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Introducing kernels

» The concept of kernels is important in machine learning

» It allows to derive general families of ML methods
» Applicable to generic ML problems: supervised, unsupervised, ranking, ..

» That can be used on different types of data (vectors, strings, graphs, ...)

» It provides a general framework for the formal analysis of complex
algorithms

» e.g. NN in the infinite limit (infinite number of hidden cells) can be modeled and
then analyzed as kernel methods

» Kernels have been one of the main ML paradigm for 1995-2005.

» The concept allows to make use and to formalize several important ideas
concerning e.g. optimization (convex optimization), generalization

» Kernel methods are not well adapted to high dimensional spaces and large
datasets, they failed in this sense but remain an important concept in ML
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Intuition (1) — kernels as similarity measures

» Kernel exploit similarity measures between data representations

» Expressed as dot products in a feature space

» Feature space - Let X be a set (e.g. the set of objects to be classified), we will
represent these objects in a feature space H, which is a vector space equiped with a

dot product.
For that we will use a map &:
O:X->H
x — O(x)

» Similarity measure - we define a similarity measure via the dot product in H:

K, x") =< d(x),d(x") >

In the following, K (., . )will be called a kernel

Note: X can be any set,and not only a subset of R"

O i.e.it may be endowed with a dot product itself or not, e.g. think of X as a set of books or
proteins

0 Even when X c R",i.e.a dot product space, the mapping @ will allow us to define more
complex (non linear) representations of x € X
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Intuition (2) — machine learning algorithms and dot products

» Several machine learning algorithms can be expressed using dot
products in a feature space
» We introduce two simple examples
Perceptron
Linear regression

This idea can be generalized to many families of supervised and unsupervised methods
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Intuition (2) — machine learning a

lgorithms and dot products

Example 1: Perceptron dual formulation for binary classification

Training set D = {(x1,y1), ...,
linearly separables

(xV,yM)}, ' € R™, y* € {—1,1}, hyp: the classes are

Perceptron - primal formulation
Initialize w(0) = 0
Repeat (t)

choose example, (x(t), y(t))

if y(Ow().x(t) <0

thenw(t + 1) = w(t) + y(t)X(t)
until convergence

Decision function primal

F(x) = Sgn(z WiX;),

w= Zalyx

a; : number of times for which the algorithm
made a classification error on x!

Perceptron — dual formulation
Initialize ¢ = 0, ¢ € RV
Repeat (t)
choose an example, (x(t), y(t))
let k: x(t) = x*
if yO XX, aiyixt.x(t) <o
then ap = a; +1

T Machine Learning & De¢
unti convergence

Decision function - dual

F(x) = Sgn(z a;yixt. x)
i=1

Gram matrix K :
matrix NxN with term [, : K;; = x". x/
similarity matrix between the training data
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Intuition (2) — machine learning algorithms and dot products
Example 1: Perceptron dual formulation for binary classification

» In the dual formulation of the Perceptron
» The decision function writes as F(x) = sgn(X}L, a;y'K(x', x))
» With the kernel K(xi, x) =< x!, x >, i.e.the kernel is computed directly in the
input domain

What if we make use of another similarity function K(xi, x) instead of the canonical
dot product!?

» The a;s can be considered as a dual representation of the hyperplane normal
vector, in place of the w;s
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Intuition (2) — machine learning algorithms and dot products
Example 2: dual formulation for regression

» Training examples
» D ={(xt,yY), .., (x",y")}, we denote X = {x1, ..., x"}
» Let us consider a linear model for regression

f(x)=w.x

Let x* € X+, with X! the orthogonal set of X

w+aD).x'=wax,vxle X

Adding to w a component outside the space generated by X, has no effect on the
linear regression prediction for all the data in the training set

» If the training criterion only depends on the regression performed on the training
data, as is usually the case, it is not needed to consider components of w outside the
space generated by X

» W can thus be written under the form

v v Vv Vv

— VN i
W= )i ;X
The parameters a;,i = 1...N are called dual parameters

» The regression function can then be directly written under a dual form using dot
product:

fX) =N, a; <xt, x>
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Intuition (2) — machine learning algorithms and dot products
Example 2: dual formulation for regression

» What if we make use of another similarity function K(xi, x) instead
of the canonical dot product?

4
4

>

10

More generally, let us consider a regression defined through the mapping ¢ (x):
fx) =w.p(x)

The solution will be in the space spanned by {¢(x?), ..., p(xN)}

w=3YY, ap(x)

FOO) =T @ < p(x), d(x)) > =T, a; K(x!, %)

K(x',x) =< ¢(xh), p(&f) >= K

K = [Kij] is the Gram matrix
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Intuition — Summary

» Linear ML methods have a dual representation and can be formulated using
dot products in a vector space

» Examples: adaline, regression, ridge regression, etc
» The information on the training data is provided by the Gram matrix K:

K= (Kij)i,jzl...N - (K(xi’xj))

ij=1..N
»  With
K(x, x') =< d(x), d(x') >
O:X->H
x — O(x)
» Such a function K(.,.) defined by a dot product in a feature space will be called a
kernel

» For supervised problems, the decision/ regression function F(x) writes as a linear

combination of scalar products:
N

F(x) = z a; K(x%, x)

i=1
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Kernels

» After this informal introduction, we will introduce some formal
arguments for characterizing kernels that admit a dot product
representation in a feature space

» WVe first introduce some examples motivating the usefulness of
kernels

» We then address the following question:

» What kind of function K (x, x") admits a representation as a dot product in a
feature space K(x,x') =< ®(x), d(x') >
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Definitions

» Gram matrix

» Given a function K: XxX — R,and a dataset X = {x?, ..., xN}, the NxN matrix
with element K;; = K (x%, x7) is called the Gram matrix of K with respect to X

» Positive semi-definite matrix

» A symmetric matrix K is positive semi-definite if its eigenvalues are all non
negative — or equivalently if xT Kx > 0 Vx € X
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Positive definite kernels

» A positive definite kernel on set X, is a function K: X X X - R

» that is symmetric:
K(x,x") = K(x', x)
» Which satisfies, VN € N,V (x%,...,xV) € XN and V (aq, ..., ay) € RY:
N N
z z al-ajK(xi, x>0
i=1j=1
» Note:
» this is the general definition of a positive definite function
» Positive definiteness allows an easy characterization of kernels

» Alternative definition with the similarity matrix of a p.d. kernel

» A kernel K is p.d.if and only if, VN € N,V (xl, w0 xV) € XV the similarity matrix
K;j = K (x!, 2J) is positive semi-definite

» Note: this should be true VN € N
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Examples of p.d. kernels

» Linear kernel

» Let X = R", the function K: X? > R:

(x,x") = K(x,x") =< x,x" >pn
is a p.d. kernel
Proof

<x,x'>gpn=<x',x >pn

{:V=1 Zy:l aia’j < xil x] >Rn = ||Z{V=1 a’ixil

2
=0
]RTL
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More general kernels

» More generally: kernels as dot product in an inner product space

» Lemma
» Let X be any set, ®: X - R", the function K: X% - R:
(6, x") > K(x,x") =< ®(x), P(x") >pn
is a p.d. kernel
Proof: same as above

< D(x),P(x") >Sppn=< ®(x"), P(x)) >gn
N

iiaiaj < O(xh), d(x)) >pn = z aoc)|| =0

i=1 j=1 i=1 RM
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More general kernels
Example: Polynomial Kernel

» Consider a 2 dimensional input space X ¢ R%and

» d:R? > R3, d(x) = P(xq, %) = (x2,x2,4/2x1 x5)
K(x,x") =< ®(x), P(x") >gs
K(x,x") = x2x'? + 2x; x,x'1 x'5 + x2x'3
K(x,x") =<x,x’' >]%2
» Note:
» K(x,x") =< &(x), P(x") > can be computed directly as < x, X’ >?Rz without
explicitely evaluating their coordinate in the feature space
» Cheaper to compute in the original space than in the feature space

» The same kernel is obtained with ®(x,x,) = (xZ, x5, x; X5, X, x1) and a dot
product in R*

Shows that the feature space is not uniquely determined by the kernel function
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Example: Polynomial Kernel

18
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Figure 2.1 Toy example of a binary classification problem mapped into feature space. We
assume that the true decision boundary is an ellipse in input space (left panel). The task
of the learning process is to estimate this boundary based on empirical data consisting of
training points in both classes (crosses and circles, respectively). When mapped into feature
space via the nonlinear map ®;(x) = (z1,22,23) = ([x]?,[x]3, V2 [x]:[x],) (right panel), the
ellipse becomes a hyperplane (in the present simple case, it is parallel to the z; axis, hence
all points are plotted in the (z;,2;) plane). This is due to the fact that ellipses can be written
as linear equations in the entries of (2,2, 23). Therefore, in feature space, the problem
reduces to that of estimating a hyperplane from the mapped data points. Note that via the
polynomial kernel (see (2.12) and (2.13)), the dot product in the three-dimensional space
can be computed without computing ®,. Later in the book, we shall describe algorithms
for constructing hyperplanes which are based on dot products (Chapter 7).
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Characterization of kernels

» Up to now kernels have been characterized by explicitely defining a
mapping in a feature space and then computing an inner product in
this space

» We wiill introduce an alternative characterization of a kernel
» It is one of the main theoretical tools to characterize kernels

»  Without explicitely defining the feature space (i.e. @)
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Characterization of kernels
Definitions and properties

» Inner product

» Let H a vector space over R, a function <.,.>4, is said to be an inner product on H
if
<aifi +arfo,g >x=a1 < f1,9 >t ay < fz,9 >4 linear (bilinear)
<f,9 >x=<g,f >3 symmetric
<f,f>x=0and < f,f >4=0iff f =0
We can then definea normon H as ||f || = V< . f >x

» H endowed with an inner product is an inner product space

» Hilbert space
» s an inner product space H with the additional properties that it is separable and
complete i.e. any Cauchy sequence in ' converges in H
A Cauchy sequence (f,) is a sequence whose elements become progressively arbitray close

to each other
lim “fn - fm”}[ =0
m>nn—-oo

H is separable if for any € > 0 there exists a finite set of elements of H, {f, ..., fy} such that
forall f € H,

minllf; = fllse < €
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Characterization of kernels
Definitions and properties

» Cauchy-Schwartz inequality for dot products

» In an inner product space

<x,x' >2 < lxlPlx']?
» Cauchy-Schwartz inequality for kernels

» If K is a p.d. kernel and x4, x, € X, then:
|K(x1,x%)]? < K(xt, x1). K(x?, x?)
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Characterization of kernels

» Theorem

» K:XxX — Ris a p.d. kernel on X if and only if there exists a Hilbert space H
and a mapping ®: X — H such that:

Vi, x' € X,K(x,x") =< ®(x), P(x") >4

» Central result that establish a link between kernels defined as dot
products in a feature vector space and positive definite functions

» In order to demonstrate this result, we explicitely construct the
feature -Hilbert- space,i.e. ® and H
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Characterization of kernels

» Assumption: K is a p.d. kernel

» Obijective: construct an appropriate Hilbert space and a mapping @
» Defining the mapping @
» Let us define ®: X - R*,where RX := {f: X — R} is the space of functions
mapping X into R as:
®: X > RX
x+— K(,x)
®(x) € R¥, denotes a function that assigns a value K(x',x) to x' € X, i.e.
d(x)(x) =K', x)
To each point x in the X space, one associates a function ®(x) = K(., x)
This function will be a point in a vector space

See Fig. next slide
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Characterization of kernels

Figure 2.2 One instantiation of the fea-
ture map associated with a kernel is the

map (2.21), which represents each pattern

/TD\ (in the picture, x or x’) by a kernel-shaped
function sitting on the pattern. In this sense,

each pattern is represented by its similar-

M ity to all other patterns. In the picture, the

. . kernel is assumed to be bell-shaped, e.g., a

x x d(x) D) Gaussian k(x, x') = exp(—||x — x'[|*/(2 0%)).
In the text, we describe the construction of

a dot product (.,.) on the function space
such that k(x, x) = (®D(x), D(x')).

Fig, Scholkopf
et al. 2002
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Characterization of kernels

» Construction of the feature space H

» Let us consider the space of functions
y H = {Z’{’;lail{(.,xi) meNx'eX,a;eERi=1 m}

Note: here m € N, x! € X, a; € R are arbitrary,

» H is closed under multiplication by a scalar and addition of functions and is then
a vector space

» We define the dot product onto H:
» Let f() =3, al-K(.,xi) g() = ?Llﬁjl((.,x’j)
» <f.9>= X 2z a;BiK (x', x'7) = i aig(xh) = =1 Bif (x'7)
» From these equalities, <.,.> is symmetric, bilinear
» Since K is p.d.forany f(.) = Xi_; a;K(.,x"), one has:
<f.f>= Yo qaKhxl) =0

Note: this means that <.,.> is itself a p.d. kernel on the space of functions
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Characterization of kernels

» Reproducing property of the kernel

b <LK > = B K (xx) = F(2)
» Particular case:< K(.,x),K(.,x") >=K(x,x") or < ®(x), ®(x") >=K(x,x")

» Using the reproducing property and Cauchy Schwartz:
lFC)I2 =< f,K(,x) > <K(xx).<f,f>
Then < f,f >=0implies f =0
» This establishes that <.,.>is a dot product

» It remains to show that space H is also complete and separable
See e.g. (Shawe Taylor et al. 2004)

Summary
Given a p.d. kernel K, one has built H an associated Hilbert space in

which the reproducing property holds, and a mapping @
H is called the Reproducing Kernel Hilbert Space (RKHS) of K

We give the formal definition of a RKHS later
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Characterization of kernels

» Conversely

» Given a mapping @ from X to a dot product space, we can get a p.d. kernel via
k(x,x") =< ®(x),d(x") >

» Proof

Va; € R,x! € X,i =1..m,we have

YK (xhx)) =< ¥, aidb(xi),zj a;®(x)) > = |Z; aiCD(xi)||2 >0
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Characterization of kernels
Summary

» This characterization allows us

» to give an equivalent definition of p.d. kernels as functions with the property that
there exists a map @ into a dot product space such that

k(x,x") =< ®(x),®(x") > holds
» To construct kernels from feature maps
k(x,x") =< &(x),d(x") >

» ltis at the base of the kernel trick
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Kernel Trick

» Given an algorithm which is formulated in terms of a p.d. kernel, K, one can
construct an alternative algorithm by replacing K by another p.d. kernel K’

» Intuition
The original algorithm is a dot product based algorithm on vectors ®(x1), ..., ®(x™),
when K is replaced by K’, the algorithm is the same but operates on 'Y, ., o'&™

The best known application of the trick is when K is the dot product in the input
domain. It can be replaced by another kernel, e.g. non linear. Most of the linear data
analysis algorithms (PCA, ridge regression, etc) can then be automatically

« kernalized ».

Any algorithm that process finite dimensional vectors that is expressed in terms of
pairwise inner products, can be applied to infinite-dimensional vectors in the feature
space of a p.d. kernel, by replacing each inner product by a kernel evaluation
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Reproducing Kernel Hilbert Spaces - RKHS

» Let X be a non empty set and H a Hilbert space of functions with
inner product <.,.>.Then His called a RKHS if there exists a
function K: X X X — R with the following properties:

» K has the reproducing property

» <f,K(x,.)>=f(x),VfEH
In particular

» <K(x,.),K(x',.)> = K(x,x")

» Vx€X K(x,.) EH

» K is called a reproducing kernel

» Property
» The RKHS determines uniquely K and reciprocally
» A function K: XxX — R is positive definite iff it is a reproducing kernel!
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RKHS example — The linear kernel

» Let X = R" and consider the linear kernel
» K(x,x") =< x,x" >pn
» The RKHS of the linear kernel is the set of linear functions:
H={f,(x) =<w,x >gn; w e R"}

» Inner product is defined as
Vo,w € RYL, L f,, fr Su=< v, W >pn

» The corresponding norm is
vw € R, [[fwllze = llwllgn
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Infinite dimensional feature space

» Lemma
» Let D = {x1, ..., x"} distinct points in X,and o # 0.The matrix K given by
. .2
xt—xt
K;j:= exp(— %) has full rank.

» Let ® the matrix with column vectors the ®(x') . The points ®(x1), ... ®(x")
are linearly independent (since K = ®7®).
» Then they span an N dimensional subspace of H.

» Since this is true for all N, i.e. no restriction on the number of training examples,
the feature space is then of infinite dimension
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How to build new kernels

» Kernels can be built from combinations of known ones

» Let K, K, be kernels defined on a metric space X4, K5 defined on
the Hilbert space H, the following combinations are kernels:
» K(x,z) =K{(x,z) + K,(x,z)
» K(x,z) = K(x,2).K,(x,2)
» K(x,z) = aK;(x,2)
» K(x,z) = K3(¢(x), $(2))
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Gaussian process regression




Motivations

» Most ML algorithm for regression predict a mean value

» Gaussian processes are Bayesian methods that allow us to predict,
not only a mean value, but a distribution over the output values

» In regression, for each input value x, the predicted distribution is Gaussian and is
then fully characterized by its mean and variance
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Gaussian distributions refresher

>

Multivariate Gaussian distribution x~N (u, Z),x € R™

1 1 —
r p(x) =—m—exp(—5 (x —w'Z7H(x — W)
(2m)Z|z|1/?
Summation (a)

» Let x and y two random variables with the same dimensionality, p(x) = N (tty, X5)
and p(y) = N (1y, Zy)
» Then their sum is also Gaussian: p(x +y) = N (uy + 4y , 2 + X))

Marginalization (b)
» Letx,p(x) = N(u,ZX),consider a partition of x into two sets of variables x =
xa
(Xb)'
_ Ha _ z:aa z:ab

» Let us denote u = (ub),Z = (Zba be)
» Then the marginals are also Gaussians, e.g.: p(x,) =

[o, PGear xpi 1, D)oy, = N (kg , Za),

» X being symmetric, X, = Xp,
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Gaussian distributions refresher

» Conditioning (c)
» The conditionals are also Gaussians

» p(xglxp) = N(//‘a|b f2a|b) with Halp = Ug T 2:abZI;I;L(xb — Up) and Za|b —
2:aa o Zabzl;l}zba

» Marginalization bis (d)

» Let x and y two random vectors such that p(x) = N (u, 2,) and p(y|x) =
N(Ax +b,Z,)

» The marginal of y is p(y) = | p(yIx)p(x)dx = N(Au+b,%, + AZ,A")
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Introducing the Gaussian processes
From Bayesian linear regression to Gaussian processes

» Consider the linear parameter model:

» y(x) = wio(x)
» where w € R, ¢p(x) € RM are M fixed basis functions

For example, ¢ could be a linear function ¢(x) = (x,1) or ¢ could be a vector of
—:)2
gaussian kernels ¢;(x) = exp (— (xz—”‘)),i =1,..,.M

SZ

» WVe consider a Bayesian setting
»  With w following a prior distribution given by an isotropic Gaussian
p(w) = N(0,a1)
0 a~lis the precision parameter = the inverse variance
» For any value of w, y(x) = wl ¢p(x) defines a specific function of x
» p(w) thus defines a distribution over functions y(x)
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Introducing the Gaussian processes
From Bayesian linear regression to Gaussian processes

4
4

How to characterize the distribution over functions y(x)?

In practice, we will want to evaluate y(x) at specific values x

» e.g.at the training points or for a test point, lets do that:

Let us consider a finite data sample x2, ..., xV

Let us denote y = (¥4, ..., y¥)T, with y! = y(x})

We want to characterize the distribution of y

» y=dw,with d = [¢(x1), ...,qb(xN)]T called the design matrix @;; = qu(xi)

» wis Mx1,® is NxM,y is Nx1

» Yy being a linear combination of Gaussian variables (the elements of w) is itself Gaussian and fully
characterized by its mean and variance

E[y] = ®E[w] =0
Cov[y] = E[yy"] = ®E[wwT]®T = %qbe =K
K is a Gram matrix with elements K,,,,, = k(x™, x™) = %d)(x")np(xm)
0O k(x,x") is the kernel function
y~N(0,K),y is Nx1, Kis NxN
This is a first example of Gaussian process, defined by a linear model

Usually, the kernel function is not defined through basis functions, but directly by
specifying a Kernel function, e.g. a Gaussian kernel

39 Machine Learning & Deep Learning - P. Gallinari



Introducing the Gaussian processes
From Bayesian linear regression to Gaussian processes

>

Samples of functions drawn from » Bishop C.PRML

Gaussian processes for a
« Gaussian Kernel »

= ’
k(x,x') = exp(— =50
We specify a set of input points 1.5k

x = (x1,...,xY) in [-1,1] and an
NxN covariance matrix K.

We draw a vector (y1,...,yN) O

from the Gaussian defined by y =
N(0,K)

The figure shows samples drawn
from gaussian processes

» Each curve represents a sample _3

of N points (yl, ...,yN) ;] -0.5 0 0.5 |
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Introducing the Gaussian processes
From Bayesian linear regression to Gaussian processes

» A stochastic process y(x) is specified by the joint probability
distribution for any finite set of values {y(x1), ..., y(x™)},i.e.any N

» The joint distribution over N variables y1, ...,y is specified
completely by their mean and covariance
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Probability distribution over functions with finite domain

» Let us consider a finite domain X = {x1, ..., x"}

» Consider the set of all possible functions X — R
» eg f(x1) =05, .., f(xN) =26
» Since the domain X is finite, any f can be represented as a vector:
h= (), .., fGM)
» How to define a probability distribution to this family of functions?

» Let us assume h~N(u, a21), then the probability distribution over functions f
will be

—exp(— = (f(x) — 1))

» p(h) = Iivzl\/z—
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Gaussian processes

» Definition

» A stochastic process is a collection of random variables {f (x); x € X} indexed
by elements of set X (in the following one will consider X' = R).

This is a probability distribution over the functions f(x)

» A Gaussian process is a stochastic process such that the set of values of f(x)
evaluated at any number of points x1, ... xN is jointly Gaussian, i.e.:

fxD) m(xl)‘ [k(x xl) k(x xN)

o] \[mee)
» Properties
» A Gaussian process is entirely specified by its
Mean function m(x) = E¢[f(x)]
Covariance matrix, with covariance function k(x,x") = E¢[(f (x) — m(x))(f(x") —

m(x")]
» One denotes f ~GP(m, k) meaning that f is distributed as a GP with mean m
and covariance k functions (componnents of the covariance matrix)

k(xM,x1) .. k(xN x™)

43 Machine Learning & Deep Learning - P. Gallinari



Gaussian processes

» Intuition

» Gaussian distributions model finite size collections of real valued variables
(vectors)

» Gaussian processes extend multivariate gaussians to infinite size collections of
real-valued variables (functions)
GP are distributions over random functions

Let H be a class of functions f: X — Y. A random function f(.) from H is a function
which is randomly drawn from H

Intuitively, one can think of f(.) as an infinite vector drawn from an infinite multivariate
Gaussian. Each dimension of the Gaussian corresponds to an element x from the index
and the corresponding component of the random vector is the value f(x)

» What could be the functions m(.) and k(.,.)!?

» Any real valued function m(.) is acceptable

» Matrix K, with components the k(.,.), should be a valid covariance matrix
corresponding to a Gaussian distribution

This is the case if K is positive semi-definite (remember conditions for valid kernels)
00 Any valid kernel can be used as a covariance function
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Gaussian processes

(1.00, 4.00, 0.00, 0.00)

» Example 3

» Zero mean Gaussian process g

GP(0,k(.,.)) defined for

functions : X c R - R 0

6
» k(x,x') = exp(—71||x_ 1.5]
2
/ . . : :

X || ) 2 s 0 o5 i

» The function values are R i

distributed around 0
1.5¢

» £(x) and F(x") will have a high %
covariance k(x,x") if x and 0}
! /
x'are nearby and a low |

covariance otherwise ]

: g | | |
i.e. they are locally smooth S 2T 6§ g A

Bishop PRML, Top 6; = 4, bottom 6, = 0.25
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Gaussian processes for regression

» We consider a Gaussian process regression model (1 dimensional
for simplification)
» y=f(x)+e,withx ER"andy ER

e~N(0,02) independently chosen for each observation accounts for the noise at each
observation

» Let us consider a set of training examples S = {(x1,y1), ..., (", y")} from an
unknown distribution

» Letusdenote Y = (y%,..,yMTand F = (f1, ..., fNT with ft = f(x})

» From the definition of a Gaussian process, one assume a prior distribution over
functions f(.).We assume a zero mean Gaussian process prior:

p(F) = N (0,K) with K a Gram matrix defined by a kernel function K;; = k(x;, x;)
» We will

» Characterize the joint distribution of Y = (y1, ..., y™")T
» In order to define the predictive distribution for test points p(yy4+11Y)
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Gaussian processes for regression
Characterizing the joint distribution of Y = (y1, ..., y")T

» The joint distribution of Y = (y1, ..., y™)T is
» p(Y) = [ p(YIF)p(F)dF = N (0,C)
» With the covariance matrix C defined as C(x%, x/) = k(x%,x/) + 1261-]-
o
d;; is the Kronecker symbol

» Demonstration
»  We will first show p(Y|F) = N (F, a?Iy)
p(Y|F) =p(?, ... yN|F)
p(YIF) =TI p (¥ |£)
. 2
p(YIF) = TTiLy = exp(— 55 (V' = 1))

1 \NV/2 1
p(YIF) = (55)  exp(— IY — FII?)

p(Y|F) = W(F,0%ly)
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Gaussian processes for regression
Characterizing the joint distribution of Y = (y1, ..., y")

» Demonstration of p(Y) = [ p(Y|F)p(F)df = N (0, C)

T

» p(F) =N (0,K)
» p(YIF) =N(F,0%ly)
» p(Y) = [p(YIF)p(Fdf
» By property (d) in Gaussian refresher we get:
» p(Y) =N(0,0%ly+K)=N(0,C)
With C;; = k(x',x7) + 026;;
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Gaussian processes for regression
Predictive distribution

» For the regression, our goal is to predict the value y for a new
observation x

» Let us consider a training set D = {(Xi,yi);i =1.. N}, and denote YV =

(v, ..., yM)T, let yN*1 the value one wants to predict for observation xV*1,

YN+ = (YN yN+1)T

» Let us first explicit the joint distribution over YV*1

P = WO, Cy ) with iy = (10 1)
Cy the covariance matrix of Yy
k€RN ky=k(x\,xN*1);i=1..N
c =k(xN*1,xN*1) + 52 €R
» Proof
This is a direct application of the result shown before p(Y) = N (0, C)

49 Machine Learning & Deep Learning - P. Gallinari



Gaussian processes for regression
Predictive distribution

» Prediction is achieved via the conditional distribution p(yN*1|YN)

» By definition of a Gaussian process, p(y"V*1|YN, X) is a Gaussian.

» Its mean and covariance are given by:
m@N*D) = kTCytyN
a2(N*) = ¢ — kTC7k
» Proof
This is a direct application of property (c) (conditioning)

» Property

N+1) — N+1y

» m(xV*t1) writes as m(x N aik(xt x

With a;the it" component of Cy1Y
» Prediction in practice

» Given a training set of N points S = {(x1,y1), ..., (", y™)}, and the
specification of a kernel function k(.,.), it is then possible to infer the posterior
distribution distribution for any new input point xV*1
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Gaussian processes for regression

Predictive distribution

» This means that for any new datum x
N+1)

» A mean prediction m(x

N+1

, ONe can compute

» An uncertainty associated to this prediction g% (xV*1)

lllustration of Gaussian process re-
gression applied to the sinusoidal
data set in Figure A.6 in which the
three right-most data points have
been omitted. The green curve
shows the sinusoidal function from
which the data points, shown in
blue, are obtained by sampling and
addition of Gaussian noise. The
red line shows the mean of the
Gaussian process predictive distri-
bution, and the shaded region cor-
responds to plus and minus two
standard deviations. Notice how
the uncertainty increases in the re-
gion to the right of the data points.

0.2

0.4

0.6
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Gaussian processes for regression

» Scaling

» The central computation in using Gaussian processes involes the inversion of an
N X N matrix

» This is O(N3) with standard methods
» For each new test point, this requires a vector matrix multiply which is O(N?)
» Fo large datasets, this is unfeasible

Several approximations have been proposed but this remains ill adapted to large
datasets and high dimensions.
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Learning hyperparameters

» The kernel functions can be chosen a priori

» Alternatively, they may be defined as parametric functions (e.g.
squared exponential kernel as in the example and the parameters
may be learned e.e. by maximum likelihood

» Log likelihood for a Gaussian process regression model
» logp(Y|0) = —%logICNI - %YTCﬁlY - %log(Zn)

» Training can be performed using gradient descent on the parameters 0
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Gaussian processes - references
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