇሺ௫ሻ

 This is exactly 𝑝ఏ 𝑧 𝑥
 However it is itself intractable (𝑝ఏሺ𝑥ሻ in the denominator)

 VAE introduces a distribution 𝑞஍ 𝑧 𝑥 that approximates 𝑝ఏ 𝑧 𝑥

 And optimizes an evidence lower bound of the likelihood 𝑝ఏ 𝑥  that
allows us to get rid from 𝑝ఏ 𝑧 𝑥

VAE
Loss criterion – summary

Advanced Deep learning18

 The log likelihood for data point 𝑥 can be decomposed as
 log 𝑝ఏ 𝑥 ൌ 𝐷௄௅ሺ𝑞థ 𝑧 𝑥 ||𝑝ఏሺ𝑧|𝑥ሻሻ ൅ 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ
 with

 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 Why is it useful?
 𝐷௄௅ሺ. | . ൒ 0, then 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ is a lower bound of log 𝑝ఏ 𝑥
 In order to maximize log 𝑝ఏ 𝑥 , we will maximize 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ
 Thus we get rid of 𝑝ఏሺ𝑧|𝑥ሻ

 𝑉௅ሺ𝜃,𝜙; 𝑥ሻ is called the ELBO: Evidence Lower Bound
 With an appropriate choice of 𝑞థሺ𝑧|𝑥ሻ this is amenable to a computationable form
 𝑞థሺ𝑧|𝑥ሻ approximates the intractable posterior 𝑝ఏሺ𝑧|𝑥ሻ
 This method is called variational inference

 In general inference denotes the computations of hidden variables given observed ones (e.g. infering
the class of an object)

 Note
 Because each representation 𝑧 is associated to a unique 𝑥, the loss likelihood can be

decomposed for each point – this is what we do here
 The global log likelihood is then the summation of these individual losses
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VAE
Loss criterion – summary

Advanced Deep learning19

 Variational lower bound:
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 Remarks
 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ is a reconstruction term

 Measures how well the datum 𝑥 can be reconstructed from latent 
representation 𝑧

 𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ is a regularization term:

 Forces the learned distribution 𝑞థሺ𝑧|𝑥ሻ to stay close to the prior 𝑝ሺ𝑧ሻ

 Otherwise a trivial solution would be to learn a Dirac distribution for 
𝑞థ 𝑧 𝑥

 We want the 𝑧 to be close in the latent space for similar 𝑥s
 𝑝ሺ𝑧ሻ has usually a simple form e.g. 𝒩ሺ0, 𝐼ሻ, then 𝑞థሺ𝑧|𝑥ሻ is also forced to 

remain simple

VAE details
Derivation of the loss function

Advanced Deep learning20

 𝒍𝒐𝒈𝒑𝜽 𝒙 ൌ 𝐃𝑲𝑳ሺ𝒒𝝓 𝒛 𝒙 ||𝒑𝜽ሺ𝐳|𝐱ሻሻ ൅ 𝑽𝑳ሺ𝛉,𝛟; 𝐱ሻ
Proof

 log𝑝ఏ 𝑥 ൌ ׬ ሺlog𝑝 𝑥 ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭ ׬) 𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧 ൌ 1ሻ௭

 log𝑝ఏ 𝑥 ൌ׬ ሺlog ௣ሺ௫,௭ሻ

௣ሺ௭|௫ሻ
ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ׬ ሺlog ௣ሺ௫,௭ሻ

௤ሺ௭|௫ሻ

௤ሺ௭|௫ሻ

௣ሺ௭|௫ሻ
ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ׬ ሺlog ௣ሺ௫,௭ሻ

௤ሺ௭|௫ሻ
ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭ ൅ ׬ ሺlog ௤ሺ௭|௫ሻ

௣ሺ௭|௫ሻ
ሻ𝑞ሺ𝑧|𝑥ሻ 𝑑𝑧௭

 log𝑝ఏ 𝑥 ൌ𝐸௤ሺ௭|௫ሻሾlog p x, z െ  log𝑞 𝑧 𝑥 ሿ ൅ 𝐷௄௅ሺ𝑞ሺ𝑧|𝑥ሻ||𝑝 𝑧 𝑥 ሻ

log 𝑝ఏ 𝑥 ൌ𝑉௅ 𝜃,𝜙; 𝑥 ൅ D௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝ఏ 𝑧 𝑥 ሻ
with

𝑉௅ 𝜃,𝜙; 𝑥 ൌ 𝐸௤ሺ௭|௫ሻሾlog  pఏሺ𝑥, 𝑧ሻ െ  log 𝑞థ 𝑧 𝑥 ሿ
 Maximizing log𝑝ఏ 𝑥 is equivalent to maximizing 𝑉௅ 𝜃,𝜙; 𝑥 (and minimizing

D௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝ఏ 𝑧 𝑥 ሻ
 𝑉௅ 𝜃,𝜙; 𝑥 is called an Evidence Lower Bound (ELBO)
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VAE details
Derivation of the loss function

Advanced Deep learning21

 𝑽𝑳 𝜽,𝝓;𝒙 ൌ െ𝑫𝑲𝑳ሺ𝒒𝝓ሺ𝒛|𝒙ሻ||𝒑 𝒛 ሻ ൅ 𝑬𝒒𝝓 𝒛 𝒙 ሾ𝒍𝒐𝒈𝒑𝜽ሺ𝒙|𝒛ሻሿ

Proof:
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥, 𝑧 െ log𝑞థሺ𝑧|𝑥ሻሿ

 𝑉௅ 𝜃,𝜙; 𝑥 ൌ E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ൅ log𝑝ఏሺ𝑧ሻ െ log𝑞థሺ𝑧|𝑥ሻሿ

 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െD୏୐ሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ ൅ E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ]

VAE
Loss criterion – summary

Advanced Deep learning22

 Variational lower bound:
 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 This form provides a link with a NN implementation
 The generative 𝑝ఏ 𝑥 𝑧 and inference 𝑞థ 𝑧 𝑥 modules are implemented by 

NNs

 They will be trained to maximize the reconstruction error for each ሺ𝑧, 𝑥ሻ: 
𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ term

 The inference module 𝑞థ 𝑧 𝑥 will be constrained to remain close to the 
prior 𝑝 𝑧 : െD୏୐ሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ ൎ 0
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VAE
Loss - summary

Advanced Deep learning23

 Loss function in the NN model

 Training performed via Stochastic gradient
 This requires an analytical expression for the loss functions and for gradient 

computations
 Sampling
 deterministic

Encoder - NN

𝑔 𝑥 ൌ 𝑞థ 𝑧 𝑥𝑥

Decoder - NN

𝑧 𝑓 𝑧 ൌ 𝑝ఏ 𝑥|𝑧 𝑥

Regularization loss 
െKLሺ𝑞థ 𝑧 𝑥 ||𝑝ఏ 𝑧 ሻ

Reconstruction loss 
E௤ഝሺ௭|௫ሻሾ𝑙𝑜𝑔𝑝ఏ 𝑥|𝑧 ]

VAE- reparametrization trick

Advanced Deep learning24

 Training with stochastic units: reparametrization trick
 Not possible to propagate the gradient through stochastic units (the 𝑧s

and 𝑥s are generated via sampling)
 Solution

 Parametrize 𝑧 as a deterministic transformation of a random variable 𝜖: 𝑧 ൌ
𝑔థ 𝑥, 𝜖 with 𝜖~𝑝 𝜖 independent of 𝜙, e.g. 𝜖~𝑁ሺ0,1ሻ

 Example
 If 𝑧~𝒩ሺ𝜇,𝜎ሻ, it can be reparameterized by 𝑧 ൌ 𝜇 ൅ 𝜎⨀𝜖, with 𝜖~𝒩ሺ0,1ሻ, 

with ⨀ pointwise multiplication (𝜇,𝜎 are vectors here)
 For the NN implementation we have: 𝑧 ൌ 𝜇௭ሺ𝑥ሻ ൅ 𝜎௭ሺ𝑥ሻ⨀𝜖௭

 This will allow the derivatives to « pass » through the 𝑧
 With this expression, one may compute the gradients of the ELBO with to 

the NN parameters of 𝜇௭ሺ𝑥ሻ and 𝜎௭ሺ𝑥ሻ
 For the derivative, the sampling operation is regarded as a deterministic

operation with an extra input 𝜖௭, whose distribution does not involve
variables needed in the derivation
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VAE - reparametrization trick

Advanced Deep learning25

 Reparametrization (fig. from D. Kingma)

VAE
Exemple: Gaussian priors and posteriors

Advanced Deep learning26

 Special case: gaussian priors and posteriors

 Hyp:
 𝑝 𝑧 ൌ 𝒩 0, 𝐼
 𝑝ఏ 𝑥 𝑧 ൌ 𝒩 𝜇 𝑧 ,𝜎ሺ𝑧ሻ , 𝜎ሺ𝑧ሻ diagonal matrix,  𝑥 ∈ 𝑅஽

 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ , 𝜎 𝑥  diagonal matrix,  𝑧 ∈ 𝑅௃
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VAE
Exemple: Gaussian priors and posteriors - illustration

Advanced Deep learning27

 Decoder:
 in the example 𝑧 is 1 dimensional and 𝑥 is 2 dimensional, 𝑓 is a 1 hidden

layer MLP with gaussian output units and tanh hidden units

 full arrows:  deterministic
 dashed arrows: sampling

𝑥ଵ

𝑥ଶ

𝑧

𝜇௫ଵሺ𝑧ሻ

𝜇௫ଶሺ𝑧ሻ

𝜎௫ଵሺ𝑧ሻ

𝜎௫ଶሺ𝑧ሻ

VAE
Gaussian priors and posteriors - illustration

Advanced Deep learning28

 Encoder
 in the example 𝑧 is 1 dimensional and 𝑥 is 2 dimensional, 𝑔 is a 1 hidden

layer MLP with gaussian output units and tanh hidden units

 full arrows:  deterministic
 dashed arrows: sampling

𝑥ଵ

𝑥ଶ

𝑧

𝜇௭ଵሺ𝑥ሻ

𝜎௭ଵሺ𝑥ሻ
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VAE
Gaussian priors and posteriors

Advanced Deep learning29

 Putting it all together

𝑥ଵ

𝑥ଶ

𝜇௫ଵሺ𝑧ሻ

𝜇௫ଶሺ𝑧ሻ

𝜎௫ଵሺ𝑧ሻ

𝜎௫ଶሺ𝑧ሻ

𝑥ଵ

𝑥ଶ

𝑧

𝜇௭ଵሺ𝑥ሻ

𝜎௭ଵሺ𝑥ሻ

𝑝ఏሺ𝑥|𝑧ሻ𝑞థሺ𝑧|𝑥ሻ

VAE
Gaussian priors and posteriors

Advanced Deep learning30

 Additional illustration 

https://lilianweng.github.io/posts/2018-08-12-vae/
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VAE details
for Gaussian priors and posteriors

Advanced Deep learning31

VAE – instanciation example
Gaussian priors and posteriors

Advanced Deep learning32

 Special case: gaussian priors and posteriors
 Hyp:

 𝑝 𝑧 ൌ 𝒩 0, 𝐼
 𝑝ఏ 𝑥 𝑧 ൌ 𝒩 𝜇 𝑧 ,𝜎ሺ𝑧ሻ , 𝜎ሺ𝑧ሻdiagonal matrix,  𝑥 ∈ 𝑅஽

 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ , 𝜎 𝑥  diagonal matrix,  𝑧 ∈ 𝑅௃

 Variational lower bound

 𝑉௅ 𝜃,𝜙; 𝑥 ൌ െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൅ 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ

 In this case, D௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ has an analytic expression (see next slide)

 െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ| 𝑝 𝑧 ൌ ଵ

ଶ
∑ ሺ1 ൅ log 𝜎௭ೕ

ଶ
െ 𝜇௭ೕ

ଶ
െ 𝜎௭ೕ

ଶ
ሻ௃

௝ୀଵ

 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ is estimated using Monte Carlo sampling

 𝐸௤ഝ 𝑧 𝑥 ሾlog𝑝ఏሺ𝑥|𝑧ሻሿ ≃ ଵ

௅
∑ log ሺ𝑝ఏሺ𝑥|𝑧 ௟ ሻ௅
௟ୀଵ

 log ሺ𝑝ఏ 𝑥 𝑧 ௟ ൌ െሺ∑ ଵ

ଶ
log 𝜎௫ೕ

ଶ 𝑧 ௟ ൅
ሺ௫ೕିఓೣೕ ௭ሺ೗ሻ ሻమ

ଶఙೣೕ
మ ሺ௭ሺ೗ሻሻ

ሻ஽
௝ୀଵ

 i.e.  𝐿 samples with 𝑧 ௟ ൌ 𝑔థ 𝑥, 𝜖ሺ௟ሻ
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VAE - instanciation example
Gaussian priors and posteriors (demos on next slides)

Advanced Deep learning33

 If 𝑧 ∈ 𝑅௃: െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൌ
ଵ

ଶ
∑ ሺ1 ൅ log 𝜎௝

ଶ
െ 𝜇௝

ଶ
െ 𝜎௝

ଶ
ሻ௃

௝ୀଵ

 proof

 𝐷௄௅ሺ𝑞థሺ𝑧ሻ| 𝑝 𝑧 ൌ ׬ 𝑞థ 𝑧 log
௤ഝሺ௭ሻ

௣ሺ௭ሻ
𝑑𝑧

 Consider the 1 dimensional case
 𝑞థ׬ 𝑧 log𝑝 𝑧 𝑑𝑧 ൌ 𝒩׬ 𝑧; 𝜇,𝜎 log𝒩 𝑧; 0,1 𝑑𝑧

 𝑞థ׬ 𝑧 log𝑝 𝑧 𝑑𝑧 ൌ െ
ଵ

ଶ
log 2𝜋 െ

ଵ

ଶ
ሺ𝜇ଶ ൅ 𝜎ଶሻ

 Property of 2nd order moment of a Gaussian

 𝑞థ׬ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ׬𝒩 𝑧; 𝜇,𝜎 log𝒩 𝑧; 𝜇,𝜎 𝑑𝑧

 𝑞థ׬ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ െ
ଵ

ଶ
log 2𝜋 െ

ଵ

ଶ
ሺ1 ൅ log𝜎ଶሻ

 ……

 Since both ddps are diagonal, extension to 𝐽 dimensions is straightforward, 
hence the result

VAE - instanciation example
Gaussian priors and posteriors – demos for the 1 dimensional case

Advanced Deep learning34

 Remember 𝑞థ 𝑧 𝑥 ൌ 𝒩 𝜇 𝑥 ,  𝜎ሺ𝑥ሻ
 Then 𝑞థ׬ 𝑧 log𝑝 𝑧 𝑑𝑧 ൌ 𝒩׬ 𝑧;𝜇,𝜎 log𝒩 𝑧; 0,1 𝑑𝑧
 ൌ 𝐸௤ಅሾlog𝒩 𝑧; 0,1 ሿ

ൌ 𝐸௤ಅ ሾlogሺ
ଵ

ଶగ
exp െ

௭మ

ଶ
ሻሿ

ൌ 𝐸௤ಅ െ
ଵ

ଶ
log 2𝜋 െ

௭మ

ଶ

ൌ െ
ଵ

ଶ
log 2𝜋 െ

ଵ

ଶ
𝐸௤ಅ ሾ𝑧ଶሿ

 What is the value of 𝐸௤ 𝑧ଶ ?
 𝐸௤ಅ 𝑧 െ 𝜇 ଶ ൌ 𝜎ଶ

 𝐸௤ಅ 𝑧ଶ െ 2𝐸௤ಅ 𝑧𝜇 ൅ 𝜇ଶ ൌ 𝜎ଶ

 𝐸௤ಅ 𝑧𝜇 ൌ 𝜇ଶ

 𝐸௤ಅ 𝑧ଶ ൌ  𝜇ଶ ൅ 𝜎ଶ

 Then 𝒒𝝓׬ 𝒛 𝒍𝒐𝒈𝒑 𝒛 𝒅𝒛 ൌ െ
𝟏

𝟐
𝒍𝒐𝒈𝟐𝝅 െ

𝟏

𝟐
ሺ𝝁𝟐 ൅ 𝝈𝟐)
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VAE - instanciation example
Gaussian priors and posteriors – demos for the 1 dimensional case

Advanced Deep learning35

 𝑞థ׬ 𝑧 log 𝑞థሺ𝑧ሻ𝑑𝑧 ൌ׬𝒩 𝑧;𝜇,𝜎 log𝒩 𝑧;𝜇,𝜎 𝑑𝑧

ൌ 𝐸௤ಅሾlogሺ ଵ

ଶగఙ
exp െ ௭ିఓ మ

ଶఙమ
ሻሿ

ൌ െ ଵ

ଶ
log 2𝜋 െ log𝜎 െ 𝐸௤ಅሾ

௭ିఓ మ

ଶఙమ
ሿ

ൌ െ ଵ

ଶ
log 2𝜋 െ ଵ

ଶ
log𝜎ଶ െ ଵ

ଶ

ൌ െ ଵ

ଶ
log 2𝜋 െ ଵ

ଶ
ሺlog𝜎ଶ ൅ 1ሻ

VAE - instanciation example
Gaussian priors and posteriors

Advanced Deep learning36

 Loss
 Regularization term

 െ𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝 𝑧 ሻ ൌ
ଵ

ଶ
∑ ሺ1 ൅ log 𝜎௝

ଶ
െ 𝜇௝

ଶ
െ 𝜎௝

ଶ
ሻ௃

௝ୀଵ

 Reproduction term

 log 𝑝 𝑥 𝑧 ൌ ∑ ଵ

ଶ
log ሺ𝜎௝

ଶ 𝑧 ሻ ൅
ሺ௫ೕିఓೕ ௭ ሻమ

ଶఙೕ
మሺ௭ሻ

஽
௝ୀଵ

 Training
 Mini batch or pure stochastic

 Repeat
 𝑥← random point or minibatch
 𝜖 ← sample from 𝑝 𝜖 for each 𝑥
 𝜃← 𝛻ఏ𝑉௅ሺ𝜃,𝜙; 𝑥,𝑔 𝜖,𝜙 ሻ
 ϕ← 𝛻థ𝑉௅ሺ𝜃,𝜙; 𝑥,𝑔 𝜖,𝜙 ሻ

 Until convergence
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Learning discrete distributions: VQ-VAE (highlights)

Advanced Deep learning37

 So far we considered continuous latent distributions

 There are several instances were discrete distributions are more 
appropriate
 Text data, objects in images (color, size, orientation,…), etc

 There are several algorithms, e.g. transformers designed to work with
discrete data

 Teaser: Dall-e – makes use of a discreteVAE together with transformers
in order to generate diverse images
 https://openai.com/blog/dall-e/, https://openai.com/dall-e-2/

 https://gpt3demo.com/apps/openai-dall-e

 https://www.craiyon.com/ (mini version of Dall-e)

Learning discrete distributions: VQ-VAE

Advanced Deep learning38

 What is a discrete latent distribution?

Fig: https://ml.berkeley.edu/blog/posts/vq-vae/
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Learning discrete distributions: VQ-VAE

Advanced Deep learning39

 VQ-VAE modifies the vanillaVAE by adding a discrete codebook of 
vectors to the VAE - It is used to quantize the VAE bottleneck
 General scheme: VQ-VAE paper - https://arxiv.org/pdf/1711.00937.pdf

Learning discrete distributions: VQ-VAE

Advanced Deep learning40

 Loss function

 𝐿 ൌ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶ൅∥ 𝑠𝑔 𝑧௘ 𝑥 െ 𝑧௤ 𝑥 ∥ଶ ൅𝛽 ∥ 𝑧௘ 𝑥 െ 𝑠𝑔 𝑧௤ 𝑥 ∥ଶ

 With 𝑠𝑔ሺ𝑧ሻ stop gradient, i.e. do not back-propagate through 𝑧

 ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶ: train decoder and encoder

 ∥ 𝑠𝑔 𝑧௘ 𝑥 െ 𝑧௤ 𝑥 ∥ଶ: train the codebook 𝑒 ൌ 𝑧௤ሺ𝑥ሻ

 ∥ 𝑧௘ 𝑥 െ 𝑠𝑔 𝑧௤ 𝑥 ∥ଶ: train encoder, forces 𝑧௘ 𝑥 to stay close to 𝑒 ൌ 𝑧௤ሺ𝑥ሻ

 This is because the codebook does not train as fast as the encoder and the decoder
 Prevents the encoder values to diverge 

 Gradients
 Since it is not possible to compute the gradient through the VQ component, it is proposed to simply

copy the gradient w.r.t. 𝑧௤ to 𝑧௘

 ∇௭೐ ௫ ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶൌ ∇௭೜ ௫ ∥ 𝑥 െ 𝐷𝑒𝑐 𝑧௤ 𝑥 ∥ଶ

 This is called straight-through gradient
 Note

 This is an incomplete description, the model requires additional steps
 Dall-e makes use of a slightly different discreteVAE  (called dVAE)
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 References
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Generative Adversial Networks - GANs

Ian J. Goodfellow, et al. 2014

There has been a strong hype for GANs  for several years - O(10000) GAN papers on 
Arxiv

Advanced Deep learning42
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GANs

Advanced Deep learning

 Generative latent variable model

 Given Samples 𝑥ଵ, … , 𝑥ே ∈ 𝑅௡, with 𝑥~𝒳, latent space distribution 𝑧~𝒵 e.g 𝑧~𝒩 0, I , 
use a NN to learn a possibly complex mapping 𝑔ఏ:𝑅௤ → 𝑅௡ such that:

𝑝௫ 𝑔ఏ 𝑧 ൌ 𝑝ఏሺ𝑥ሻ ൎ 𝑝௫ሺ𝑥ሻ

 Different solutions for measuring the similarity between 𝑝ఏሺ𝑥ሻ and 𝑝௫ሺ𝑥ሻ
 In this course: binary classification

 Note:
 Once trained, sample from 𝑧 directly generates the samples 𝑔ఏ 𝑧  
 Different from VAEs and Flows where the NN 𝑔ఏ .  generate distribution parameters

z x

θ

NN

𝑧

𝑔ఏ 𝑧  

𝑥

43

GANs – Adversarial training as binary classification

Advanced Deep learning

 Principle
 A generative network generates data after sampling from a latent 

distribution
 A discriminant network tells if the data comes from the generative

network or from real samples
 The discriminator will be used to measure the distance between the distributions 
𝑝ఏሺ𝑥ሻ and 𝑝௫ሺ𝑥ሻ

 The two networks are trained together
 The generative network tries to fool the discriminator, while the discriminator

tries to distinguish between true and artificially generated data
 The problem is formulated as a MinMax game
 The Discriminator will force the Generator to be « clever » and learn the data 

distribution

 Note
 No hypothesis on the existence of a density function

 i.e. no density estimate (Flows), no lower bound (VAEs)

44
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GANs – Adversarial training as binary classification
Intuition - Training

Advanced Deep learning

 Discriminator is presented alternatively with true (𝑥ሻ and fake
𝑥ො ൌ 𝑔ఏሺ𝑧ሻ data

Generator Network

𝑔ఏሺ𝑧ሻ

𝑧~𝑝௭ሺ𝑧ሻ
𝑝ఏሺ𝑥|𝑧ሻ 

𝑥ො

Generated
data

Discriminator 
Network

𝐷థሺ𝑥ሻ

1 if 𝑥
0 if 𝑥ො

Latent 
variable

𝑥~𝑝௫ሺ𝑥ሻ
𝑥Real data

𝐷థ and 𝑔ఏ are typically
MLPs/Deep CNNs/…

45

GAN – Adversarial training as binary classification
Intuition - Training

Advanced Deep learning

 Algorithm alternates between optimizing 𝐷థ (separate true and 
generated data) and 𝑔ఏ (generate data as close as possible to true
examples) – Once trained, G should be able to generate data witha
distribution close to the ground truth

𝑥 𝑥

Train 𝐷థ Train 𝑔ఏ

Train 𝐷థ Train𝑔ఏ

46
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GANs - Adversarial training as binary classification 
Loss function (Goodfellow et al. 2014)

Advanced Deep learning

 𝑥~𝑝௫ 𝑥 distribution over data 𝑥
 𝑧~𝑝୸ሺ𝑧ሻ prior on 𝑧, usually a simple distribution (e.g. Normal distribution)
 Loss

 min
ఏ

max
థ

𝐿ሺ𝐷థ,𝑔ఏሻ ൌ 𝐸௫~௣ೣ ௫ ሾ𝑙𝑜𝑔𝐷థ 𝑥 ሿ ൅𝐸୸~௣೥ሺ௭ሻሾlog 1 െ 𝐷థ 𝑔ఏ 𝑧 ሿ

 𝑔ఏ:𝑅௤ → 𝑅௡ mapping from the latent (𝑧) space to the data (𝑥) space
 𝐷థ:𝑅௡ → ሾ0,1ሿ probability that 𝑥 comes from the data rather than from the 

generator 𝑔ఏ
 If 𝑔ఏ is fixed, 𝐿ሺ𝐷థ,𝑔ఏሻ is a classical binary cross entropy for 𝐷థ, distinguishing

real and fake examples
 Note:

 Training is equivalent to find 𝐷థ∗ ,𝑔ఏ∗ such that
 𝐷థ∗ ∈  𝑎𝑟𝑔 max

థ
𝐿ሺ𝐷థ,𝑔ఏ∗ሻ and 𝑔ఏ∗ ∈  𝑎𝑟𝑔 m𝑖𝑛

ఏ
𝐿ሺ𝐷థ∗ ,𝑔ఏሻ

 Saddle point problem
 instability

 Practical training algorithm
 Alternates optimizing (maximizing) w.r.t. 𝐷థ optimizing (minimizing) w.r.t. 𝑔ఏ

47

Adversarial training as binary classification 
Training GANs

Advanced Deep learning

 Training alternates optimization (SGD) on 𝐷థ and 𝑔ఏ
 In the alternating scheme, 𝑔ఏ usually requires more steps than 𝐷థ+ 

different batch sizes

 It is known to be highly unstable with two pathological problems
 Oscillation:  no convergence

 Mode collapse: 𝑔 collapses on a few modes only of the target
distribution (produces the same few patterns for all 𝑧 samplings)

 Low dimensional supports (Arjovsky 2017): 𝑝௫and 𝑝ఏ may lie on low
dimensional manifold that do not intersect.
 It is then easy to find a discriminator, without 𝑝ఏ close to 𝑝௫

 Lots of heuristics, lots of theory, but
 Behavior is still largely unexplained, best practice is based on heuristics

48
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GAN- Adversarial training as binary classification 
Equilibrium analysis (Goodfellow et al. 2014)

Advanced Deep learning

 The seminal GAN paper provides an analysis of the solution that could be
obtained at equilibrium

 Let us define

 𝐿ሺ𝐷థ,𝑔ఏሻ ൌ 𝐸௫~௣ೣ ௫ ሾ𝑙𝑜𝑔𝐷థ 𝑥 ሿ ൅𝐸୶~௣ഇሺ௫ሻሾlog 1 െ 𝐷థ 𝑥 ሿ

 with 𝑝௫ 𝑥 the true data distribution and 𝑝ఏ 𝑥 the distribution of generated data
 Note that this is equivalent to the 𝐿 𝐷,𝐺 definition on the slide before

 If 𝑔ఏ and 𝐷థ have sufficient capacity
 Computing 𝑎𝑟𝑔𝑚𝑖𝑛

ఏ
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛

ఏ
max
థ

𝐿 𝐷థ,𝑔ఏ  

 Is equivalent to compute
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ఏ𝐷௃ௌ 𝑝௫, 𝑝ఏ with 𝐷௃ௌ(,) the Jenson-Shannon dissimilarity measure

between distributions
 The loss function of a GAN quantifies the similarity between the real sample

distribution and the generative data distribution by JSD when the discriminator is
optimal

49

GAN- Adversarial training as binary classification 
Equilibrium analysis (Goodfellow et al. 2014)

Advanced Deep learning

 If the optimum is reached

 𝐷థ 𝑥 ൌ
ଵ

ଶ
for all 𝑥 → Equilibrium

 In practice equilibrium is never reached

 Note

 Maximize log 𝐷థ 𝑔ఏ 𝑧 instead of minimizing log 1 െ 𝐷థ 𝑔ఏ 𝑧

provides stronger gradients and is used in practice, i.e. log 1 െ 𝐷థ 𝑔ఏ 𝑧

is replaced by െlog 𝐷థ 𝑔ఏ 𝑧

50
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GAN equilibrium analysis (Goodfellow et al. 2014)
Prerequisite KL divergence

Advanced Deep learning51

 Kullback Leibler divergence
 Measure of the difference between two distributions  𝑝 and 𝑞
 Continuous variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ׬ ሺlog ௣ሺ௬ሻ

௤ሺ௬ሻ
ሻ𝑝 𝑦 𝑑𝑦௬

 Discrete variables

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ ∑ ሺlog ௣ሺ௬೔ሻ

௤ሺ௬೔ሻ
ሻ𝑝ሺ𝑦௜ሻ௜

 Property
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൒ 0
 𝐷௄௅ሺ𝑝ሺ𝑦ሻ||𝑞 𝑦 ሻ ൌ 0 iff 𝑝 ൌ 𝑞

 𝐷௄௅ሺ𝑝ሺ𝑦ሻ| 𝑞 𝑦 ൌ െ𝐸௣ ௬ 𝑙𝑜𝑔 ௤ ௬

௣ ௬
൒ െ log𝐸௣ ௬

௤ ௬

௣ ௬
൒ 0

 where the first inequality is obtained via Jensen inequality

 note: 𝐷௄௅ is asymmetric, symmetric versions exist, e.g. Jensen-Shannon 
divergence

GAN equilibrium analysis (Goodfellow et al. 2014) - proof
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 For a given generator 𝑔,  the optimal discriminator is

 D∗ 𝑥 ൌ
௣𝒳ሺ௫ሻ

௣𝒳 ௫ ା௣ഇ ሺ௫ሻ

 Let 𝑓 𝑦 ൌ 𝑎 𝑙𝑜𝑔 𝑦 ൅ 𝑏 𝑙𝑜𝑔ሺ1 െ 𝑦ሻ, with 𝑎, 𝑏, 𝑦 ൐ 0


ௗ௙

ௗ௬
ൌ

௔

௬
െ

௕

ଵି௬
, 
ௗ௙

ௗ௬
ൌ 0 ⟺ 𝑦 ൌ

௔

௔ା௕
and this is a max

 𝑀𝑎𝑥஽ 𝐿ሺ𝐷,𝐺ሻ ൌ 𝐸௫~௣𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥 ሿ ൅𝐸୶~௣ഇሺ௫ሻሾlog 1 െ 𝐷 𝑥 ሿ is then
obtained for:

 D∗ 𝑥 ൌ
௣𝒳ሺ௫ሻ

௣𝒳 ௫ ା௣ഇ ሺ௫ሻ
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GAN equilibrium analysis (Goodfellow et al. 2014) - proof
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 Let 𝐶 𝑔 ൌ max
஽

𝐿 𝑔,𝐷 ൌ 𝐿ሺ𝑔,𝐷∗ሻ

 It si easily verified that:

 𝐶 𝑔 ൌ െ log 4 ൅ 𝐾𝐿 𝑝𝒳 𝑥 ;  
௣𝒳 ௫ ା௣ഇ ௫

ଶ
൅ 𝐾𝐿 𝑝ఏ 𝑥 ;  

௣𝒳 ௫ ା௣ഇ ௫

ଶ
 Since 𝐾𝐿 𝑝; 𝑞 ൒ 0 and 𝐾𝐿 𝑝; 𝑞 ൌ 0 iff 𝑝 ൌ 𝑞

 𝐶ሺ𝑔ሻ is minimum for 𝑝ఏ ൌ 𝑝𝒳 with 𝐷∗ 𝑥 ൌ ଵ

ଶ
 At equilibrium, GAN training optimises Jenson-Shannon Divergence, 𝐽𝑆𝐷 𝑝; 𝑞 ൌ

ଵ

ଶ
𝐾𝐿 𝑝; ௣ା௤

ଶ
൅ ଵ

ଶ
𝐾𝐿 𝑞; ௣ା௤

ଶ
between 𝑝ఏ and 𝑝𝒳

 Summary
 The loss function of a GAN quantifies the similarity between the real sample

distribution and the generative data distribution by JSD when the 
discriminator is optimal

 Note


௣𝒳ሺ௫ሻ

௣ഇሺ௫ሻ
ൌ

௣ሺ௫|௬ୀଵሻ

௣ሺ௫|௬ୀ଴ሻ
ൌ 𝑘

௣ሺ௬ୀଵ|௫ሻ

௣ሺ௬ୀ଴|௫ሻ
ൌ 𝑘

஽∗ሺ௫ሻ

ଵି஽∗ሺ௫ሻ
with 𝑘 ൌ

௣ሺ௬ୀ଴ሻ

௣ሺ௬ୀଵሻ
 The discriminator is used to implicitely measure the discrepancy between

the distributions

Training GANs
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 Training alternates optimization on 𝐷 and 𝐺
 In the alternating scheme, 𝐺 usually requires more steps than 𝐷

 It is known to be highly unstable with two pathological problems
 Oscillation:  no convergence
 Mode collapse: 𝐺 collapses on a few modes only of the distribution (produces the 

same few patterns for all 𝑧 samplings)
 Low dimensional supports (Arjovsky 2017): 𝑝ௗ௔௧௔and 𝑝௚ may lie on low dimensional

manifold that do not intersect. It is then easy to find a discriminator, without training 
𝑝௚ to be close to 𝑝ௗ௔௧௔

 Very large number of papers offering tentative solutions to these problems
 e.g. recent developments concerning Wasserstein GANs (Arjovsky 2017)

 This remain difficult and heuristic although various explanation heve been developped
(e.g. stability of the generator – related to optimal transport or dynamics of the 
network – see course on ODE) 

 Evaluation
 What could we evaluate?
 No natural criterion

 Very often beauty of the generated patterns!
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Objective functions
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 A large number of alternative objective functions have been 
proposed, we will present two examples
 Least Square GANs

 Wasserstein GANs

Objective functions – Least Square GANS (Mao et al. 2017)
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 If a generated sample is well classified but far from the real data 
distribution, there is no reason for the generator to be updated

 LS-GAN replaces the cross entropy loss with a LS loss which
penalizes generated examples by moving them close to the real data 
distribution.

 The objective becomes
 𝐿 𝐷 ൌ 𝐸௫~௣𝒳 ௫ ሺ𝐷 𝑥 െ 𝑏ሻଶ ൅ 𝐸௭~௣೥ ௭ 𝐷ሺ𝑔 𝑧 ሻ െ 𝑎 ଶ

 𝐿 𝑔 ൌ  𝐸௭~௣೥ሺ௭ሻ 𝐷 𝑔 𝑧 െ 𝑐
ଶ

 Where 𝑎, 𝑏 are constants respectively associated to generated and real 
data  and c is a value that 𝑔 wants 𝐷 to believe for the generated data.

 They use for example 𝑎 ൌ 0, 𝑏 ൌ 𝑐 ൌ 1
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Objective functions – Wasserstein GANs (Arjovski et al. 2017)
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 Arjovski advocates that 𝐷௄௅ (or 𝐷୎ୗሻ might not be appropriate
 They suggest using the Wasserstein distance between the real and 

generated distributions (also known as Earth Moving Distance or EMD)
 Intuitively, this is the minimum mass displacement to transform one 

distribution to the other
 Wassertein distance is defined as

 𝑊 𝑝𝒳 , 𝑝ఏ ൌ inf
ఊ∈ஈሺ௣𝒳 ,௣ഇሻ

𝐸ሺ௫,௫ᇲሻ~ఊሾ∥ 𝑥 െ 𝑥′ ∥ሿ

 where Πሺ𝑝𝒳 ,𝑝ఏሻ is the set of distributions over 𝑋ଶ , with 𝑋 ⊂ 𝑅௡ the space of 
data, whose marginals are respectively 𝑝𝒳ሺ𝑥ሻ and 𝑝ఏሺ𝑥ሻ, ∥ 𝑥 െ 𝑥′ ∥ is the 
Euclidean norm.

 Intuitively,
 𝑊ሺ, ሻ is the minimum amount of work required to transform 𝑝𝒳ሺ𝑥ሻ to 𝑝ఏሺ𝑥ሻ –

see next slide
 it makes sense to learn a generator 𝑔 minimizing this metric

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ீ𝑊ሺ𝑝𝒳 ,𝑝ఏሻ

Wasserstein GANs (Arjovski et al. 2017)
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 Earth Mover distance illustration
 2 distributions (pink (𝜇) and blue (𝜇′))
 An elementary rectangle weights ¼
 The figure illustrates the computation of 𝑊 𝜇, 𝜇ᇱ , the Wasserstein

distance between pink and blue: this is the earth mover distance to 
transport pink on blue. This is denoted as 𝜇ᇱ ൌ #𝜇, 𝜇ᇱ is the push 
forward of 𝜇

Fig. from F. Fleuret 2018
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Objective functions – Wasserstein GANs (Arjovski et al. 2017)
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 Let 𝑥 and 𝑦 respectively denote the variables from the source and 
the target distributions

 𝑝𝒳 𝑥 ൌ ׬ 𝛾 𝑥,𝑦 𝑑𝑦௬ is the amount of mass to move from 𝑥, 

𝑝ఏ 𝑦 ൌ ׬ 𝛾 𝑥,𝑦 𝑑𝑥௬ is the amount of mass to move to 𝑦

 Transport is defined as the amount of mass multiplied by the 
distance it moves, then the transport cost is: 𝛾 𝑥,𝑦 . ∥ 𝑥 െ 𝑦 ∥ and 
the minimum transport cost is inf

ఊ∈ஈሺ௣𝒳 ,௣ഇሻ
𝐸ሺ௫,௫ᇲሻ~ఊሾ∥ 𝑥 െ 𝑥′ ∥ሿ

Wasserstein GANs (Arjovski et al. 2017)
Optimal Transport interpretation
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 Left: standard ways to compute distance between functions (point distance)
 Right: Optimal Transport way

 Seek the best map 𝑇 which transports the blue distribution on the red one.
 The smaller 𝑇 , the closest 𝑓 and 𝑔.

 Wasserstein distance is defined as  𝑊ሺ𝑓,𝑔ሻ ൌ inf
்|்#௙ୀ௚

׬ |𝑇ሺ𝑥ሻ െ 𝑥|𝑑𝑥 ௫

 Which can be translated in:
 “You look at all the ways to transport 𝑓 on 𝑔 with a map 𝑇 (denoted 𝑇#𝑓 ൌ 𝑔 ).
 For a given such transport map 𝑇, you look at the total distance you traveled on the 

𝑥 axis , that is ׬ |𝑇ሺ𝑥ሻ െ 𝑥|𝑑𝑥௫ . 
 Among all these transport maps, you look at the one which achieves the optimal (i.e. 

minimal) distance traveled. This minimal distance is called the Wasserstein distance 
between 𝑓 and 𝑔.”

Fig. Santambrogio, 2015
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Wasserstein GANs (Arjovsky et al. 2017)
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 The 𝑊ሺ, ሻ definition does not provide an operational way for learning 𝐺
 Arjovsky uses a duality theorem from Kantorovitch and Rubinstein, stating the 

following result:
 𝑊 𝑝𝒳 , 𝑝ఏ ൌ sup

∥௙∥ಽஸଵ
𝐸௫∼௣𝒳 𝑓 𝑥 െ𝐸௫∼௣ഇ 𝑓 𝑥

 Where 𝑓:𝑋 → 𝑅 is 1-Lipchitz, i.e. 𝑓 𝑥 െ 𝑓ሺ𝑦ሻ ൏ 1 ∥ 𝑥 െ 𝑦 ∥,∀ 𝑥, 𝑦 ∈ 𝑋
 i.e. ∥ 𝑓 ∥௅൑ 1 denotes the 1-Lipchitz functions

 Implementation
 Using this result, one can look for a generator 𝑔 and a critic 𝑓௪:

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௚𝑊 𝑝𝒳 ,𝑝ఏ
 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௚ sup

∥௙∥ಽ
𝐸௫∼௣𝒳 𝑓௪ 𝑥  െ 𝐸௫∼௣ഇ 𝑓௪ 𝑥

 𝑔∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௚ sup
∥௙∥ಽ

𝐸௫∼௣𝒳 𝑓௪ 𝑥  െ 𝐸௭∼௣೥ 𝑓௪ 𝐺ሺ𝑧ሻ

 𝑓௪is implemented via a NN with parameters 𝑤, it is called a critic because it does not classify
but scores its inputs

 In the original WGAN,𝑓௪is made 1-Lipchitz by clipping the weights (Arjovski et al. 2017)
 Better solutions were developed later

Wasserstein GANs (Arjovski et al. 2017)
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 Algorithm

 Alternate
 Optimize 𝑓௪
 Optimize 𝑔ఏ

From Arjovski 2017
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GANs examples
Deep Convolutional GANs (Radford 2015) - Image generation
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 LSUN bedrooms dataset - over 3 million training examples

Fig. Radford 2015

Gan example
MULTI-VIEW DATA GENERATION WITHOUT VIEW
SUPERVISION (Chen 2018 - Sorbonne)
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 Objective
 Generate images by disantangling content and view

 Eg. Content 1 person, View: position, illumination, etc
 2 latent spaces: view and content

 Generate image pairs: same item with 2 different views
 Learn to discriminate between generated and real pairs



1 row = 1 content

Column = view Column = view

Fig. Chen 2018
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Conditional GANs (Mirza 2014) 
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 The initial GAN models distributions by sampling from the latent 𝑍
space

 Many applications require to condition the generation on some data
 e.g.: text generation from images, in-painting, super-resolution, etc

 (Mirza 2014) proposed a simple extension of the original GAN 
formulation to a conditional setting:
 Both the generator and the discriminator are conditioned on variable 𝑦

– corresponding to the conditioning data

min
௚

max
஽

𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~௣𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥|𝑦 ሿ ൅𝐸୸~௣ሺ௭ሻሾlog 1 െ 𝐷 𝑔 𝑧|𝑦 ሿ

Conditional GANs (Mirza 2014) 
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min
௚

max
஽

𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~௣𝒳 ௫ ሾ𝑙𝑜𝑔𝐷 𝑥|𝑦 ሿ ൅𝐸୸~௣ሺ௭ሻሾlog 1 െ 𝐷 𝑔 𝑧|𝑦 ሿ

Fig. (Mirza 2014)
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Conditional GANs example
Generating images from text (Reed 2016)
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 Objective
 Generate images from text caption

 Model: GAN conditioned on text input

 Compare different GAN variants on image generation

 Image size 64x64
Fig. from Reed 2016

Conditional GANs example – Pix2Pix
Image translation with cGANs (Isola 2016)
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 Objective
 Learn to « translate » images for a variety of tasks using a common

framework
 i.e. no task specific loss, but only adversarial training + conditioning

 Tasks: semantic labels -> photos, edges -> photos, (inpainting) photo and 
missing pixels -> photos, etc
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Conditional GANs example – Pix2Pix
Image translation with cGANs (Isola 2016)
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 Loss function
 Conditional GAN

 min
௚

max
஽

𝐿ሺ𝐷,𝑔ሻ ൌ 𝐸௫~௣𝒳 ௫
௬~௣ ௬

ሾ𝑙𝑜𝑔𝐷 𝑥, 𝑦 ሿ ൅𝐸୸~௣ሺ௭ሻ
௬~௣ ௬

ሾlog 1 െ 𝐷 𝑔 𝑧, 𝑦 , 𝑦 ሿ

 Note: the formulation is slightly different from the conditional GAN model of (Mirza 
2014):  it makes explicit the sampling on 𝑦 , but this is the same loss.

 This loss alone does not insure a correspondance between the conditioning
variable 𝑦 and the input data 𝑥
 They add a loss term, its role is to keep the generated data g 𝑧, 𝑦 « close » to the 

conditioning variable 𝑦

 𝐿௅భ 𝑔 ൌ 𝐸௫,௬,௭ 𝑥 െ 𝑔 𝑦, 𝑧 ଵ

 Where . ଵ is the 𝐿ଵ norm

 Final loss
 min

௚
ሺmax

஽
𝐿ሺ𝐷,𝑔ሻ ൅ 𝜆𝐿௅భ 𝑔 ሻ

Conditional GANs example – Pix2Pix
Image translation with cGANs – Examples (Isola 2016)
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

Fig. (Isola 2016)
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Conditional GANs example – Pix2Pix
Image translation with cGANs - Examples - (Isola 2016)
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

Fig. (Isola 2016)

Conditional GANs example – Pix2Pix
Image translation with cGANs – Examples - (Isola 2016)

Advanced Deep learning72

 Failure examples

Fig. (Isola 2016)
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Cycle GANs (Zhu 2017)
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 Objective
 Learn to « translate » images without aligned corpora

 2 corpora available with input and output samples, but no pair alignment between
images

 Given two unaligned corpora, a conditional GAN can learn a 
correspondance between the two distributions (by sampling the two
distributions), however this does not guaranty a correspondance between
input and output

 Approach
 (Zhu 2017) proposed to add a « consistency » constraint similar to back 

translation in language
 This idea has been already used for vision tasks in different contexts
 Learn two generative mappings

 𝑔:𝑋 → 𝑌 and 𝑓:𝑌 → 𝑋 such that:
 𝑓 ∘ 𝑔ሺ𝑥ሻ ≃ 𝑥 and g ∘ 𝑓ሺ𝑦ሻ ≃y 

 and two discriminant functions 𝐷௒ and 𝐷௑

Cycle GANs (Zhu 2017)
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

Fig (Zhu 2017)
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Cycle GANs (Zhu 2017)
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 Training
 The loss combines two conditional GAN losses ሺ𝑔,𝐷௒ሻ and ሺ𝑓,𝐷௑ሻ and 

a cycle consistency loss

 𝐿௖௬௖௟௘ 𝑓,𝑔 ൌ 𝐸௣𝒳ሺ௫ሻሾ 𝑓 𝑔 𝑥 െ 𝑥ሻ
ଵ
ሿ ൅ 𝐸௣೏ೌ೟ೌ ௬ ሾฮ𝑔 𝑓 𝑦 െ

𝑦ሻฮ
ଵ
ሿ

 𝐿ሺ𝑔,𝐷௒,𝑓,𝐷௑ሻ ൌ 𝐿 𝑔,𝐷௒ ൅ 𝐿 𝑓,𝐷௑ ൅ 𝐿௖௬௖௟௘ 𝑓,𝑔

 Note: they replaced the usual 𝐿 𝑔,𝐷௒  and 𝐿 𝑓,𝐷௑ term by a mean
square error term, e.g.:
 𝐿 𝑔,𝐷௒ ൌ 𝐸௣𝒴ሺ௬ሻ ሺ𝐷௒ 𝑦 െ 1 ଶሿ ൅ 𝐸௣𝒳ሺ௫ሻሾ𝐷௒ሺ𝐺 𝑥 ሻሿ

Cycle GANs (Zhu 2017)
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 Examples

 Failures
Fig (Zhu 2017)
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(Karras et al. 2019) – Style GAN 

 (Karras et al. 2019) – Style GAN

 Noyte: now (2020) StyleGAN3: https://nvlabs.github.io/stylegan3/

 https://nvlabs.github.io/stylegan2/versions.html 

Advanced Deep learning77

Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 Recall batch normalization

 𝐵𝑁 𝑥 ൌ 𝛾
௫ିఓ ௫

ఙ ௫
൅ 𝛽, here all the quantities are vectors (or tensors) 

of the appropriate size
 The mean for channel 𝑐 is computed as:

 𝜇௖ 𝑥 ൌ
ଵ

ேுௐ
∑ ∑ ∑ 𝑥௡௖௛௪

ௐ
௪ୀଵ

ு
௛ୀଵ

ே
௡ୀଵ

 With 𝑁 the number of images in the batch, 𝐻 the height and 𝑊 the width, i.e. 
𝑥 is of shape [𝑁,𝐶,𝐻,𝑊]

 𝛾 and 𝛽 are trainable parameters that are different for each channel

 BN averages over all the images in the batch 
 i.e. all the images in the batch are averaged around a single « style »
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Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 Adaptive Instance Normalization (Huang 2017)
 Idea: inject through the linear transformation defined by 𝛾, 𝛽 the feature

statistics from another image (e.g. its style)

 Let 𝑥 (content) and 𝑦 (style) two images or image transformations

 𝐴𝑑𝑎𝐼𝑁 𝑥, 𝑦 ൌ 𝜎 𝑦
௫ିఓ ௫

ఙ ௫
൅ 𝜇ሺ𝑦ሻ

 This simply replaces the the channel-wise statistics of 𝑥 by those of 𝑦

 AdaIN can normalize the style of each individual sample to a target style

(Huang 2017)

Style Gan
Preliminary: Adaptive Instance Normalization (AdaIN)
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 (Huang 2017) examples
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Architecture of Style Gan
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

Karras et al. 2019

• A mapping network 
generates a 
representation vector 𝑤

• Affine transformations 
(A) are trained to 
compute 𝜆 and 𝛽
vectors for different
resolution of the image 
generator from 𝑤 – this
induces different styles 
for each resolution

• Noise input are single 
channel images 
consisting of 
uncorrelated Gaussian
noise – a single noise 
image is broadcasted
to all the feature maps
– this induces
stochastic variations

Architecture of Style Gan
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• Affine transformations computed from 𝑤

https://towardsdatascience.com/explained-a-style-
based-generator-architecture-for-gans-generating-
and-tuning-realistic-6cb2be0f431
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Architecture of Style Gan

Advanced Deep learning83

• Global architecture of StyleGAN

https://towardsdatascience.com/explained-a-style-based-generator-
architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431

GANs

Advanced Deep learning84

 Making GANs work is usually hard

 All papers are full of technical details, choices (architecture, 
optimization, etc.), tricks, not easy to reproduce.
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Flow Matching

Used in different forms in many recent image/ video
generators, e.g. Google Banana, OpenAI Sora, Google 

Veo, … 

Flow matching - key notions

Advanced Deep learning86

 Ordinary differential equation ODE
 An ODE describes the evolution of a system that depends of a variable, 

usually called time


ௗ

ௗ௧
𝑥 𝑡 ൌ 𝑣௧ሺ𝑥 𝑡 ሻ

 𝑥 0 ൌ 𝑥଴ - initial condition
 the evolution function 𝑣௧ሺ𝑥 𝑡 ሻ is called the vector field of the ODE

 Trajectory
 The solution of an ODE is a trajectory, i.e. a function that maps time to a 

location in ℝௗ

 𝑥ሺ𝑡ሻ: 0,1 → ℝௗ

 Said otherwise, a trajectory is the integral curve of the vector field starting
from an initial condition

Fig. Lipman et al. 2024
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Flow matching - key notions

Advanced Deep learning87

 Velocity field
 A vector field 𝑣௧ assigns a velocity vector to every point 𝑥 ∈ ℝௗ

 𝑣௧: 0,1 ൈ ℝௗ → ℝௗ

 It describes the instantaneous velocity (direction and speed) of a 
« particle » at each time 𝑡 and position 𝑥

 You can visualize it as a field of arrows, where each arrow shows how a 
particle located at 𝑥 would move at that instant.

Fig. Lipman et al. 2024

Flow matching - key notions
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 Flow of the ODE
 The flow 𝚽𝒕 is the map that takes an initial condition 𝑥଴ and a time 𝑡, 

and gives the state of the system at that time: Φ௧ 𝑥଴ ൌ 𝑥ሺ𝑡; 𝑥଴ሻ

 Φ௧: 0,1 ൈℝௗ → ℝௗ , 𝑥଴, 𝑡 → Φ௧ሺ𝑥଴ሻ


ௗ

ௗ௧
Φ௧ 𝑥଴ ൌ 𝑣௧ሺΦ௧ 𝑥଴ ሻ

 Φ௧ 𝑥଴  ൌ 𝑥଴ - initial condition
 The flow is determined by the vector field

Fig. Lipman et al. 2024
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Flow existence and uniqueness
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If 𝑣: 0,1 ൈ ℝௗ → ℝௗ is continuously differentiable with a bounded derivative, 

the ODE, 
ௗ

ௗ௧
Φ௧ 𝑥଴ ൌ 𝑣௧ Φ௧ 𝑥଴ ,Φ௧ 𝑥଴  ൌ 𝑥଴,  has a unique solution given

by flow Φ௧. Φ௧is a diffeomorphism for all 𝑡, i.e. continuously differentiable with
a continuously differentiable inverse.

 Theorem 1

Flow matching - key notions

Advanced Deep learning90

Concept definition Relation

Vector field 𝑣௧ሺ𝑥ሻ Function assigning a 
velocity vector to each 
point

Defines the dynamics

Trajectory 𝑥ሺ𝑡; 𝑥଴ሻ Solution curve starting 
from 𝑥଴

Integral curve of 𝑣௧

Flow Φ௧ሺ𝑥଴ሻ Map giving position 
after time 𝑡

Generated by 
integrating 𝑣௧

Vector fields define ODEs - ODE solutions are flows
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Flow matching - key notions
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 To simulate the flow, we need to numerically integrate the ODE.
Time is discretized between 0 and 1: 0,ℎ, 2ℎ, … , 1

 The simplest numerical integration method is Euler’s scheme:

 This approximates the true trajectory 𝑥௞ା௛ ൎ 𝑥ሺ𝑡௞ା௛ሻ

Start at 𝑥଴
Iterate 𝑥௞ା௛ ൌ 𝑥௞ ൅ ℎ𝑣௧ 𝑥௞ , 𝑘 ൌ 0, ℎ, … , 1 െ ℎ

Flow matching - key notions
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 Euler integration

Credits: https://peterroelants.github.io/posts/flow_matching_intro/

• Velocity field is shown as a heatmap
• The figure shows the integration of a sample from the noise distribution to the 

target distribution (an approximation of the true trajectory), using the velocity field
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Flow matching

Advanced Deep learning93

 Objective
 Learn a mapping from distribution 𝑝଴ሺ𝑥ሻ to a target distribution 𝑝ଵ 𝑥

 Probability path
 Flow matching learns a probability path 𝑝௧, 𝑡 ∈ 0,1 .

 This is a time dependent probability that interpolates between two
distributions 𝑝଴ and 𝑝ଵ
 𝑝௧: 0,1 ൈ ℝௗ → ℝା

 𝑝௧ 𝑡, . is a probability function of variable 𝑥

 The probability path is generated by a velocity field 𝑣௧ which defines the 
instantaneous velocities of samples (direction and speed)
 𝑣௧ 𝑡, 𝑥 provides the instantaneous velocity at time 𝑡 and sample 𝑥

 The velocity field generates the probability path 𝑝௧, if its associated flow 
Φ௧ satisfies
 𝑥௧ ≔ Φ௧ሺ𝑥଴ሻ~𝑝௧ for 𝑥଴~𝑝଴ 

Flow matching
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 The velocity field is the only tool required to sample from 𝑝௧ using

the ODE 
ௗ

ௗ௧
𝑥 𝑡 ൌ 𝑣௧ሺ𝑥 𝑡 ሻ

 Hence the objective of flow matching is to learn a parameterized vector
field 𝒗𝒕

𝜽ሺ𝒙𝒕ሻ

 Once trained, the flow is defined by the ODE

𝑥଴~𝑝଴
ௗ௫೟
ௗ௧

ൌ 𝑣௧
ఏሺ𝑥௧ሻ

with 𝑥௧ ൌ Φ௧ 𝑥଴
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Illustration: probability path and velocity field

Advanced Deep learning95

Flow matching inference
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 Sampling (inference)

 Once the parameterized vector field is learned, the target
distribution can be sampled by solving the ODE

𝑥଴~𝑝଴
Integrate the ODE 

ௗ௫೟
ௗ௧

ൌ 𝑣௧
ఏ 𝑥௧ from 𝑡 ൌ 0 to 𝑡 ൌ 1

e.g. Euler integration 𝑥௧ା௛ ൌ 𝑥௧ ൅ ℎ𝑣௧
ఏ 𝑥௧

Output 𝑥ଵ
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Conditionals and marginals probability paths

Advanced Deep learning97

 Flow matching will learn the (marginal) probability path as the 
agregation of conditional probability path

 Let 𝑧 ∈ ℝௗ , a conditional probability path is a set of distributions 
𝑝௧ሺ𝑥|𝑧ሻ such that:
 𝑝଴ . 𝑧 ൌ 𝑝଴ and 𝑝ଵ . 𝑧 ൌ 𝛿௭ for all 𝑧 ∈ ℝௗ

 i.e. it maps distribution 𝑝଴ to a single point 𝑧

 A conditional probability path defines a marginal path 𝑝௧ሺ𝑥ሻ
obtained by sampling target points 𝑥ଵ~𝑝ଵ and then sampling from
𝑝௧ 𝑥 𝑥ଵ

The marginal probability path 𝑝௧ results from the agregation of the 
conditional probability paths 𝑝௧|ଵ for multiple samplings 𝑥଴, 𝑥ଵ

𝑝௧ 𝑥 ൌ න 𝑝௧ 𝑥 𝑥ଵ 𝑝ଵ 𝑥ଵ 𝑑𝑥ଵ

Conditional and marginal velocity fields
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 Accordingly, one will define the conditional and marginal velocity
fields.
Let 𝑧 ∈ ℝௗ , let 𝑣௧ . 𝑧 denote a conditional vector field, whose
corresponding ODE defines a conditional probability path 𝑝௧|௭ሺ. |𝑧ሻ:

𝑥଴~𝑝଴, 
ௗ௫೟
ௗ௧

ൌ 𝑣௧ 𝑥௧ 𝑧  ⟹ 𝑥௧~𝑝௧ 𝑥 𝑧 , 𝑡 ∈ ሾ0,1ሿ

Then the marginal vector field 𝑣௧ 𝑥 is defined as:

𝑣௧ 𝑥 ൌ න𝑣௧ሺ𝑥|𝑧ሻ
𝑝௧ 𝑥 𝑧 𝑝ଵሺ𝑧ሻ

𝑝௧ሺ𝑥ሻ
𝑑𝑧

 It will be shown later
 That this marginal vector field follows the corresponding marginal 

probability path
 Training a flow model proceeds by learning conditional probability paths
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Conditionals and marginals probability paths

Advanced Deep learning99

 Illustrating the conditional/ marginal probability paths and velocity
fields

Fig. Lipman et al. 2024

Example: Gaussian conditional probability path
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 Let 𝛼௧ ,𝛽௧ be two continuous differentiable monotonic functions
such that 𝛼଴ ൌ 𝛽ଵ ൌ 0 and 𝛼ଵ ൌ 𝛽଴ ൌ 1

The Gaussian conditional path
𝑝௧ . 𝑧 ൌ 𝒩ሺ𝛼௧𝑧,𝛽௧

ଶ𝐼ሻ

Fulfills

𝑝଴ . 𝑧 ൌ 𝒩 𝛼଴𝑧,𝛽଴
ଶ𝐼 ൌ 𝒩 0, 𝐼 and 𝑝ଵ . 𝑧 ൌ 𝒩 𝛼ଵ𝑧,𝛽ଵ

ଶ𝐼 ൌ 𝛿௭

Sampling from the marginal path consists in
𝑥ଵ~𝑝ଵ, 𝜖~𝒩 0, 𝐼 ⟹ 𝑥 ൌ 𝛼௧𝑥ଵ ൅ 𝛽௧𝜖~𝑝௧
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Conditional and marginal probability paths for the Gaussian
probability path

Advanced Deep learning101



Fig. Holderrieth& Erives

Recap: Flow, velocity field, probability path

Advanced Deep learning102



Fig. Lipman et al. 2024
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Training

Advanced Deep learning103

 Flow matching loss
 𝑣௧

ఏ should approximate the a target field 𝑣௧
 The flow matching loss is defined as:

 ℒிெ ൌ 𝐸௧~௎ ଴,ଵ , ௫೟~௣೟ 𝑣௧
ఏሺ𝑥௧ሻ െ 𝑣௧ሺ𝑥௧ሻ

ଶ

 With 𝑣௧ a target field and 𝑣௧
ఏ its parametric approximation

 Target 𝑣௧ is unknown (it is untractable), flow matching proposes to 
optimize instead a conditional loss

 ℒ஼ிெ ൌ 𝐸௧~௎ ଴,ଵ , ௫భ~௣భ ௫ ,  ௫೟~௣೟ሺ௫೟|௫భሻ 𝑣௧
ఏሺ𝑥௧ሻ െ 𝑣௧ሺ𝑥௧|𝑥ଵሻ

ଶ

 The conditional field 𝑣௧ሺ𝑥௧|𝑥ଵሻ will have a tractable analytical expression, 
enabling the training - We have the following property;

∇ఏℒிெ ൌ ∇ఏℒ஼ிெ
minimizing ℒ஼ிெ is equivalent to miminizing ℒிெ

Training
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 CFM introduces an anchor point 𝑥ଵ~𝑝ଵ
 Instead of modeling directly the marginal 𝑝௧ on the whole domain of 𝑝ଵ, 

training is performed around this anchor point 

 Then by sampling several target points 𝑥ଵ one progressively aggregates
the local informations in the target space

 This simplifies the problem of modeling the marginal 𝑝௧ because one can 
often find a conditional vector field satisfying the following equation
analytically by hand.

𝑥଴~𝑝଴, 
ௗ௫೟
ௗ௧

ൌ 𝑣௧ 𝑥௧ 𝑧  ⟹ 𝑥௧~𝑝௧ 𝑥 𝑧 , 𝑡 ∈ ሾ0,1ሿ
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Training:building the conditional probability path and the 
conditional vector field
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 Considering ℒ஼ிெ , one needs tractable expressions for 𝑝௧ሺ𝑥௧|𝑥ଵሻ and 
𝑣௧ሺ𝑥௧|𝑥ଵሻ
 There is an infinite number of (conditional) probability paths mapping a distribution 

𝑝଴ to a target distribution 𝑝ଵ (and 𝑝଴ to 𝑥ଵ)

 A popular choice for the conditional path is the linear path:
𝑝௧|ଵሺ𝑥|𝑥ଵሻ ൌ  𝒩ሺ𝑥|𝑡𝑥ଵ, 1 െ 𝑡 ଶ𝐼ሻ

 Using this probability path, let us define the following random variable
𝑥௧ ൌ Φ௧ 𝑥଴ ൌ 𝑡𝑥ଵ ൅ 1 െ 𝑡 𝑥଴ with 𝑥଴~𝑝଴ ൌ 𝒩ሺ𝑂, 𝐼ሻ

𝑥௧~𝒩ሺ𝑥|𝑡𝑥ଵ, 1 െ 𝑡 ଶ𝐼ሻ
 Given 𝑥଴~𝒩ሺ𝑂, 𝐼ሻ and 𝑥ଵ~𝑝ଵ, the flow 𝑥௧ follows a linear path between 𝑥଴ and 𝑥ଵ

 The flow defines the following vector field

𝑣௧ 𝑥௧ 𝑥ଵ ൌ
𝑑
𝑑𝑡
𝑥௧ ൌ െ𝑥଴ ൅ 𝑥ଵ

this is obtained by simple differentiation of the field Φ௧ 𝑥଴  expression

 And the loss ℒ஼ிெ  becomes
ℒ஼ிெ ൌ 𝐸௧~௎ ଴,ଵ , ௫భ~௣భ ௫ , ௫೟~௣೟ሺ௫೟|௫భሻ 𝑣௧

ఏሺ𝑥௧ሻ െ ሺ𝑥ଵ െ 𝑥଴ሻ
ଶ

Training: Building the conditional probability path and the 
conditional vector field

Advanced Deep learning106



Credits: https://peterroelants.github.io/posts/flow_matching_intro/

• Top: sample straight line reference paths
• Bottom: reference paths distribution generated by sampling a large nb 

of straight line reference paths
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Training: Building the conditional probability path and the 
conditional vector field

Advanced Deep learning107



Credits: https://peterroelants.github.io/posts/flow_matching_intro/

Average flow field computed by sampling a large nb of reference paths
and computing the average velocity for fixed bins over the flow field

Training algorithm
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 This leads to the following training algorithm

Sample 𝑥଴~𝑝଴ , 𝑥ଵ~𝑝ଵ , 𝑡~𝑈ሾ0,1ሿ
Compute 𝑥௧ ൌ Φ௧ 𝑥଴ ൌ 1 െ 𝑡 𝑥଴ ൅ 𝑡𝑥ଵ
Compute the loss ℒ ൌ 𝑣௧

ఏ 𝑥௧ െ 𝑥ଵ െ 𝑥଴
ଶ

Gradient descent 𝜃 ൌ 𝜃 െ 𝜖∇ఏℒ
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Flow matching
A few explanations
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The marginalization trick used in flow matching
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 Explains why the conditional vector fields allow us to build the 
marginal field

For 𝑧 ∈ ℝௗ, let 𝑣௧ . 𝑧 denote a conditional vector field, whose
corresponding ODE defines a conditional probability path 𝑝௧|௭ሺ. |𝑧ሻ:

𝑥଴~𝑝଴, 
ௗ௫೟
ௗ௧

ൌ 𝑣௧ 𝑥௧ 𝑧  ⟹ 𝑥௧~𝑝௧ 𝑥 𝑧 , 𝑡 ∈ ሾ0,1ሿ

Then the marginal vector field 𝑣௧ 𝑥 defined as:

𝑣௧ 𝑥 ൌ න𝑣௧ሺ𝑥|𝑧ሻ
𝑝௧ 𝑥 𝑧 𝑝ଵሺ𝑧ሻ

𝑝௧ሺ𝑥ሻ
𝑑𝑧

Follows the marginal probability path:

𝑥଴~𝑝଴, 
ௗ௫೟
ௗ௧

ൌ 𝑣௧ሺ𝑥௧ሻ  ⟹ 𝑥௧~𝑝௧ 𝑡 ∈ ሾ0,1ሿ

Theorem 2
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Continuity equation

Advanced Deep learning111

 The continuity equation expresses the conservation of quantities
like physical mass, energy, probability mass. 

 Here, 
డ௣೟ሺ௫ሻ

డ௧
describes how much 𝑝௧ changes over time, and the negative

divergence െ∇. 𝑝௧𝑣௧ expresses the total inflow of probability mass.

 Probabiliy mass being conserved, the two quantities must be equal

Let a flow model defined by its vector field 𝑣௧ and initial condition 𝑥଴~𝑝଴, then
𝑥௧~𝑝௧, 𝑡 ∈ ሾ0,1ሿ, if and only if the continuity equation is verified

𝜕𝑝௧ሺ𝑥ሻ
𝜕𝑡

ൌ െ∇. 𝑝௧𝑣௧ 𝑥 ,∀𝑥 ∈ ℝௗ, 𝑡 ∈ ሾ0,1ሿ

Where ∇. Is the divergence operator:

∇. 𝑣 x ൌ ∑ డ௩೟ሺ௫ሻ

డ௫೔
ௗ
௜ୀଵ , and 𝑥 ൌ 𝑥ଵ, … , 𝑥ௗ ்

Theorem 3

Using the continuity equation to demonstrate the 
marginalization trick
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

By theorem 3 this demonstrates theorem 2

Note: (ii) uses the continuity equation for the conditional probability path 𝑝௧ሺ𝑥|𝑧ሻ
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Training

Advanced Deep learning113



The marginal flow loss ℒிெ equals the conditional flow matching loss
ℒ஼ிெ up to a constant, hence their gradients coincide

∇ఏℒிெ ൌ ∇ఏℒ஼ிெ
and minimizing ℒ஼ிெ is equivalent to miminizing ℒிெ

Theorem 4

References on flow matching

 Tutorial and great site at MIT, the course is largely inspired from this
presentation
 https://diffusion.csail.mit.edu/
 Course notes https://arxiv.org/abs/2506.02070

 A simple visual introduction to flow matching
 https://peterroelants.github.io/posts/flow_matching_intro/

 An easy to follow introduction
 https://nilsschaetti.ch/2025/02/02/flow-matching-comprendre-les-derniers-modeles-

de-generation-
dimages/#:~:text=Qu'est%2Dce%20que%20le,texte%20ou%20m%C3%AAme%20des
%20vid%C3%A9os.

 Reference papers
 Lipman, Y., Havasi, M., Holderrieth, P., Shaul, N., Le, M., Karrer, B., Chen, R. T. Q., Lopez-

Paz, D., Ben-Hamu, H., & Gat, I. (2024). Flow Matching Guide and Code. 
http://arxiv.org/abs/2412.06264 (lots of details but more tricky than the course note 
above)

 Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., Le, M., & Ai, M. (2023). Flow 
Matching for Generative Modeling ICLR.

Advanced Deep learning114
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Diffusion models

Diffusion models

Advanced Deep learning116

 Diffusion models emerged in 2019, gained momentum in 2021
 As in 2025, diffusion models are used in several popular large scale

models for text to image generation
 e.g. Imagen https://imagen.research.google/, stable diffusion 

https://stablediffusionweb.com/, Dall-e-2 https://openai.com/dall-e-2/
 Generative modeling tasks

 Continuous space models: Image generation, super resolution, image editing, 
segmentation; etc.

 Discrete space models, e.g. applications to text generation, protein structure

 Several approaches including
 Discrete time models

 Denoising Diffusion Probabilistic Models (DDPMs)
 Score based Generative Models (SGM)

 Time continuous models
 Stochastic differential equations



59

Diffusion models
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 We introduce diffusion models through stochastic differential
equations – this provides a unifying – synthetic view of these models

 A stochastic differential equation extends the deterministic
dynamics of ODE by adding a stochastic component

 It is usually denoted as
𝑑𝑋௧ ൌ 𝑣௧ 𝑋௧ 𝑑𝑡 ൅ 𝜎௧𝑑𝑊௧

X଴ ൌ 𝑥଴ (initial condition)
Here

𝑋௧ ∈ ℝௗ is a random process
𝑣௧ is the drift (the vector field)
𝜎௧ ∈ ℝାis a diffusion coefficient
𝑊௧ ∈ ℝௗ is a Brownian motion also called Wiener process

The solution 𝑋 of a SDE is called a stochastic trajectory
X: 0,1 → ℝௗ , 𝑡 → 𝑋௧

Diffusion models
SDE solution existence and uniqueness

Advanced Deep learning118



If 𝑣: 0,1 ൈ ℝௗ → ℝௗ is continuously differentiable with a bounded derivative, 
and 𝜎௧is continuous, then the SDE, 𝑑𝑋௧ ൌ 𝑣௧ 𝑋௧ 𝑑𝑡 ൅ 𝜎𝑑𝑊௧ , X଴ ൌ 𝑥଴ (initial 
condition) has a solution given by a unique stochastic process

 Theorem 1
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Diffusion models
Brownian motion

Advanced Deep learning119

 A brownian motion 𝑊 ൌ 𝑊௧ for 𝑡 ∈ ሾ0,1ሿ is a stochastic process 
and satisfies
 𝑊଴ ൌ 0
 Independent increments:𝑊௧೔ െ𝑊௧೔షభ are independent variable of the 

past for any 0 ൑  𝑡଴ ൏ 𝑡ଵ ൏ ⋯ ൏ 𝑡௡ ൌ 1
 Gaussian increments:𝑊௧ െ𝑊௦~𝒩 0, 𝑡 െ 𝑠 𝐼ௗ , 0 ൑ 𝑠 ൏ 𝑡

 They can be simulated through

 𝑊௧ା௛ ൌ 𝑊௧ ൅ ℎ𝜖௧ for𝜖௧~𝒩 0, 𝐼ௗ  , h ൐ 0 is the step size

Diffusion models
Simulating a SDE

Advanced Deep learning120

 The simplest integration scheme for a SDE is the Euler-Maruyama
method

 This is the SDE analogue of forward Euler for SDEs
Initialise 𝑋଴ ൌ 𝑥଴
𝑋௧ା௛ ൌ 𝑋௧ ൅ ℎ𝑣௧ 𝑋௧ ൅ ℎ𝜎௧𝜖௧ 𝜖௧~𝒩ሺ0, 𝐼ௗሻ

Where ℎ is the step size
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 Suppose that we have trained a vector field 𝑣௧
ఏ , we can then build a 

generative model with an SDE as we did for an ODE

Set 𝑡 ൌ 0, set step size ℎ ൌ
ଵ

௡
Sample 𝑋଴~𝑝଴ e.g. a Gaussian
For 𝑖 ൌ 1, … ,𝑛 െ 1 do

draw a sample 𝜖௧~𝒩 0, 𝐼ௗ
𝑋௧ା௛ ൌ 𝑋௧ ൅ ℎ𝑣௧

ఏ 𝑋௧ ൅ ℎ𝜎௧𝜖௧
𝑡 ൌ 𝑡 ൅ ℎ

Return 𝑋ଵ

A diffusion model will be defined by
A parametric vector field 𝑣௧

ఏ 0,1 ൈ ℝௗ → ℝௗ

A diffusion coefficient 𝜎௧: 0,1 → 0,൅∞ , 𝑡 → 𝜎௧

Sampling from a diffusion model

Diffusion models
Score function
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 Instead of learning a vector field, diffusion models learn, a score 
function

 The score function of a data distribution 𝑝 𝑥 , 𝑥 ∈ 𝑅ௗ is:
𝑠 𝑋 ൌ ∇௑ log pሺXሻ  ∈ 𝑅ௗ

 Interpretation
 Given a point 𝑥 in data space, the score tells us which direction to move 

towards a region with higher likelihood

 How to use this information for generating data from the distribution 𝑝ሺ. ሻ?
 Sample 𝑥଴ from a prior (e.g. Gaussian) distribution 𝑝଴ሺ𝑥ሻ in 𝑅ௗ and 

iterate 𝑋௜ାଵ ൌ 𝑋௜ ൅ ∇௑ log𝑝ሺ𝑋௜ሻ

Fig. Song 2022
illustrates the score 
function (arrows) and 
the density for a 
mixture of two
gaussians

High density
region

Low density
region
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 Langevin dynamics
 The Langevin dynamics for sampling from a known distribution 𝑝ሺ𝑋ሻ is

an iterative procedure:
𝑋௜ାଵ ൌ 𝑋௜ ൅ 𝜖 ∇௑log𝑝ሺ𝑋௜ሻ ൅ 2𝛼𝜖௜

 𝑖 ൌ 0, … ,𝐾, with 𝜖௜~𝒩ሺ0, 𝐼ሻ, 𝛼 is a small constant

 When 𝛼 → 0 and 𝐾 →  ∞, 𝑥௄ converges to a sample from 𝑞ሺ𝑥ሻ under some
regularity conditions
 In practice take 𝜖 small and 𝐾 large (100 to 1000)

Fig. Song 2022
Langevin dynamics for sampling from a mixture 
of 2 gaussians, arrows indicate the score vector
values, the animated Gif shows the 
convergence of the dynamics towards the target
distribution

Diffusion models
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 Lets define the (marginal) score function of 𝑝௧as ∇log 𝑝୲ x , we can define
a SDE that follows the probability path 𝑝௧

 Note
 The same property holds for a conditional vector field 𝑣௧ 𝑥|𝑧 and the 

conditional probability path 𝑝௧ 𝑥 𝑧
 This will allow us to define a training algorithm as we did for the flow model 

with the ODE, by training to approximate a conditional score ∇𝑝௧ 𝑥 𝑧

Let 𝑣௧ 𝑥 a marginal vector field, then the following SDE follows the same
probability path 𝑝௧as the ODE, with arbitrary diffusion coefficients 𝜎௧  :

𝑋଴~𝑝଴,𝑑𝑋௧ ൌ ሾ𝑣௧ 𝑋௧ ൅
𝜎௧
ଶ

2
∇ log𝑝௧ሺ𝑋௧ሻሿ𝑑𝑡 ൅ 𝜎௧𝑑𝑊௧

⟹ 𝑋௧~𝑝௧, 0 ൑ t ൑ 1
In particular 𝑋ଵ~𝑝ଵ the target distribution

 Theorem 2
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 Score matching loss

 ℒௌெ 𝜃 ൌ 𝐸௧~௎௡௜௙ ଴,ଵ , ௭~௣భ,ఢ~𝒩ሺ଴,ூ೏ሻ 𝑠௧
ఏ 𝑥 െ ∇ log𝑝௧ሺ𝑥ሻ

ଶ

 Conditional score matching loss

 ℒ஼ௌெ 𝜃 ൌ 𝐸௧~௎௡௜௙ ଴,ଵ , ௭~௣భ,ఢ~𝒩ሺ଴,ூ೏ሻ 𝑠௧
ఏ 𝑥 െ ∇ log𝑝௧ሺ𝑥|𝑧ሻ

ଶ

The score matching loss equals the conditional score matching loss up to a constant:

ℒௌெ 𝜃 ൌ ℒ஼ௌெ 𝜃 ൅ 𝐶

Their gradient coincide:

∇ఏℒௌெ 𝜃 ൌ ∇ఏℒ஼ௌெ 𝜃

 Theorem 3

Diffusion models
Training algorithm
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 We consider the following SDE

 𝑋଴~𝑝଴,𝑑𝑋௧ ൌ ሾ𝑣௧ 𝑋௧ ൅ ఙ೟
మ

ଶ
∇ log 𝑝௧ሺ𝑋௧ሻሿ𝑑𝑡 ൅ 𝜎௧𝑑𝑊௧

 Training
 Training will amount to train parametric approximations 𝑣௧

ఏ of the 
vector field 𝑣௧ and 𝑠௧

ఏ of the score function ∇ log𝑝௧
 Learning 𝑣௧

ఏ will proceed as for Flow matching
 We indicate how to learn 𝑠௧

ఏ

 Inference
 After training we can choose a diffusion coefficient 𝜎௧ and simulate the 

following SDE:

𝑋଴~𝑝଴,𝑑𝑋௧ ൌ ሾ𝑣௧
ఏ 𝑋௧ ൅

𝜎௧
ଶ

2
𝑠௧
ఏሺ𝑋௧ሻሿ𝑑𝑡 ൅ 𝜎௧𝑑𝑊௧
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

Given: a dataset of samples 𝑧~𝑝ଵ, a score network 𝑠௧
ఏ

Repeat
Sample 𝑧~𝑝ଵ 
Sample 𝑡~𝑈𝑛𝑖𝑓𝑜𝑟𝑚ሾ0,1ሿ
Sample 𝑥~𝑝ሺ. |𝑧ሻ
Compute loss

ℒ 𝜃 ൌ 𝑠௧
ఏ 𝑥 െ ∇ log𝑝௧ 𝑥 𝑧

ଶ

Update the model parameters
𝜃 ← 𝜃 െ ∇ℒ 𝜃

Score matching training

Diffusion models
Score matching training for Gaussian probablity path
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 The Gaussian probability path allows us to derive an algebraic
expression for ∇ log𝑝௧ 𝑥 𝑧

 Recall: Gaussian probability path:

 Let 𝛼௧ ,𝛽௧ be two continuous differentiable monotonic functions such
that 𝛼଴ ൌ 𝛽ଵ ൌ 0 and 𝛼ଵ ൌ 𝛽଴ ൌ 1

The Gaussian conditional path
𝑝௧ . 𝑧 ൌ 𝒩ሺ𝛼௧𝑧,𝛽௧

ଶ𝐼ሻ
Fulfills

𝑝଴ . 𝑧 ൌ 𝒩 𝛼଴𝑧,𝛽଴
ଶ𝐼 ൌ 𝒩 0, 𝐼 and 𝑝ଵ . 𝑧 ൌ 𝒩 𝛼ଵ𝑧,𝛽ଵ

ଶ𝐼 ൌ 𝛿௭
Sampling from the marginal path consists in

𝑥ଵ~𝑝ଵ, 𝜖~𝒩 0, 𝐼 ⟹ 𝑥 ൌ 𝛼௧𝑥ଵ ൅ 𝛽௧𝜖~𝑝௧
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 For the Gaussian probability path

 ∇ log𝑝௧ 𝑥 𝑧 ൌ െ
௫ିఈ೟௭

ఉ೟
మ

 Plugging in this expression gives the conditional score matching loss:

ℒ஼ௌெ 𝜃 ൌ 𝐸௧~௎௡௜௙ ଴,ଵ , ௭~௣భ,ఢ~𝒩ሺ଴,ூ೏ሻ 𝑠௧
ఏሺ𝛼௧𝑧 ൅ 𝛽௧𝜖ሻ ൅

𝜖
𝛽௧

ଶ

Diffusion models
Score matching training for Gaussian probablity path
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Given:
A dataset of samples 𝑧~𝑝ଵ, a score network 𝑠௧

ఏ

Schedulers 𝛼௧ ,𝛽௧with 𝛼଴ ൌ 𝛽ଵ ൌ 0,𝛼ଵ ൌ 𝛽଴ ൌ 1
Repeat

Sample 𝑧~𝑝ଵ 
Sample 𝑡~𝑈𝑛𝑖𝑓𝑜𝑟𝑚ሾ0,1ሿ
Sample 𝜖~𝒩 0, 𝐼ௗ
Set 𝑥௧ ൌ 𝛼௧𝑧 ൅ 𝛽௧ϵ
Compute loss

ℒ 𝜃 ൌ 𝑠௧
ఏ 𝑥 ൅

ఢ

ఉ೟

ଶ

Update the model parameters
𝜃 ← 𝜃 െ ∇ℒ 𝜃

Score matching training
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 Denoising diffusion models, one of the early, and popular diffusion
model corresponds to a diffusion model with a Gaussian probability
path 𝑝௧ . 𝑧 ൌ 𝒩 𝛼௧𝑧,𝛽௧

ଶ𝐼

 The initial formulation did not use SDEs but constructed Markov 
chains in discrete time

 For the Gaussian probability path, the vector field and the score  
function can converted one to the other post training
 It is not necessary to train both, train for one of them only, and the

other could be obtained post training

 In particular we can choose if want to use flow matching or score 
matching to train it



Denoising Diffusion Probabilistic Models
Original presentation

Advanced Deep learning132
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 Denoising Diffusion models implement the following idea
 Forward diffusion

Gradually add noise to an input image until one get a fully noisy image
 Reverse denoising

 Generate data from the target distribution
 Sample from the noise space and reverse the forward process 

 Forward and reverse processes are used for training
 At inference, generation is performed via the reverse process

Fig.  Kreis et al. 2022

Denoising Diffusion Probabilistic Models - DDPM
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 DDPM are based on two Markov chains
 A forward chain that adds noise to data െ൐ Forward process

 Hand designed: transforms any data distribution into a simple prior
distribution – here we will use a standard Gaussian for the prior

 A reverse chain that converts noise to data െ൐ Reverse process
 The forward chain is reversed by learning transition kernels parameterized

by neural networks

 New data are generated by sampling from the simple prior, followed by 
ancestral sampling through the reverse Markov chain
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 Data distribution 𝑥଴~𝑞 𝑥଴
 The forward MC generates a sequence of random variables 
𝑥ଵ, 𝑥ଶ, … , 𝑥் starting at 𝑥଴ with transition kernel 𝑞ሺ𝑥௧|𝑥௧ିଵሻ

 Given sufficient steps, 𝑞ሺ𝑥்ሻ will be close to a prior distribution 
𝜋ሺ𝑥ሻ, e.g. gaussian distribution with fixed mean and variance

 The forward process corresponds to a probability path 𝑝௧ሺ. |𝑧ሻ with
𝑧 sampled from the target distribution

Fig.  Kreis et al. 2022

Denoising Diffusion Probabilistic Models
Forward (diffusion) process
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 A typical design for the kernel is a gaussian perturbation 𝑞 𝑥௧ 𝑥௧ିଵ ൌ
𝒩 𝑥௧; 𝛼௧𝑥௧ିଵ; ሺ1 െ 𝛼௧ሻ𝐼  ∀𝑡 ∈ 1, … ,𝑇

 Using the reparametrization trick, one can write:

𝑥௧ ൌ 𝛼௧𝑥௧ିଵ+ 1 െ 𝛼௧𝑧, with z~𝑁ሺ𝑂, 𝐼ሻ

 𝐼 is the identity matrix, with the same size as image 𝑥଴,  𝛼௧ ∈ ሺ0,1ሻ is a variance 
parameter hand fixed or learned, we consider it hand fixed here.
 𝛼௧ is chosen so that 𝛼௧ ൐ ⋯ ൐ 𝛼் , e. g. 𝑇 ൌ 2000, 𝛼ଵ ൌ 1 െ 10ିସ,𝛼் ൌ 1 െ 10ିଶ with a 

linear increase

Fig.  Kreis et al. 2022
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 The forward diffusion process is then defined as

• 𝐱𝟎~𝐪 𝐱𝟎 ,
• 𝒒 𝒙𝟏, … ,𝒙𝑻|𝒙𝟎 ൌ ∏ 𝒒ሺ𝒙𝒕|𝒙𝒕ି𝟏ሻ

𝑻
𝒕ୀ𝟏 ,

• 𝓝 𝒙𝒕; 𝜶𝒕 𝒙𝒕ି𝟏; 𝟏 െ 𝜶𝒕 𝑰         ∀𝑡 ∈ 1, … ,𝑇
• 𝑥௧ ൌ 𝛼௧𝑥௧ିଵ+ 1 െ 𝛼௧𝜖, with 𝜖~𝑁ሺ𝑂, 𝐼ሻ

• 𝛼௧ ∈ ሾ0,1ሿ is a variance hyperparameter,𝛼௧ ൐ ⋯ ൐ 𝛼்

Denoising Diffusion Probabilistic Models
Forward process – Diffusion kernel
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 Property: the forward process can be sampled at any time 𝑡 in closed
form

 𝑞 𝑥௧ 𝑥଴ ൌ 𝒩ሺ𝑥௧; 𝛼ത௧𝑥ை, ሺ1 െ 𝛼ത௧)I) – this is called the diffusion kernel

 with 𝛼ത௧ ൌ ∏ 𝛼௦
௧
௦ୀଵ

 This allows us to sample 𝑥௧~𝑝ሺ𝑥௧ሻ using the reparametrization trick:
 Sample 𝑥଴~𝑞 𝑥଴ and then sample x୲~𝑞 𝑥௧ 𝑥଴ (this is called ancestral 

sampling) and this is the main formula for the forward process

 The schedule for 𝛼௧ is defined so that 𝑞 𝑥் 𝑥଴ ൎ 𝒩ሺ𝑥்; 0, 𝐼ሻ

Fig.  Kreis et al. 2022

𝑥௧ ൌ 𝛼ത௧𝑥ை ൅ ሺ1 െ  𝛼ത௧)𝜖, with 𝝐~𝒩ሺ0, 𝐼ሻ, ∀𝑡~𝒰 1, … ,𝑇
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 Illustration of the forward diffusion process – discrete trajectories in 
the 𝑥 space

Fig. Ayan Das 2021

Samples 
𝑥଴~𝑞ሺ𝑥଴ሻ

Samples 
𝑥்~𝑞ሺ𝑥்|𝑥଴ሻ

Denoising Diffusion Probabilistic Models
Reverse denoising process
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 The reverse distribution is
 𝑞 𝑥଴, … , 𝑥் ൌ 𝑞 𝑥଴:் ൌ 𝑞ሺ𝑥்ሻ∏ 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ

்
௧ୀଵ

 The 𝑞ሺ𝑥௧ିଵ|𝑥௧ሻ are complex multimodal distributions, they are 
approximated as normal distributions 𝑝ఏሺ𝑥௧ିଵ|𝑥௧ሻ

 The reverse factorization is then
 𝑝ఏ 𝑥଴, … , 𝑥் ൌ 𝑝ఏ 𝑥଴:் ൌ 𝑝ሺ𝑥்ሻ∏ 𝑝ఏሺ𝑥௧ିଵ|𝑥௧ሻ

்
௧ୀଵ

 We can then generate a data sample 𝑥଴ by first sampling a noise vector
from a prior distribution 𝑥்~𝑝ሺ𝑥்ሻ and then iteratively sampling from
the learnable transition kernel 𝑥௧ିଵ~𝑝ఏሺ𝑥௧ିଵ|𝑥௧ሻ until 𝑡 ൌ 1 where we
get 𝑝ఏሺ𝑥଴|𝑥ଵሻ

Fig.  Kreis et 
al. 2022
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 The reverse MC is then parameterized by
 A prior distribution 𝑝 𝑥் ൌ 𝒩ሺ𝑥்; 0, 𝐼ሻ
 A learnable transition kernel 𝑝ఏ 𝑥௧ିଵ 𝑥௧ ൌ 𝒩ሺ𝑥௧ିଵ;𝜇ఏ 𝑥௧ , 𝑡 ,𝜎௧

ଶ𝐼ሻ
 𝜇ఏ 𝑥௧, 𝑡 is typically implemented via a U-Net, 𝜇ఏ 𝑥௧, 𝑡 is the same size as 𝑥௧
  𝜎௧ can be learned as 𝜎௧ሺ𝑥௧, 𝑡ሻ , but in (Ho et al. 2020) it is simply set to 

1 െ 𝛼௧

Fig.  Kreis et 
al. 2022

Denoising Diffusion Probabilistic Models
Training and sampling algorithms

Advanced Deep learning142

 Training algorithm

Repeat
Sample
𝑥଴~𝑞 𝑥଴
𝑡~Uniform 1,𝑇
Draw a sample

𝑥௧ ൌ 𝛼ത௧𝑥ை ൅ ሺ1 െ  𝛼ത௧)𝜖, with 𝝐~𝒩 0, 𝐼
Take gradient descent on

∇ఏ 𝜖 െ 𝜖ఏ 𝑥௧, 𝑡 ଶ

Until convergence
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 Inference (generation) take the following simple forms

Fig. Ho et al 2020

𝑥்~𝑁ሺ𝑂, 𝐼ሻ
for 𝑡 ൌ 𝑇 𝑡𝑜 1 𝑑𝑜

𝑧~𝑁ሺ0, 𝐼ሻ
Update according to

𝑥௧ିଵ ൌ
ଵ

ఈ೟
𝑥௧ െ

ଵିఈ೟
ଵିఈഥ೟

𝜖ఏ 𝑥௧, 𝑡 ൅ 𝜎 𝑡 𝑧 with 𝑧~𝑁ሺ𝑂, 𝐼ሻ

end for
return 𝑥଴

Denoising Diffusion Probabilistic Models
Implementation
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 𝜖ఏ 𝑥௧ , 𝑡 is often implemented with a U-Net with ResNet blocks and self 
attention layers (recent implementations have been proposed with
transformers)

 Time features are fed to residual blocks, time encoding follows the 
transformers sinusoidal position embedding

 The parameters are shared for all the time steps, only the time 
representation makes the difference between the time steps

Fig.  Kreis et 
al. 2022
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 In Ho et al. 2020
 𝑇 ൌ 1000, 𝛽ଵ ൌ 10ିସ,𝛽் ൌ 0.02, 𝛽௧ increases with a linear schedule
 The pixel values are normalized in ሾെ1,1ሿ
 As usual, lots of influential architecture/ algorithmic parameters conditioning

the good behavior of the model
 The process of generation is extremely slow  (the original model takes up 

to 20 h to generate 50k images of size 32x32)
 Several variants/ improvements proposed since the Ho et al. 2020 paper

 Conditional models allow to generate e.g. images conditionned on text
 Latent diffusion models (Rombach et al. 2022) perform diffusion in a latent 

space, accelarating the generation (used e.g. in stable diffusion)
 The image is first encoded in a smaller dimensional latent space and decoded in 

order to produce the generated image in the original space
 Diffusion and denoising happen in the latent space
 The model allows for conditioning image generation (on text, classes, …)

 Faster models, such as DDIM (Denoising Diffusion Implicit Models,  Song et 
al. 2021)

Diffusion models
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 References (in Red – recommended references)
 Tutorial / survey papers
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